[1] | Lusty, P.A.J., and Murton, B.J. (2018). Deep-ocean mineral deposits: Metal resources and windows into earth processes. Elements 14: 301−306. DOI: 10.2138/gselements.14.5.301. |
[2] | Hitchin, B., Smith, S., Kröger, K., et al. (2022). Thresholds in deep-seabed mining: A primer for their development. Marine Policy 149: 105505. DOI: 10.1016/j.marpol.2023.105505. |
[3] | Mestre, N., Auguste, M., De Sá, L., et al. (2019). Are shallow-water shrimps proxies for hydrothermal-vent shrimps to assess the impact of deep-sea mining. Marine Environmental Research 151: 104771. DOI: 10.1016/j.marenvres.2019.104771. |
[4] | Kwan, Y.H., Zhang, D., Mestre, N.C., et al. (2019). Comparative proteomics on deep-sea amphipods after in situ copper exposure. Environmental Science & Technology 53: 13981−13991. DOI: 10.1021/acs.est.9b04503. |
[5] | Van Dover, C.L., Ardron, J., Escobar, E., et al. (2017). Biodiversity loss from deep-sea mining. Nature Geoscience 10: 464−465. DOI: 10.1038/ngeo2983. |
Kwan Y.-H., Mestre N.-C., Zhang D., et al., (2023). Metal ecotoxicology: An essential component in environmental impact assessment of deep-sea mining. The Innovation Geoscience 1(1), 100004. https://doi.org/10.59717/j.xinn-geo.2023.100004 |
(A) Illustration of potential metal toxicology impacts generated from DSM. (B) Systematic workflow proposed for standardizing DSM research in the future.