[1] | FAO. (2022). Global Status of Black Soils, Roma. |
[2] | Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., and Finkel, R.C. (1997). The soil production function and landscape equilibrium. Nature 388: 358−361. DOI: 10.1038/41056. |
[3] | Brantley, S.L. (2008). Understanding soil time. Science 321: 1454−1455. DOI: 10.1126/science.1161132. |
[4] | Eckmeier, E., Gerlach, R., Gehrt, E., and Schmidt, M.W. (2007). Pedogenesis of chernozems in Central Europe — a review. Geoderma 139: 288−299. DOI: 10.1016/j.geoderma.2007.01.009. |
[5] | Huntley, D.J., Godfrey-Smith, D.I., and Thewalt, M.L. (1985). Optical dating of sediments. Nature 313: 105−107. DOI: 10.1038/313105a0. |
[6] | Sierra, C.A., Hoyt, A.M., He, Y., and Trumbore, S.E. (2018). Soil organic matter persistence as a stochastic process: Age and transit time distributions of carbon in soils. Glob. Biogeochem. Cycles 32: 1574−1588. DOI: 10.1029/2018GB005950. |
[7] | van der Voort, T.S., Zell, C.I., Hagedorn, F., et al. (2017). Diverse soil carbon dynamics expressed at the molecular level. Geophys. Res. Lett. 44: 11−840. |
[8] | Hemingway, J.D., Rothman, D.H., Grant, K.E., et al. (2019). Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570: 228−231. DOI: 10.1038/s41586-019-1280-6. |
[9] | Bateman, M.D., Frederick, C.D., Jaiswal, M.K., and Singhvi, A.K. (2003). Investigations into the potential effects of pedoturbation on luminescence dating. Quat. Sci. Rev. 22: 1169−1176. DOI: 10.1016/S0277-3791(03)00019-2. |
[10] | Gray, H.J., Keen-Zebert, A., Furbish, D.J., et al. (2020). Depth-dependent soil mixing persists across climate zones. Proc. Natl. Acad. Sci. USA. 117: 8750−8756. DOI: 10.1073/pnas.1914140117. |
Zhang G., Long H., and Yang F. (2023). Understanding the formation time of black soils. The Innovation Geoscience 1(1), 100010. https://doi.org/10.59717/j.xinn-geo.2023.100010 |
Schematic diagram of key processes in black soil formation. The central box illustrates the fine-scale age structure in black soil.