HIS mouse model was generated by engrafting hCD34+ HSCs into hIL7/hIL15-NDG mice.
Various human immune cells were developed in HIS mouse model including ILCs.
Human pulmonary immune response against IAV infection was analyzed in HIS mice.
Human specific genes in pulmonary immune cells were identified.
[1] | Allen, T.M., Brehm, M.A., Bridges, S., et al. (2019). Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20: 770−774. DOI: 10.1038/s41590-019-0416-z. |
[2] | Herndler-Brandstetter, D., Shan, L., Yao, Y., et al. (2017). Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc. Natl. Acad. Sci. USA 114: E9626−E9634. DOI: 10.1073/pnas.1705301114. |
[3] | Li, Y., Mention, J.J., Court, N., et al. (2016). A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development. Eur. J. Immunol. 46: 1291−1299. DOI: 10.1002/eji.201546132. |
[4] | Lopez-Lastra, S., Masse-Ranson, G., Fiquet, O., et al. (2017). A functional DC cross talk promotes human ILC homeostasis in humanized mice. Blood Adv. 1: 601−614. DOI: 10.1182/bloodadvances.2017004358. |
[5] | Biswas, S., Chang, H., Sarkis, P.T., et al. (2011). Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5+ B cells. Immunology 134: 419−433. DOI: 10.1111/j.1365-2567.2011.03501.x. |
[6] | Guia, S. and Narni-Mancinelli, E. (2020). Helper-like innate lymphoid cells in humans and mice. Trends Immunol. 41: 436−452. DOI: 10.1016/j.it.2020.03.002. |
[7] | Wang, S., Xia, P., Chen, Y., et al. (2017). Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171: 201−216.e18. DOI: 10.1016/j.cell.2017.07.027. |
[8] | Serafini, N., Vosshenrich, C.A., and Di Santo, J.P. (2015). Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol. 15: 415−428. DOI: 10.1038/nri3855. |
[9] | Saito, Y., Shultz, L.D., and Ishikawa, F. (2020). Understanding normal and malignant human hematopoiesis using next-generation humanized mice. Trends Immunol. 41: 706−720. DOI: 10.1016/j.it.2020.06.004. |
[10] | Galle-Treger, L., Sankaranarayanan, I., Hurrell, B.P., et al. (2019). Costimulation of type-2 innate lymphoid cells by GITR promotes effector function and ameliorates type 2 diabetes. Nat. Commun. 10: 713. DOI: 10.1038/s41467-019-08449-x. |
[11] | Billerbeck, E., Barry, W.T., Mu, K., et al. (2011). Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood 117: 3076−3086. DOI: 10.1182/blood-2010-08-301507. |
[12] | Cella, M., Gamini, R., Secca, C., et al. (2019). Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat. Immunol. 20: 980−991. DOI: 10.1038/s41590-019-0425-y. |
[13] | Das, R., Strowig, T., Verma, R., et al. (2016). Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat. Med. 22: 1351−1357. DOI: 10.1038/nm.4202. |
[14] | Yu, H., Borsotti, C., Schickel, J.N., et al. (2017). A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 129: 959−969. DOI: 10.1182/blood-2016-04-709584. |
[15] | Machiavello Roman, F.J., Pischel, L., and Azar, M.M. (2024). Lung infections due to emerging fungal pathogens. Curr. Opin. Pulm. Med. 30: 258−265. DOI: 10.1097/MCP.0000000000001059. |
[16] | Zhao, M., Liu, Z., Shao, F., et al. (2021). Communication pattern changes along with declined IGF1 of immune cells in COVID-19 patients during disease progression. Front. Immunol. 12: 729990. DOI: 10.3389/fimmu.2021.729990. |
[17] | Scoville, S.D., Mundy-Bosse, B.L., Zhang, M.H., et al. (2016). A progenitor cell expressing transcription factor RORgammat generates all human innate lymphoid cell subsets. Immunity 44: 1140−1150. DOI: 10.1016/j.immuni.2016.04.007. |
[18] | Lim, A.I., Li, Y., Lopez-Lastra, S., et al. (2017). Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168: 1086−1100.e10. DOI: 10.1016/j.cell.2017.02.021. |
[19] | Lamers, M.M., Beumer, J., van der Vaart, J., et al. (2020). SARS-CoV-2 productively infects human gut enterocytes. Science 369: 50−54. DOI: 10.1126/science.abc1669. |
[20] | Zhao, M., Shao, F., Yu, D., et al. (2022). Maturation and specialization of group 2 innate lymphoid cells through the lung-gut axis. Nat. Commun. 13: 7600. DOI: 10.1038/s41467-022-35347-6. |
[21] | Matsuda, M., Ono, R., Iyoda, T., et al. (2019). Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci. Alliance 2: e201800195. DOI: 10.26508/lsa.201800195. |
[22] | Laursen, N.S., Friesen, R.H.E., Zhu, X., et al. (2018). Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 362: 598−602. DOI: 10.1126/science.aaq0620. |
[23] | Dai, H., Wang, L., Li, L., et al. (2021). Metallothionein 1: A new spotlight on inflammatory diseases. Front. Immunol. 12: 739918. DOI: 10.3389/fimmu.2021.739918. |
[24] | Liu, J. and McFadden, G. (2015). SAMD9 is an innate antiviral host factor with stress response properties that can be antagonized by poxviruses. J. Virol. 89: 1925−1931. DOI: 10.1128/JVI.02262-14. |
[25] | Gautam, A. and Pandit, B. (2021). IL32: The multifaceted and unconventional cytokine. Hum. Immunol. 82: 659−667. DOI: 10.1016/j.humimm.2021.05.002. |
[26] | Han, L., Chen, S., Chen, Z., et al. (2021). Interleukin 32 Promotes Foxp3+ Treg Cell Development and CD8+ T Cell Function in Human Esophageal Squamous Cell Carcinoma Microenvironment. Front. Cell Dev. Biol. 9: 704853. DOI: 10.3389/fcell.2021.704853. |
[27] | Welte, S., Kuttruff, S., Waldhauer, I., and Steinle, A. (2006). Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol 7(12): 1334−1342. DOI: 10.1038/ni1402. |
[28] | Barrow, A.D., Martin, C.J., and Colonna, M. (2019). The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 10: 909. DOI: 10.3389/fimmu.2019.00909. |
[29] | Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., et al. (2011). Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12: 1045−1054. DOI: 10.1031/ni.2131. |
[30] | Scharenberg, M., Vangeti, S., Kekalainen, E., et al. (2019). Influenza A Virus Infection Induces Hyperresponsiveness in Human Lung Tissue-Resident and Peripheral Blood NK Cells. Front Immunol 10: 1116. DOI: 10.3389/fimmu.2019.01116. |
[31] | Nguyen, T.H.O., Koutsakos, M., van de Sandt, C.E., et al. (2021). Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nat. Commun. 12: 2691. DOI: 10.1038/s41467-021-23018-x. |
Ma J., Liu Z., Wang Y., et al., (2023). Pulmonary human immune responses in a humanized immune mouse model during influenza virus infection. The Innovation Life 1(1), 100009. https://doi.org/10.59717/j.xinn-life.2023.100009 |
Features of immune cells and immune responses in hIL7/hIL15-based HIS mice
Human immune cell profile in the lung tissue of hIL7/hIL15 HIS mice
Features of pulmonary T cells after IAV infection
Characteristics of pulmonary NKs and ILCs in hIL7/hIL15 HIS mice
Human specific DEGs in ILCs after IAV infection