Targeting specificity of tail-anchored (TA) proteins is important for their functions.
Targeting and surveillance mechanisms maintain organelle specificity of TA proteins.
MSP1 clears mis-targeted TA proteins from mitochondria.
ATP13A1/CATP-8 extracts mis-targeted TA proteins from endoplasmic reticulum.
[1] | Hegde, R.S., and Zavodszky, E. (2019). Recognition and degradation of mislocalized proteins in health and disease. Cold Spring Harb. Perspect. Biol. 11: a033902. DOI: 10.1101/cshperspect.a033902. |
[2] | Chio, U.S., Cho, H., and Shan, S.O. (2017). mechanisms of tail-anchored membrane protein targeting and insertion. Annu. Rev. Cell Dev. Biol. 33: 417−438. DOI: 10.1146/annurev-cellbio-100616-060839. |
[3] | Mateja, A. and Keenan, R.J. (2018). A structural perspective on tail-anchored protein biogenesis by the GET pathway. Curr. Opin. Struct. Biol. 51: 195−202. DOI: 10.1016/j.sbi.2018.07.009. |
[4] | Cho, H., and Shan, S.O. (2018). Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J. 37: e99264. DOI: 10.15252/embj.201899264. |
[5] | Cho, H., Shim, W.J., Liu, Y., and Shan, S.O. (2021). J-domain proteins promote client relay from Hsp70 during tail-anchored membrane protein targeting. J. Biol. Chem. 296: 100546. DOI: 10.1016/j.jbc.2021.100546. |
[6] | Shan, S.-o. (2019). Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J. Biol. Chem. 294: 16577−16586. DOI: 10.1074/jbc.REV119.006197. |
[7] | Zhang, Y., De Laurentiis, E., Bohnsack, K.E., et al. (2021). Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast. Nat. Commun. 12: 782. DOI: 10.1038/s41467-021-20981-3. |
[8] | Casson, J., McKenna, M., Hassdenteufel, S., et al. (2017). Multiple pathways facilitate the biogenesis of mammalian tail-anchored proteins. J. Cell Sci. 130: 3851−3861. |
[9] | Aviram, N., Ast, T., Costa, E.A., et al. (2016). The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540: 134−138. DOI: 10.1038/nature20169. |
[10] | Rabu, C., Wipf, P., Brodsky, J.L., and High, S. (2008). A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J. Biol. Chem. 283: 27504−27513. DOI: 10.1074/jbc.M804591200. |
[11] | Bai, L., You, Q., Feng, X., et al. (2020). Structure of the ER membrane complex, a transmembrane-domain insertase. Nature 584: 475−478. DOI: 10.1038/s41586-020-2389-3. |
[12] | Guna, A., Volkmar, N., Christianson, J.C., and Hegde, R.S. (2018). The ER membrane protein complex is a transmembrane domain insertase. Science 359: 470−473. DOI: 10.1126/science.aao3099. |
[13] | Volkmar, N., Thezenas, M.L., Louie, S.M., et al. (2019). The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J. Cell Sci. 132: jcs223453. |
[14] | Thornton, N., Stroud, D.A., Milenkovic, D., et al. (2010). Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. J. Mol. Biol. 396: 540−549. DOI: 10.1016/j.jmb.2009.12.026. |
[15] | Setoguchi, K., Otera, H., and Mihara, K. (2006). Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J. 25: 5635−5647. DOI: 10.1038/sj.emboj.7601438. |
[16] | Kemper, C., Habib, S.J., Engl, G., et al. (2008). Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J. Cell Sci. 121: 1990−1998. DOI: 10.1242/jcs.024034. |
[17] | Krumpe, K., Frumkin, I., Herzig, Y., et al. (2012). Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol. Biol. Cell 23: 3927−3935. DOI: 10.1091/mbc.e11-12-0994. |
[18] | Vitali, D.G., Sinzel, M., Bulthuis, E.P., et al. (2018). The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER. J. Cell Sci. 131: jcs211110. |
[19] | Xiao, T., Shakya, V.P.S., and Hughes, A.L. (2021). ER targeting of non-imported mitochondrial carrier proteins is dependent on the GET pathway. Life Science Alliance 4: e202000918. DOI: 10.26508/lsa.202000918. |
[20] | Cichocki, B.A., Krumpe, K., Vitali, D.G., and Rapaport, D. (2018). Pex19 is involved in importing dually targeted tail-anchored proteins to both mitochondria and peroxisomes. Traffic 19: 770−785. DOI: 10.1111/tra.12604. |
[21] | Vitali, D.G., Drwesh, L., Cichocki, B.A., et al. (2020). The Biogenesis of Mitochondrial Outer Membrane Proteins Show Variable Dependence on Import Factors. iScience 23: 100779. DOI: 10.1016/j.isci.2019.100779. |
[22] | Doan, K.N., Grevel, A., Martensson, C.U., et al. (2020). The Mitochondrial Import Complex MIM Functions as Main Translocase for alpha-Helical Outer Membrane Proteins. Cell Rep. 31: 107567. DOI: 10.1016/j.celrep.2020.107567. |
[23] | Guna, A., and Hegde, R.S. (2018). Transmembrane Domain Recognition during Membrane Protein Biogenesis and Quality Control. Curr. Biol. 28: R498−R511. DOI: 10.1016/j.cub.2018.02.004. |
[24] | Hessa, T., Sharma, A., Mariappan, M., et al. (2011). Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475: 394−397. DOI: 10.1038/nature10181. |
[25] | Rodrigo-Brenni, M.C., Gutierrez, E., and Hegde, R.S. (2014). Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell. 55: 227−237. DOI: 10.1016/j.molcel.2014.05.025. |
[26] | Mariappan, M., Li, X., Stefanovic, S., et al. (2010). A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466: 1120−1124. DOI: 10.1038/nature09296. |
[27] | Shao, S., Rodrigo-Brenni, M.C., Kivlen, M.H., and Hegde, R.S. (2017). Mechanistic basis for a molecular triage reaction. Science 355: 298−302. DOI: 10.1126/science.aah6130. |
[28] | Wunderley, L., Leznicki, P., Payapilly, A., and High, S. (2014). SGTA regulates the cytosolic quality control of hydrophobic substrates. J. Cell Sci. 127: 4728−4739. |
[29] | Culver, J.A., and Mariappan, M. (2021). Deubiquitinases USP20/33 promote the biogenesis of tail-anchored membrane proteins. J. Cell Sci. 220: e202004086. DOI: 10.1083/jcb.202004086. |
[30] | Itakura, E., Zavodszky, E., Shao, S., et al. (2016). Ubiquilins Chaperone and Triage Mitochondrial Membrane Proteins for Degradation. Mol. Cell 63: 21−33. DOI: 10.1016/j.molcel.2016.05.020. |
[31] | Whiteley, A.M., Prado, M.A., Peng, I., et al. (2017). Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. Elife 6: e26435. DOI: 10.7554/eLife.26435. |
[32] | Costello, J.L., Castro, I.G., Camoes, F., et al. (2017). Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J. Cell Sci. 130: 1675−1687. |
[33] | Rao, M., Okreglak, V., Chio, U.S., et al. (2016). Multiple selection filters ensure accurate tail-anchored membrane protein targeting. Elife 5: e21301. DOI: 10.7554/eLife.21301. |
[34] | Borgese, N., Coy-Vergara, J., Colombo, S.F., and Schwappach, B. (2019). The Ways of Tails: the GET Pathway and more. Protein J. 38: 289−305. DOI: 10.1007/s10930-019-09845-4. |
[35] | Schuldiner, M., Metz, J., Schmid, V., et al. (2008). The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134: 634−645. DOI: 10.1016/j.cell.2008.06.025. |
[36] | Chen, Y.C., Umanah, G.K., Dephoure, N., et al. (2014). Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J. 33: 1548−1564. DOI: 10.15252/embj.201487943. |
[37] | Okreglak, V., and Walter, P. (2014). The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl. Acad. Sci. USA 111: 8019−8024. DOI: 10.1073/pnas.1405755111. |
[38] | Wohlever, M.L., Mateja, A., McGilvray, P.T., et al. (2017). Msp1 is a membrane protein dislocase for tail-anchored proteins. Mol. Cell 67: 194−202. DOI: 10.1016/j.molcel.2017.06.019. |
[39] | Li, L., Zheng, J., Wu, X., and Jiang, H. (2019). Mitochondrial AAA-ATPase Msp1 detects mislocalized tail-anchored proteins through a dual-recognition mechanism. EMBO Rep. 20: e46989. DOI: 10.15252/embr.201846989. |
[40] | Dederer, V., Khmelinskii, A., Huhn, A.G., et al. (2019). Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. Elife 8: e45506. DOI: 10.7554/eLife.45506. |
[41] | Weir, N.R., Kamber, R.A., Martenson, J.S., and Denic, V. (2017). The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane. Elife 6: e28507. DOI: 10.7554/eLife.28507. |
[42] | Wang, L., and Walter, P. (2020). Msp1/ATAD1 in protein quality control and regulation of synaptic activities. Annu. Rev. Cell Dev. Biol. 36: 141−164. DOI: 10.1146/annurev-cellbio-031220-015840. |
[43] | Wang, L., Myasnikov, A., Pan, X., and Walter, P. (2020). Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction. Elife 9: e54031. DOI: 10.7554/eLife.54031. |
[44] | Matsumoto, S., Nakatsukasa, K., Kakuta, C., et al. (2019). Msp1 clears mistargeted proteins by facilitating their transfer from mitochondria to the ER. Mol. Cell 76: 191−205. DOI: 10.1016/j.molcel.2019.07.006. |
[45] | Matsumoto, S., Ono, S., Shinoda, S., et al. (2022). GET pathway mediates transfer of mislocalized tail-anchored proteins from mitochondria to the ER. J. Cell Biol. 221: e202104076. DOI: 10.1083/jcb.202104076. |
[46] | McKenna, M.J., Sim, S.I., Ordureau, A., et al. (2020). The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 369: eabc5809. DOI: 10.1126/science.abc5809. |
[47] | Qin, Q., Zhao, T., Zou, W., et al. (2020). An endoplasmic reticulum ATPase safeguards endoplasmic reticulum identity by removing ectopically localized mitochondrial proteins. Cell Rep. 33: 108363. DOI: 10.1016/j.celrep.2020.108363. |
[48] | Dyla, M., Kjaergaard, M., Poulsen, H., and Nissen, P. (2020). Structure and Mechanism of P-Type ATPase Ion Pumps. Annu. Rev. Biochem. 89: 583−603. DOI: 10.1146/annurev-biochem-010611-112801. |
[49] | Sorensen, D.M., Holen, H.W., Holemans, T., et al. (2015). Towards defining the substrate of orphan P5A-ATPases. Biochim. Biophys. Acta. 1850: 524−535. DOI: 10.1016/j.bbagen.2014.05.008. |
[50] | Feng, Z., Zhao, Y., Li, T., et al. (2020). CATP-8/P5A ATPase Regulates ER Processing of the DMA-1 Receptor for Dendritic Branching. Cell Rep. 32: 108101. DOI: 10.1016/j.celrep.2020.108101. |
[51] | Li, T., Yang, X., Feng, Z., et al. (2021). P5A ATPase controls ER translocation of Wnt in neuronal migration. Cell Rep. 37: 109901. DOI: 10.1016/j.celrep.2021.109901. |
[52] | Tang, L.T.H., Trivedi, M., Freund, J., et al. (2021). The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genet. 17: e1009475. DOI: 10.1371/journal.pgen.1009475. |
[53] | Corradi, G.R., Mazzitelli, L.R., Petrovich, G.D., et al. (2020). Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase. PLoS One 15: e0232476. DOI: 10.1371/journal.pone.0232476. |
[54] | Yu, Q., Ma, T., Ma, C., et al. (2019). Multifunction of the ER P-Type Calcium Pump Spf1 During Hyphal Development in Candida albicans. Mycopathologia 184: 573−583. DOI: 10.1007/s11046-019-00372-5. |
[55] | Vinci, G., Xia, X., and Veitia, R.A. (2008). Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses. PLoS One 3: e2883. DOI: 10.1371/journal.pone.0002883. |
Qin Q., Shen K., and Wang X. (2023). Targeting and surveillance mechanisms for tail-anchored proteins. The Innovation Life 1(1), 100013. https://doi.org/10.59717/j.xinn-life.2023.100013 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Pathways for TA proteins targeting to ER and mitochondria
Cytosolic factors in clearing mis-targeted TA proteins
Msp1 uses both hydrophobic and electrostatic interaction to bind and extract mis-targeted TA proteins