REVIEW   Open Access     Cite

Targeting and surveillance mechanisms for tail-anchored proteins

More Information
    1. Targeting specificity of tail-anchored (TA) proteins is important for their functions.

      Targeting and surveillance mechanisms maintain organelle specificity of TA proteins.

      MSP1 clears mis-targeted TA proteins from mitochondria.

      ATP13A1/CATP-8 extracts mis-targeted TA proteins from endoplasmic reticulum.

  • Tail-anchored (TA) proteins are single-pass transmembrane proteins, which contain cytosolic domains and a C-terminal transmembrane domain (TMD) anchored to organelle membranes, leaving a short tail within the lumen of organelles. Organelle specific insertion pathways exist to establish TA proteins targeting specificity. Additionally, surveillance mechanisms contribute to targeting specificity by clearing mis-targeted TA proteins. Cytosolic quality control pathways clearmis-targeted TA proteins from cytosol. MSP1 and ATP13A1/CATP-8/Spf1 extract mis-targeted TA proteins from mitochondria and ER, respectively. Here, we review the progress on the targeting and clearance mechanisms of TA proteins with a focus on ER and mitochondria proteins.
  • 加载中
  • [1] Hegde, R.S., and Zavodszky, E. (2019). Recognition and degradation of mislocalized proteins in health and disease. Cold Spring Harb. Perspect. Biol. 11: a033902. DOI: 10.1101/cshperspect.a033902.

    View in Article CrossRef Google Scholar

    [2] Chio, U.S., Cho, H., and Shan, S.O. (2017). mechanisms of tail-anchored membrane protein targeting and insertion. Annu. Rev. Cell Dev. Biol. 33: 417−438. DOI: 10.1146/annurev-cellbio-100616-060839.

    View in Article CrossRef Google Scholar

    [3] Mateja, A. and Keenan, R.J. (2018). A structural perspective on tail-anchored protein biogenesis by the GET pathway. Curr. Opin. Struct. Biol. 51: 195−202. DOI: 10.1016/j.sbi.2018.07.009.

    View in Article CrossRef Google Scholar

    [4] Cho, H., and Shan, S.O. (2018). Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J. 37: e99264. DOI: 10.15252/embj.201899264.

    View in Article CrossRef Google Scholar

    [5] Cho, H., Shim, W.J., Liu, Y., and Shan, S.O. (2021). J-domain proteins promote client relay from Hsp70 during tail-anchored membrane protein targeting. J. Biol. Chem. 296: 100546. DOI: 10.1016/j.jbc.2021.100546.

    View in Article CrossRef Google Scholar

    [6] Shan, S.-o. (2019). Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J. Biol. Chem. 294: 16577−16586. DOI: 10.1074/jbc.REV119.006197.

    View in Article CrossRef Google Scholar

    [7] Zhang, Y., De Laurentiis, E., Bohnsack, K.E., et al. (2021). Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast. Nat. Commun. 12: 782. DOI: 10.1038/s41467-021-20981-3.

    View in Article CrossRef Google Scholar

    [8] Casson, J., McKenna, M., Hassdenteufel, S., et al. (2017). Multiple pathways facilitate the biogenesis of mammalian tail-anchored proteins. J. Cell Sci. 130: 3851−3861.

    View in Article Google Scholar

    [9] Aviram, N., Ast, T., Costa, E.A., et al. (2016). The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540: 134−138. DOI: 10.1038/nature20169.

    View in Article CrossRef Google Scholar

    [10] Rabu, C., Wipf, P., Brodsky, J.L., and High, S. (2008). A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J. Biol. Chem. 283: 27504−27513. DOI: 10.1074/jbc.M804591200.

    View in Article CrossRef Google Scholar

    [11] Bai, L., You, Q., Feng, X., et al. (2020). Structure of the ER membrane complex, a transmembrane-domain insertase. Nature 584: 475−478. DOI: 10.1038/s41586-020-2389-3.

    View in Article CrossRef Google Scholar

    [12] Guna, A., Volkmar, N., Christianson, J.C., and Hegde, R.S. (2018). The ER membrane protein complex is a transmembrane domain insertase. Science 359: 470−473. DOI: 10.1126/science.aao3099.

    View in Article CrossRef Google Scholar

    [13] Volkmar, N., Thezenas, M.L., Louie, S.M., et al. (2019). The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J. Cell Sci. 132: jcs223453.

    View in Article Google Scholar

    [14] Thornton, N., Stroud, D.A., Milenkovic, D., et al. (2010). Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. J. Mol. Biol. 396: 540−549. DOI: 10.1016/j.jmb.2009.12.026.

    View in Article CrossRef Google Scholar

    [15] Setoguchi, K., Otera, H., and Mihara, K. (2006). Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J. 25: 5635−5647. DOI: 10.1038/sj.emboj.7601438.

    View in Article CrossRef Google Scholar

    [16] Kemper, C., Habib, S.J., Engl, G., et al. (2008). Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J. Cell Sci. 121: 1990−1998. DOI: 10.1242/jcs.024034.

    View in Article CrossRef Google Scholar

    [17] Krumpe, K., Frumkin, I., Herzig, Y., et al. (2012). Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol. Biol. Cell 23: 3927−3935. DOI: 10.1091/mbc.e11-12-0994.

    View in Article CrossRef Google Scholar

    [18] Vitali, D.G., Sinzel, M., Bulthuis, E.P., et al. (2018). The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER. J. Cell Sci. 131: jcs211110.

    View in Article Google Scholar

    [19] Xiao, T., Shakya, V.P.S., and Hughes, A.L. (2021). ER targeting of non-imported mitochondrial carrier proteins is dependent on the GET pathway. Life Science Alliance 4: e202000918. DOI: 10.26508/lsa.202000918.

    View in Article CrossRef Google Scholar

    [20] Cichocki, B.A., Krumpe, K., Vitali, D.G., and Rapaport, D. (2018). Pex19 is involved in importing dually targeted tail-anchored proteins to both mitochondria and peroxisomes. Traffic 19: 770−785. DOI: 10.1111/tra.12604.

    View in Article CrossRef Google Scholar

    [21] Vitali, D.G., Drwesh, L., Cichocki, B.A., et al. (2020). The Biogenesis of Mitochondrial Outer Membrane Proteins Show Variable Dependence on Import Factors. iScience 23: 100779. DOI: 10.1016/j.isci.2019.100779.

    View in Article CrossRef Google Scholar

    [22] Doan, K.N., Grevel, A., Martensson, C.U., et al. (2020). The Mitochondrial Import Complex MIM Functions as Main Translocase for alpha-Helical Outer Membrane Proteins. Cell Rep. 31: 107567. DOI: 10.1016/j.celrep.2020.107567.

    View in Article CrossRef Google Scholar

    [23] Guna, A., and Hegde, R.S. (2018). Transmembrane Domain Recognition during Membrane Protein Biogenesis and Quality Control. Curr. Biol. 28: R498−R511. DOI: 10.1016/j.cub.2018.02.004.

    View in Article CrossRef Google Scholar

    [24] Hessa, T., Sharma, A., Mariappan, M., et al. (2011). Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475: 394−397. DOI: 10.1038/nature10181.

    View in Article CrossRef Google Scholar

    [25] Rodrigo-Brenni, M.C., Gutierrez, E., and Hegde, R.S. (2014). Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell. 55: 227−237. DOI: 10.1016/j.molcel.2014.05.025.

    View in Article CrossRef Google Scholar

    [26] Mariappan, M., Li, X., Stefanovic, S., et al. (2010). A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466: 1120−1124. DOI: 10.1038/nature09296.

    View in Article CrossRef Google Scholar

    [27] Shao, S., Rodrigo-Brenni, M.C., Kivlen, M.H., and Hegde, R.S. (2017). Mechanistic basis for a molecular triage reaction. Science 355: 298−302. DOI: 10.1126/science.aah6130.

    View in Article CrossRef Google Scholar

    [28] Wunderley, L., Leznicki, P., Payapilly, A., and High, S. (2014). SGTA regulates the cytosolic quality control of hydrophobic substrates. J. Cell Sci. 127: 4728−4739.

    View in Article Google Scholar

    [29] Culver, J.A., and Mariappan, M. (2021). Deubiquitinases USP20/33 promote the biogenesis of tail-anchored membrane proteins. J. Cell Sci. 220: e202004086. DOI: 10.1083/jcb.202004086.

    View in Article CrossRef Google Scholar

    [30] Itakura, E., Zavodszky, E., Shao, S., et al. (2016). Ubiquilins Chaperone and Triage Mitochondrial Membrane Proteins for Degradation. Mol. Cell 63: 21−33. DOI: 10.1016/j.molcel.2016.05.020.

    View in Article CrossRef Google Scholar

    [31] Whiteley, A.M., Prado, M.A., Peng, I., et al. (2017). Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. Elife 6: e26435. DOI: 10.7554/eLife.26435.

    View in Article CrossRef Google Scholar

    [32] Costello, J.L., Castro, I.G., Camoes, F., et al. (2017). Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J. Cell Sci. 130: 1675−1687.

    View in Article Google Scholar

    [33] Rao, M., Okreglak, V., Chio, U.S., et al. (2016). Multiple selection filters ensure accurate tail-anchored membrane protein targeting. Elife 5: e21301. DOI: 10.7554/eLife.21301.

    View in Article Google Scholar

    [34] Borgese, N., Coy-Vergara, J., Colombo, S.F., and Schwappach, B. (2019). The Ways of Tails: the GET Pathway and more. Protein J. 38: 289−305. DOI: 10.1007/s10930-019-09845-4.

    View in Article CrossRef Google Scholar

    [35] Schuldiner, M., Metz, J., Schmid, V., et al. (2008). The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134: 634−645. DOI: 10.1016/j.cell.2008.06.025.

    View in Article CrossRef Google Scholar

    [36] Chen, Y.C., Umanah, G.K., Dephoure, N., et al. (2014). Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J. 33: 1548−1564. DOI: 10.15252/embj.201487943.

    View in Article CrossRef Google Scholar

    [37] Okreglak, V., and Walter, P. (2014). The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl. Acad. Sci. USA 111: 8019−8024. DOI: 10.1073/pnas.1405755111.

    View in Article CrossRef Google Scholar

    [38] Wohlever, M.L., Mateja, A., McGilvray, P.T., et al. (2017). Msp1 is a membrane protein dislocase for tail-anchored proteins. Mol. Cell 67: 194−202. DOI: 10.1016/j.molcel.2017.06.019.

    View in Article CrossRef Google Scholar

    [39] Li, L., Zheng, J., Wu, X., and Jiang, H. (2019). Mitochondrial AAA-ATPase Msp1 detects mislocalized tail-anchored proteins through a dual-recognition mechanism. EMBO Rep. 20: e46989. DOI: 10.15252/embr.201846989.

    View in Article CrossRef Google Scholar

    [40] Dederer, V., Khmelinskii, A., Huhn, A.G., et al. (2019). Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. Elife 8: e45506. DOI: 10.7554/eLife.45506.

    View in Article CrossRef Google Scholar

    [41] Weir, N.R., Kamber, R.A., Martenson, J.S., and Denic, V. (2017). The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane. Elife 6: e28507. DOI: 10.7554/eLife.28507.

    View in Article CrossRef Google Scholar

    [42] Wang, L., and Walter, P. (2020). Msp1/ATAD1 in protein quality control and regulation of synaptic activities. Annu. Rev. Cell Dev. Biol. 36: 141−164. DOI: 10.1146/annurev-cellbio-031220-015840.

    View in Article CrossRef Google Scholar

    [43] Wang, L., Myasnikov, A., Pan, X., and Walter, P. (2020). Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction. Elife 9: e54031. DOI: 10.7554/eLife.54031.

    View in Article CrossRef Google Scholar

    [44] Matsumoto, S., Nakatsukasa, K., Kakuta, C., et al. (2019). Msp1 clears mistargeted proteins by facilitating their transfer from mitochondria to the ER. Mol. Cell 76: 191−205. DOI: 10.1016/j.molcel.2019.07.006.

    View in Article CrossRef Google Scholar

    [45] Matsumoto, S., Ono, S., Shinoda, S., et al. (2022). GET pathway mediates transfer of mislocalized tail-anchored proteins from mitochondria to the ER. J. Cell Biol. 221: e202104076. DOI: 10.1083/jcb.202104076.

    View in Article Google Scholar

    [46] McKenna, M.J., Sim, S.I., Ordureau, A., et al. (2020). The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 369: eabc5809. DOI: 10.1126/science.abc5809.

    View in Article Google Scholar

    [47] Qin, Q., Zhao, T., Zou, W., et al. (2020). An endoplasmic reticulum ATPase safeguards endoplasmic reticulum identity by removing ectopically localized mitochondrial proteins. Cell Rep. 33: 108363. DOI: 10.1016/j.celrep.2020.108363.

    View in Article CrossRef Google Scholar

    [48] Dyla, M., Kjaergaard, M., Poulsen, H., and Nissen, P. (2020). Structure and Mechanism of P-Type ATPase Ion Pumps. Annu. Rev. Biochem. 89: 583−603. DOI: 10.1146/annurev-biochem-010611-112801.

    View in Article CrossRef Google Scholar

    [49] Sorensen, D.M., Holen, H.W., Holemans, T., et al. (2015). Towards defining the substrate of orphan P5A-ATPases. Biochim. Biophys. Acta. 1850: 524−535. DOI: 10.1016/j.bbagen.2014.05.008.

    View in Article CrossRef Google Scholar

    [50] Feng, Z., Zhao, Y., Li, T., et al. (2020). CATP-8/P5A ATPase Regulates ER Processing of the DMA-1 Receptor for Dendritic Branching. Cell Rep. 32: 108101. DOI: 10.1016/j.celrep.2020.108101.

    View in Article CrossRef Google Scholar

    [51] Li, T., Yang, X., Feng, Z., et al. (2021). P5A ATPase controls ER translocation of Wnt in neuronal migration. Cell Rep. 37: 109901. DOI: 10.1016/j.celrep.2021.109901.

    View in Article CrossRef Google Scholar

    [52] Tang, L.T.H., Trivedi, M., Freund, J., et al. (2021). The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genet. 17: e1009475. DOI: 10.1371/journal.pgen.1009475.

    View in Article CrossRef Google Scholar

    [53] Corradi, G.R., Mazzitelli, L.R., Petrovich, G.D., et al. (2020). Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase. PLoS One 15: e0232476. DOI: 10.1371/journal.pone.0232476.

    View in Article CrossRef Google Scholar

    [54] Yu, Q., Ma, T., Ma, C., et al. (2019). Multifunction of the ER P-Type Calcium Pump Spf1 During Hyphal Development in Candida albicans. Mycopathologia 184: 573−583. DOI: 10.1007/s11046-019-00372-5.

    View in Article CrossRef Google Scholar

    [55] Vinci, G., Xia, X., and Veitia, R.A. (2008). Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses. PLoS One 3: e2883. DOI: 10.1371/journal.pone.0002883.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Qin Q., Shen K., and Wang X. (2023). Targeting and surveillance mechanisms for tail-anchored proteins. The Innovation Life 1(1), 100013. https://doi.org/10.59717/j.xinn-life.2023.100013
    Qin Q., Shen K., and Wang X. (2023). Targeting and surveillance mechanisms for tail-anchored proteins. The Innovation Life 1(1), 100013. https://doi.org/10.59717/j.xinn-life.2023.100013

Figures(3)     Tables(3)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(5650) PDF downloads(721) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint