[1] | Verbraeken, M., Cheung, C., Suard, E., et al. (2015). High H− ionic conductivity in barium hydride. Nat. Mater. 14: 95−100. DOI: 10.1038/nmat4136. |
[2] | Takeiri, F., Watanabe, A., Okamoto, K., et al. (2022). Hydride-ion-conducting K2NiF4-type Ba–Li oxyhydride solid electrolyte. Nat. Mater. 21: 325−330. DOI: 10.1038/s41563-021-01175-0. |
[3] | Kobayashi, G., Hinuma, Y., Matsuoka, S., et al. (2016). Pure H− conduction in oxyhydrides. Science 351: 1314−1317. DOI: 10.1126/science.aac9185. |
[4] | Fukui, K., Iimura, S., Iskandarov, A., et al. (2022). Room-temperature fast H− conduction in oxygen-substituted lanthanum hydride. J. Am. Chem. Soc. 144: 1523−1527. DOI: 10.1021/jacs.1c11353. |
[5] | Zhang, W., Cui, J., Wang, S., et al. (2023). Deforming lanthanum trihydride for superionic conduction. Nature 616: 72−76. DOI: 10.1038/s41586-023-05815-0. |
Zhang W., Cao H., and Chen P. (2023). Hydride ion conductor: A key material for innovative energy storage and conversion. The Innovation Materials 1(1), 100006. https://doi.org/10.59717/j.xinn-mater.2023.100006 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Mechanism and applications of REHx-based hydride ion conductors