[1] | Fu, J., Li, P., Lin, Y., et al. (2022). Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ. Health 1: 259−279. DOI: 10.1016/j.eehl.2022.11.005. |
[2] | Quek, G., Vázquez, R. J., McCuskey, S. R., et al. (2022). Enabling electron injection for microbial electrosynthesis with n-type conjugated polyelectrolytes. Adv. Mater. 34: 2203480. DOI: 10.1002/adma.202203480. |
[3] | Quek, G., Vázquez, R. J., McCuskey, S. R., et al. (2023). An n-type conjugated oligoelectrolyte mimics transmembrane electron transport proteins for enhanced microbial electrosynthesis. Angew. Chem. Int. Edit . DOI: 10.1002/anie.202305189. |
[4] | Zheng, T., Zhang, M., Wu, L., et al. (2022). Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5: 388−396. DOI: 10.1038/s41929-022-00775-6. |
[5] | Rodrigues, R. M., Guan, X., Iñiguez, J. A., et al. (2019). Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat. Catal. 2: 407−414. DOI: 10.1038/s41929-019-0264-0. |
Jiang Y., Tian S., Li H., et al., (2023). Harnessing microbial electrosynthesis for a sustainable future. The Innovation Materials 1(1), 100008. https://doi.org/10.59717/j.xinn-mater.2023.100008 |
EET processes at the biotic-abiotic interfaces in MES can occur via two primary mechanisms: DET and IET