COMMENTARY   Open Access    

Harnessing microbial electrosynthesis for a sustainable future

More Information
  • 加载中
  • [1] Fu, J., Li, P., Lin, Y., et al. (2022). Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environ. Health 1, 259−279.

    View in Article CrossRef Google Scholar

    [2] Quek, G., Vázquez, R. J., McCuskey, S. R., et al. (2022). Enabling electron injection for microbial electrosynthesis with n-type conjugated polyelectrolytes. Adv. Mater. 34, 2203480.

    View in Article CrossRef Google Scholar

    [3] Quek, G., Vázquez, R. J., McCuskey, S. R., et al. (2023). An n-type conjugated oligoelectrolyte mimics transmembrane electron transport proteins for enhanced microbial electrosynthesis. Angew. Chem. Int. Edit .

    View in Article CrossRef Google Scholar

    [4] Zheng, T., Zhang, M., Wu, L., et al. (2022). Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388−396.

    View in Article CrossRef Google Scholar

    [5] Rodrigues, R. M., Guan, X., Iñiguez, J. A., et al. (2019). Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat. Catal. 2, 407−414.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Jiang Y., Tian S., Li H., et al., (2023). Harnessing microbial electrosynthesis for a sustainable future. The Innovation Materials 1(1), 100008. https://doi.org/10.59717/j.xinn-mater.2023.100008
    Jiang Y., Tian S., Li H., et al., (2023). Harnessing microbial electrosynthesis for a sustainable future. The Innovation Materials 1(1), 100008. https://doi.org/10.59717/j.xinn-mater.2023.100008

Figures(1)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(3883) PDF downloads(879) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint