Space environments pose huge challenges to the performance of functional materials.
A bioinspired EMI shielding coating for extreme conditions is developed.
The coating exhibits broad applicability and excellent constructability.
Stable Joule heating performance is also achieved for low temperature insulation.
Maintain high performance under UV, atomic oxygen corrosion, and thermal shock.
[1] | Ghidini, T. (2018). Materials for space exploration and settlement. Nat. Mater. 17, 846−850. |
[2] | Levchenko, I., Bazaka, K., Belmonte, T., et al. (2018). Advanced materials for next-generation spacecraft. Adv. Mater. 30, 1802201. |
[3] | Smith, C. T. G., Delkowki, M., Anguita, J. V., et al. (2021). Complete atomic oxygen and UV protection for polymer and composite materials in a low earth orbit. ACS Appl. Mater. Interfaces 13, 6670−6677. |
[4] | Guan, Q.-F., Yang, H.-B., Han, Z.-M., et al. (2020). Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6, eaaz1114. |
[5] | Jiang, D., Murugadoss, V., Wang, Y., et al. (2019). Electromagnetic interference shielding polymers and nanocomposites - a review. Polym. Rev. 59, 280−337. |
[6] | Cheng, Y., Li, X., Qin, Y., et al. (2021). Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663. |
[7] | Liu, H., Wu, S., You, C., et al. (2021). Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 172, 569−596. |
[8] | Shahzad, F., Alhabeb, M., Hatter, C. B., et al. (2016). Electromagnetic interference shielding with 2d transition metal carbides (MXenes). Science 353, 1137−1140. |
[9] | Wan, S., Li, X., Chen, Y., et al. (2021). High-strength scalable MXene films through bridging-induced densification. Science 374, 96−99. |
[10] | Iqbal, A., Shahzad, F., Hantanasirisakul, K., et al. (2020). Anomalous absorption of electromagnetic waves by 2d transition metal carbonitride Ti3CNTx (MXene). Science 369, 446−450. |
[11] | Ma, Z., Xiang, X., Shao, L., et al. (2022). Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705. |
[12] | Ganguly, S., Das, P., Saha, A., et al. (2022). Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38, 3936−3950. |
[13] | Zhang, Y., Ruan, K., and Gu, J. (2021). Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17, 2101951. |
[14] | Zhang, Y., Ruan, K., Zhou, K., and Gu, J. (2023). Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, 2211642. |
[15] | Xu, M.-K., Luo, X.-J., Zhang, H.-B., et al. (2023). Multifunctional waterborne polyurethane nanocomposite films with remarkable electromagnetic interference shielding, electrothermal and solarthermal performances. Chin. J. Polym. Sci. 41, 267−277. |
[16] | Li, M., Sun, Y., Feng, D., et al. (2023). Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res . |
[17] | Zhao, B., Ma, Z., Sun, Y., et al. (2022). Flexible and robust Ti3C2Tx /(ANF@FENI) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 3, 2200162. |
[18] | Zhang, Y., Xu, M.-K., Wang, Z., et al. (2022). Strong and conductive reduced graphene oxide-mxene porous films for efficient electromagnetic interference shielding. Nano Res. 15, 4916−4924. |
[19] | Zhang, Y., Ma, Z., Ruan, K., and Gu, J. (2022). Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 15, 5601−5609. |
[20] | Liang, C., He, J., Zhang, Y., et al. (2022). MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 224, 109445. |
[21] | Liu, X., Li, Y., Sun, X., et al. (2021). Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4, 1735−1747. |
[22] | Fan, Z., Wang, D., Yuan, Y., et al. (2020). A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696. |
[23] | Chen, Y., Yang, Y., Xiong, Y., et al. (2021). Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204. |
[24] | Wang, Y.-Y., Zhang, F., Li, N., et al. (2023). Carbon-based aerogels and foams for electromagnetic interference shielding: A review. Carbon 205, 10−26. |
[25] | Qi, C.-Z., Wu, X., Liu, J., et al. (2023). Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213−220. |
[26] | Wang, Y.-Y., Zhu, J.-L., Li, N., et al. (2022). Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Res. 15, 7723−7730. |
[27] | Wang, M.-L., Zhou, Z.-H., Zhu, J.-L., et al. (2022). Tunable high-performance electromagnetic interference shielding of intrinsic N-doped chitin-based carbon aerogel. Carbon 198, 142−150. |
[28] | Luo, J., Huo, L., Wang, L., et al. (2020). Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance. Chem. Eng. J. 391, 123537. |
[29] | Yin, G., Wang, Y., Wang, W., et al. (2021). A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-by-layer assembly. Adv. Mater. Interfaces 8, 2001893. |
[30] | Zhang, Y., Tian, W., Liu, L., et al. (2019). Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 372, 1077−1090. |
[31] | Li, D.-Y., Liu, L.-X., Wang, Q.-W., et al. (2022). Functional polyaniline/MXene/cotton fabrics with acid/alkali-responsive and tunable electromagnetic interference shielding performances. ACS Appl. Mater. Interfaces 14, 12703−12712. |
[32] | Jia, L.-C., Nie, R.-P., Xu, L., et al. (2021). Carbonized cotton textile with hierarchical structure for superhydrophobicity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 149, 106555. |
[33] | Gan, W., Chen, C., Giroux, M., et al. (2020). Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32, 5280−5289. |
[34] | Guan, Q.-F., Han, Z.-M., Yang, K.-P., et al. (2021). Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 21, 2532−2537. |
[35] | Feng, X., Wang, X., Wang, M., et al. (2022). High-performance carbon nanotube-cellulose nanofiber bulk materials with multifunctional applications in thermal management and shielding from electromagnetic interference. J. Mater. Chem. A 10, 22271−22277. |
[36] | Zhao, H., Hou, L., Bi, S., and Lu, Y. (2017). Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt–nickel coatings. ACS Appl. Mater. Interfaces 9, 33059−33070. |
[37] | Jia, L.-C., Zhou, C.-G., Sun, W.-J., et al. (2020). Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J. 384, 123368. |
[38] | Wan, H., Liu, N., Tang, J., et al. (2021). Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 15, 13646−13652. |
[39] | Chen, M., Li, L., Deng, Z., et al. (2023). Two-dimensional janus MXene inks for versatile functional coatings on arbitrary substrates. ACS Appl. Mater. Interfaces 15, 4591−4600. |
[40] | Liang, C., Gu, Z., Zhang, Y., et al. (2021). Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 13, 181. |
[41] | Wang, M., Tang, X.-H., Cai, J.-H., et al. (2021). Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 177, 377−402. |
[42] | Zhang, W., Wei, L., Ma, Z., et al. (2021). Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 177, 412−426. |
[43] | Yao, Y., Jin, S., Zou, H., et al. (2021). Polymer-based lightweight materials for electromagnetic interference shielding: A review. J. Mater. Sci. 56, 6549−6580. |
[44] | Wang, X., Li, Y., Qian, Y., et al. (2018). Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv. Mater. 30, 1803854. |
[45] | Guan, Q.-F., Yang, H.-B., Han, Z.-M., et al. (2020). An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 11, 5401. |
[46] | Lamm, M. E., Li, K., Qian, J., et al. (2021). Recent advances in functional materials through cellulose nanofiber templating. Adv. Mater. 33, 2005538. |
[47] | Yang, X., Biswas, S. K., Han, J., et al. (2021). Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33, 2002264. |
[48] | Guan, Q.-F., Yang, K.-P., Han, Z.-M., et al. (2022). Sustainable multiscale high-haze transparent cellulose fiber film via a biomimetic approach. ACS Materials Lett. 4, 87−92. |
[49] | Mittal, N., Ansari, F., Gowda. V, K., et al. (2018). Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378−6388. |
[50] | Grygiel, K., Wicklein, B., Zhao, Q., et al. (2014). Omnidispersible poly (ionic liquid)-functionalized cellulose nanofibrils: Surface grafting and polymer membrane reinforcement. Chem. Commun. 50, 12486−12489. |
[51] | Saito, T., Hirota, M., Tamura, N., et al. (2009). Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using tempo catalyst under neutral conditions. Biomacromolecules 10, 1992−1996. |
[52] | Qian, J., Chen, Q., Hong, M., et al. (2022). Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose. Mater. Today 54, 18−26. |
[53] | Guan, Q.-F., Han, Z.-M., Luo, T.-T., et al. (2019). A general aerosol-assisted biosynthesis of functional bulk nanocomposites. Natl. Sci. Rev. 6, 64−73. |
[54] | Cao, W., Ma, C., Tan, S., et al. (2019). Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72. |
[55] | Feng, X., Qin, X., Liu, D., et al. (2018). High electromagnetic interference shielding effectiveness of carbon nanotube–cellulose composite films with layered structures. Macromol. Mater. Eng. 303, 1800377. |
[56] | Zhang, H., Sun, X., Heng, Z., et al. (2018). Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Ind. Eng. Chem. Res. 57, 17152−17160. |
[57] | Zhang, L.-Q., Yang, B., Teng, J., et al. (2017). Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. J. Mater. Chem. C 5, 3130−3138. |
[58] | Wang, Y.-Y., Song, Y., Sun, W.-J., et al. (2022). Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. J. Mater. Sci. Technol. 102, 115−122. |
[59] | Wang, Y.-Y., Zhou, Z.-H., Zhu, J.-L., et al. (2021). Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. B. Eng. 220, 108985. |
[60] | Xu, H., Yin, X., Li, M., et al. (2019). Ultralight cellular foam from cellulose nanofiber/carbon nanotube self-assemblies for ultrabroad-band microwave absorption. ACS Appl. Mater. Interfaces 11, 22628−22636. |
[61] | Zhang, L.-Q., Yang, S.-G., Li, L., et al. (2018). Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 40156−40167. |
[62] | Lee, H. A., Park, E., and Lee, H. (2020). Polydopamine and its derivative surface chemistry in material science: A focused review for studies at kaist. Adv. Mater. 32, 1907505. |
[63] | Guan, Q.-F., Yang, H.-B., Yin, C.-H., et al. (2021). Nacre-inspired sustainable coatings with remarkable fire-retardant and energy-saving cooling performance. ACS Materials Lett. 3, 243−248. |
[64] | Shan, M., Guo, J., and Gill, E. (2016). Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18−32. |
Yang K., Chen H., Han Z., et al., (2023). Bioinspired multifunctional high-performance electromagnetic shielding coatings resistant to extreme space environments. The Innovation Materials 1(1), 100010. https://doi.org/10.59717/j.xinn-mater.2023.100010 |
Fabrication and application of the bioinspired EMI shielding coating
Characterization and performance of the MES coating
The MES coating can modify microscopic materials
Joule heating performance of the MES coating
Excellent tolerance of the MES coating to extreme environments