Negative magnetoresistance (NMR) has unique performance in spintronics.
CeCuAs2 is classified as a strong topological insulator in its paramagnetic state.
CeCuAs2 exhibits large NMR beyond chiral anomaly, reaching -15% under 9 T at 2 K.
A spin-glass-like state with Tf ~ 4.5 K hints possible spin-charge interaction.
Tuning based on RE-Cu-As structural motif may provide new insights to explore NMR.
[1] | Felser, C., Fecher, G. H., and Balke, B. (2007). Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46: 668−699. DOI: 10.1002/anie.200601815. |
[2] | Prinz, G. A. (1998). Magnetoelectronics. Science 282: 1660−1663. DOI: 10.1126/science.282.5394.1660. |
[3] | Binasch, G., Grünberg, P., Saurenbach, F., et al. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39: 4828−4830. DOI: 10.1103/PhysRevB.39.4828. |
[4] | Baibich, M. N., Broto, J. M., Fert, A., et al. (1988). Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61: 2472−2475. DOI: 10.1103/PhysRevLett.61.2472. |
[5] | Jin, S., Tiefel, T. H., McCormack, M., et al. (1994). Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264: 413−415. DOI: 10.1126/science.264.5157.413. |
[6] | Ramirez, A. P. (1997). Colossal magnetoresistance. J. Phys. Condens. Matter 9: 8171. DOI: 10.1088/0953-8984/9/39/005. |
[7] | Julliere, M. (1975). Tunneling between ferromagnetic films. Phys. Lett. A 54: 225−226. DOI: 10.1016/0375-9601(75)90174-7. |
[8] | Wang, Z., Gutiérrez-Lezama, I., Ubrig, N., et al. (2018). Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat.Commun. 9: 2516. DOI: 10.1038/s41467-018-04953-8. |
[9] | Song, T., Cai, X., Tu, M. W. Y., et al. (2018). Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360: 1214−1218. DOI: 10.1126/science.aar4851. |
[10] | Li, F., Yang, B., Zhu, Y., et al. (2020). Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. 117: 022412. DOI: 10.1063/5.0013951 |
[11] | Alekseev, P.S. (2016). Negative magnetoresistance in viscous flow of two-dimensional electrons. Phys. Rev. Lett. 117: 166601. DOI: 10.1103/PhysRevLett.117.166601. |
[12] | Block, T., Felser, C., Jakob, G., et al. (2003). Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al. J. Solid State Chem. 176: 646-651. DOI: 10.1016/j.jssc.2003.07.002 |
[13] | Reshi, H. A., Singh, A. P., Pillai, S., et al. (2015). Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C 3: 820-827. DOI: 10.1039/C4TC02040E |
[14] | Hirohata, A., Yamada, K., Nakatani, Y., et al. (2020). Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 509: 166711. DOI: 10.1016/j.jmmm.2020.166711. |
[15] | Kondo, J. (1964). Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32: 37−49. DOI: 10.1143/PTP.32.37. |
[16] | Bergmann, G. (1984). Weak localization in thin films: A time-of-flight experiment with conduction electrons. Phys. Rep. 107: 1−58. DOI: 10.1016/0370-1573(84)90103-0. |
[17] | Ohno, H., Munekata, H., Penney, T., et al. (1992). Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68: 2664−2667. DOI: 10.1103/PhysRevLett.68.2664. |
[18] | Son, D. T. and Spivak, B. Z. (2013). Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88: 104412. DOI: 10.1103/PhysRevB.88.104412. |
[19] | Ong, N. P. and Liang, S. (2021). Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals. Nat. Rev. Phys. 3: 394−404. DOI: 10.1038/s42254-021-00310-9. |
[20] | Negishi, H.,Yamada, H., Yuri, K., et al. (1997). Negative magnetoresistance in crystals of the paramagnetic intercalation compound MnxTiS2. Phys. Rev. B 56: 11144−11148. DOI: 10.1103/PhysRevB.56.11144. |
[21] | Ge, J., Luo, T., Lin, Z., et al. (2021). Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater. 33: 2005465. DOI: 10.1002/adma.202005465. |
[22] | Breunig, O., Wang, Z., Taskin, A. A., et al. (2017). Gigantic negative magnetoresistance in the bulk of a disordered topological insulator. Nat. Commun. 8: 15545. DOI: 10.1038/ncomms15545. |
[23] | Telford, E. J., Dismukes, A. H., Lee, K., et al. (2020). Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32: 2003240. DOI: 10.1002/adma.202003240. |
[24] | Fang, Y., Yang, K., Zhang, E., et al. (2022). Quasi-1D van der Waals antiferromagnetic CrZr4Te14 with large in-plane anisotropic negative magnetoresistance. Adv. Mater. 34: 2200145. DOI: 10.1002/adma.202200145. |
[25] | Bai, W., Hu, Z., Wang, S., et al. (2019). Intrinsic Negative Magnetoresistance in Van Der Waals FeNbTe2 Single Crystals. Adv. Mater. 31: 1900246. DOI: 10.1002/adma.201900246. |
[26] | Kang, B., Liu, Z., Zhao, D., et al. (2022). Giant negative magnetoresistance beyond Chiral anomaly in topological material YCuAs2. Adv. Mater. 34: 2201597. DOI: 10.1002/adma.202201597. |
[27] | Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., et al. (2009). OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42: 339-341. DOI: 10.1107/S0021889808042726 |
[28] | Kong, T., Bud'ko, S. L., Jesche, A., et al. (2014). Magnetic and transport properties of i-R-Cd icosahedral quasicrystals (R=Y, Gd-Tm). Phys. Rev. B 90: 014424. DOI: 10.1103/PhysRevB.90.014424 |
[29] | Kresse, G. and Hafner, J. (1993). Abinitio molecular-dynamics for liquid-metals. Phys. Rev. B 47: 558-561. DOI: 10.1103/PhysRevB.47. 558 |
[30] | Kresse, G. and Furthmuller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6: 15-50. DOI: 10.1016/0927-0256(96)00008-0 |
[31] | Kresse, G. and Furthmuller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54: 11169-11186. DOI: 10.1103/PhysRevB.54.11169 |
[32] | Perdew, J. P., Burke, K., and Ernzerhof, M. (1997). Generalized gradient approximation made simple. Phys. Rev. Lett. 78: 1396-1396. DOI: 10.1103/PhysRevLett.77.3865 |
[33] | Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27: 1787-1799. DOI: 10.1002/jcc.20495 |
[34] | Souza, I., Marzari, N., and Vanderbilt, D. (2002). Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65: 035109. DOI: 10.1103/PhysRevB.65.035109 |
[35] | Mostofi, A. A., Yates, J. R., Lee, Y. S. et al. (2008). wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178: 685-699. DOI: 10.1016/j.cpc.2007.11.016 |
[36] | Tremel, W. and Hoffmann, R. (1987). Square nets of main group elements in solid-state materials. J. Am. Chem. Soc. 109: 124−140. DOI: 10.1021/ja00235a021. |
[37] | Sengupta, K., Sampathkumaran, E. V., Nakano, T., et al. (2004). Magnetic, electrical resistivity, heat-capacity, and thermopower anomalies in CeCuAs2. Phys. Rev. B 70: 064406. DOI: 10.1103/PhysRevB.70.064406. |
[38] | Schoop, L. M., Ali, M. N., Strasser, C., et al. (2016). Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7: 11696. DOI: 10.1038/ncomms11696. |
[39] | Chen, H. X., Gao, J. C., Chen, L., et al. (2022). Topological crystalline insulator candidate ErAsS with hourglass Fermion and magnetic-tuned topological phase transition. Adv. Mater. 10: 2110664. DOI: 10.1002/adma.202110664. |
[40] | Chen, L., Zhou, L. Q., Zhou, Y., et al. (2023). Multiple Dirac points including potential spin-orbit Dirac points in nonsymmorphic HfGe0.92Te. Sci. Chin. Phys. Mech. Astron. 66: 217011. DOI: 10.1007/s11433-022-1992-x |
[41] | Park, J., Lee, G., Wolff-Fabris, F., et al. (2011). Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2. Phys. Rev. Lett. 107: 126402. DOI: 10.1103/PhysRevLett.107.126402. |
[42] | Liu, J., Hu, J., Cao, H., et al. (2016). Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2. Sci. Rep. 6: 30525. DOI: 10.1038/srep30525. |
[43] | Sengupta, K., Rayaprol, S., Sampathkumaran, E.V., et al. (2004). Magnetic and transport anomalies in the compounds, RCuAs2 (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er). Physca B Condens. Matter 348: 465−474. DOI: 10.1016/j.physb.2004.01.152. |
[44] | Li, Q., Kharzeev, D. E., Zhang, C., et al. (2016). Chiral magnetic effect in ZrTe5. Nat. Phys. 12: 550−554. DOI: 10.1038/nphys3648. |
[45] | Xiong, J., Kushwaha, S.K., Liang, T., et al. (2015). Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350: 413−416. DOI: 10.1126/science.aac6089. |
[46] | Li, C. Z., Wang, L. X., Liu, H., et al. (2015). Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun. 6: 10137. DOI: 10.1038/ncomms10137. |
[47] | H. Fritzsche, (1955). Electrical properties of Germanium semiconductors at low temperatures, Phys. Rev. 99: 406-419. DOI: 10.1103/PhysRev.99.406 |
[48] | Zanatta, A. R. and Chambouleyron, I. (1992). Transport properties of nitrogen-doped hydrogenated amorphous germanium films, Phys. Rev. B 46: 2119-2125. DOI: 10.1103/PhysRevB.46.2119 |
[49] | N. F. Mott, (1968). Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1: 1-17. DOI: 10.1016/0022-3093(68)90002-1 |
[50] | Efros, A. L. and Shklovskii, B. I. (1975). Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C: Solid State Phys. 8: L49. DOI: 10.1088/0022-3719/8/4/003 |
[51] | Chen, B., Deng, Z., Li, W., et al. (2016). Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites. AIP Adv. 6: 115014. DOI: 10.1063/1.4967778. |
[52] | Sinova, J., Jungwirth, T., and Černe, J. (2004). Magneto-transport and magneto-optical properties of ferromagnetic (III, Mn)V semiconductors: A review. Int. J. Mod. Phys. B 18: 1083−1118. DOI: 10.1142/S0217979204024677. |
[53] | Gijs, M. A. M. and Okada, M. (1992). Magnetoresistance study of Fe/Cr magnetic multilayers: Interpretation with the quantum model of giant magnetoresistance. Phys. Rev. B 46: 2908−2911. DOI: 10.1103/PhysRevB.46.2908. |
[54] | Morosan, E., Zandbergen, H. W., Li, L., et al. (2007). Sharp switching of the magnetization in Fe1∕4TaS2. Phys. Rev. B 75: 104401. DOI: 10.1103/PhysRevB.75.104401. |
[55] | Colino, J., Andrés, J. P., Riveiro, J. M., et al. (1999). Spin-flop magnetoresistance in Gd/Co multilayers. Phys. Rev. B 60: 6678−6684. DOI: 10.1103/PhysRevB.60.6678. |
[56] | Gorbar, E. V., Miransky, V. A., and Shovkovy, I. A. (2013). Engineering Weyl nodes in Dirac semimetals by a magnetic field, Phys. Rev. B 88: 165105. DOI: 10.1103/PhysRevB.88.165105 |
[57] | Goldman, A. I., Kong, T., Kreyssig, A., et al. (2013). A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. Nat. Mater. 12: 714−718. DOI: 10.1038/nmat3672. |
[58] | Kong, T., Bud'ko, S. L., Jesche, A., et al. (2014). Magnetic and transport properties of i-R-Cd icosahedral quasicrystals (R=Y, Gd-Tm). Phys. Rev. B 90: 014424. DOI: 10.1103/PhysRevB.90.014424. |
[59] | Almeida, J.R.L.d. and Thouless, D. J. (1978). Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A Math. Gen. 11: 983. DOI: 10.1088/0305-4470/11/5/028. |
[60] | Gabay, M. and Toulouse, G. (1981). Coexistence of spin-glass and ferromagnetic orderings. Phys. Rev. Lett. 47: 201-204. DOI: 10.1103/PhysRevLett.47.201 |
[61] | Fisher, I. R., Cheon, K. O., Panchula, A. F., et al. (1999). Magnetic and transport properties of single-grain R-MgZn icosahedral quasicrystals [R=Y, Y1-xGdx,Y1-xTbx, b, Dy, Ho, and Er]. Phys. Rev. B 59: 308−321. DOI: 10.1103/PhysRevB.59.308. |
[62] | Johnston, D. C. (2010). The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv.Phys. 59: 803−1061. DOI: 10.1080/00018732.2010.513480. |
[63] | Greedan, J. E. (2001). Geometrically frustrated magnetic materials. J. Mater. Chem. 11: 37−53. DOI: 10.1039/b003682j. |
[64] | Prakash, O., Thamizhavel, A., and Ramakrishnan, S. (2016). Ferromagnetic ordering of minority Ce3+ spins in a quasi-skutterudite Ce3Os4Ge13 single crystal, Phys. Rev. B 93: 064427. DOI: 10.1103/PhysRevB.93.064427 |
[65] | Luo, Y., McDonald, R. D., Rosa, P. F. S., et al. (2016). Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep. 6: 27294. DOI: 10.1038/srep27294. |
[66] | Sampathkumaran, E. V., Ekino, T., Ribeiro, R. A., et al. (2005). Electrical resistivity and tunneling anomalies in CeCuAs2. Physica B Condens. Matter 359: 108−110. DOI: 10.1016/j.physb.2005.01.005. |
[67] | Dzero, M., Sun, K., Galitski, V., et al. (2010). Topological Kondo Insulators. Phys. Rev. Lett. 104: 106408. DOI: 10.1103/PhysRevLett.104.106408. |
[68] | Wang, K. F., Graf, D., Wang, L. M., et al. (2012). Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2. Phys. Rev. B 85: 041101. DOI: 10.1103/PhysRevB.85.041101. |
[69] | Li, L. J., Wang, K. F., Graf, D., et al. (2016). Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2. Phys. Rev. B 93: 115141. DOI: 10.1103/PhysRevB.93.115141. |
[70] | He, J. B., Wang, D. M. and Chen, G. F. (2012). Giant magnetoresistance in layered manganese pnictide CaMnBi2. Appl. Phys. Lett. 100: 112405. DOI: 10.1063/1.3694760. |
[71] | Farhan, M. A., Lee, G., and Shim, J. H. (2014). AEMnSb2 (AE = Sr, Ba): a new class of Dirac materials. J. Phys. Condens. Matter 26: 042201. DOI: 10.1088/0953-8984/26/4/042201. |
[72] | Lee, G., Farhan, M. A., Kim, J. S., et al. (2013). Anisotropic Dirac electronic structures of AMnBi2 (A = Sr,Ca). Phys. Rev. B 87: 245104. DOI: 10.1103/PhysRevB.87.245104 |
[73] | Borisenko, S., Evtushinsky, D., Gibson, Q., et al. (2019). Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat. Commun. 10: 3424. DOI: 10.1038/s41467-019-11393-5. |
[74] | Masuda, H., Sakai, H., Tokunaga, M., et al. (2016). Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2: e1501117. DOI: 10.1126/sciadv.1501117. |
[75] | Guo, Y. F., Princep, A. J., Zhang, X., et al. (2014). Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 90: 075120. DOI: 10.1103/PhysRevB.90.075120. |
Chen L., Gu Y., Wang Y., et al., (2023). Large negative magnetoresistance beyond chiral anomaly in topological insulator candidate CeCuAs2 with spin-glass-like behavior. The Innovation Materials 1(1), 100011. https://doi.org/10.59717/j.xinn-mater.2023.100011 |
Crystal structure and electronic structure
Semiconductor-like in-plane resistivity
Large NMR beyond chiral anomaly.
Anisotropic magnetism and spin-glass-like behavior
Hall resistivity with multiband behavior and possible spin-charge interactio