REVIEW   Open Access     Cite

Topological catalysis in the language of chemistry

More Information
    1. The history of topology and topological materials is summarized.

      Understanding topological properties from the viewpoint of chemists is given.

      Spin and chirality guide the design of advanced catalysts.

  • Topological phases of matter are an active research topic because of their multiple applications, including in quantum computers and energy-efficient devices. The last decade has witnessed a growing interest in experimental chemistry-heterogeneous catalysis, asymmetry synthesis, etc. but there remains a lack of understanding of how topological properties interact with the reaction processes. Thus, a critical review of the chemical properties of topological materials is urgent, which is not only important for the design of highly efficient catalysts for clean energy production and carbon neutrality, but also provides an alternative tool to understand and tailor the topological properties for physicists, chemists, and material scientists. In this review, we begin with the concept of topology and topological materials and then attempt to uncover the underlying relationship between topological properties and catalytic reactions. Further, recent progress in the development of topological catalysts for various reactions is discussed, including hydrogen evolution, CO2 reduction, and selective hydrogenation. We discussed the factors that may suppress the contribution of topological electronic structures, especially surface reconstruction, and oxidation. Most importantly, we elaborate on the challenges and controversies in the understanding of the topological catalysis mechanisms from in-situ electrochemical characterization techniques. In the end, we highlight the promising techniques to further uncover the topological catalysis mechanisms and how to extend the application of topological materials.
  • 加载中
  • [1] Moore, J. E. (2010). The birth of topological insulators. Nature 464: 194−198. DOI: 10.1038/nature08916.

    View in Article CrossRef Google Scholar

    [2] Hasan, M. Z., and Kane, C. L. (2010). Colloquium : Topological insulators. Rev. Mod. Phys. 82: 3045−3067. DOI: 10.1103/RevModPhys.82.3045.

    View in Article CrossRef Google Scholar

    [3] Bansil, A., Lin, H., and Das, T. (2016). Colloquium: Topological band theory. Rev. Mod. Phys. 88: 021004. DOI: 10.1103/RevModPhys.88.021004.

    View in Article CrossRef Google Scholar

    [4] Bradlyn, B., Elcoro, L., Cano, J., et al. (2017). Topological quantum chemistry. Nature 547: 298−305. DOI: 10.1038/nature23268.

    View in Article CrossRef Google Scholar

    [5] Weng, H., Fang, C., Fang, Z., et al. (2015). Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5: 011029.

    View in Article Google Scholar

    [6] Liu, Z. K., Zhou, B., Zhang, Y., et al. (2014). Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science 343: 864−867. DOI: 10.1126/science.1245085.

    View in Article CrossRef Google Scholar

    [7] Huang, S.-M., Xu, S.-Y., Belopolski, I., et al. (2015). A weyl fermion semimetal with surface fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6: 7373. DOI: 10.1038/ncomms8373.

    View in Article CrossRef Google Scholar

    [8] Bian, G., Chang, T.-R., Sankar, R., et al. (2016). Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7: 10556. DOI: 10.1038/ncomms10556.

    View in Article CrossRef Google Scholar

    [9] Nelson, J. N., Ruf, J. P., Lee, Y., et al. (2019). Dirac nodal lines protected against spin-orbit interaction in IrO2. Phys. Rev. Mater. 3: 064205. DOI: 10.1103/PhysRevMaterials.3.064205.

    View in Article CrossRef Google Scholar

    [10] Zhang, H., Liu, C.-X., Qi, X.-L., et al. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5: 438−442. DOI: 10.1038/nphys1270.

    View in Article CrossRef Google Scholar

    [11] Liu, Z. K., Jiang, J., Zhou, B., et al. (2014). A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13: 677−681. DOI: 10.1038/nmat3990.

    View in Article CrossRef Google Scholar

    [12] A. Springer, M., Liu, T.-J., Kuc, A., and Heine, T. (2020). Topological two-dimensional polymers. Chem. Soc. Rev. 49: 2007−2019. DOI: 10.1039/C9CS00893D.

    View in Article CrossRef Google Scholar

    [13] Ambrosi, A., and Pumera, M. (2018). Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47: 7213−7224. DOI: 10.1039/C7CS00811B.

    View in Article CrossRef Google Scholar

    [14] Rajamathi, C. R., Gupta, U., Kumar, N., et al. (2017). Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29: 1606202. DOI: 10.1002/adma.201606202.

    View in Article CrossRef Google Scholar

    [15] Li, L., Zeng, J., Qin, W., et al. (2019). Tuning the hydrogen activation reactivity on topological insulator heterostructures. Nano Energy 58: 40−46. DOI: 10.1016/j.nanoen.2019.01.007.

    View in Article CrossRef Google Scholar

    [16] Xiao, J., Kou, L., Yam, C.-Y., et al. (2015). Toward rational design of catalysts supported on a topological insulator substrate. ACS Catal. 5: 7063−7067. DOI: 10.1021/acscatal.5b01966.

    View in Article CrossRef Google Scholar

    [17] Li, J., Ma, H., Xie, Q., et al. (2018). Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family. Sci. China Mater. 61: 23−29. DOI: 10.1007/s40843-017-9178-4.

    View in Article CrossRef Google Scholar

    [18] Li, G., Xu, Q., Shi, W., et al. (2019). Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation. Sci. Adv. 5: eaaw9867. DOI: 10.1126/sciadv.aaw9867.

    View in Article CrossRef Google Scholar

    [19] Chen, H., Zhu, W., Xiao, D., and Zhang, Z. (2011). CO oxidation facilitated by robust surface states on au-covered topological insulators. Phys. Rev. Lett. 107: 056804. DOI: 10.1103/PhysRevLett.107.056804.

    View in Article CrossRef Google Scholar

    [20] He, Q. L., Lai, Y. H., Lu, Y., et al. (2013). Surface reactivity enhancement on a Pd/Bi2Te3 heterostructure through robust topological surface states. Sci. Rep. 3: 2497. DOI: 10.1038/srep02497.

    View in Article CrossRef Google Scholar

    [21] Qu, Q., Liu, B., Liang, J., et al. (2020). Expediting hydrogen evolution through topological surface states on Bi2Te3. ACS Catal. 10: 2656−2666. DOI: 10.1021/acscatal.9b04318.

    View in Article CrossRef Google Scholar

    [22] Wang, L., Zhang, X., Meng, W., et al. (2021). A topological quantum catalyst: the case of two-dimensional traversing nodal line states associated with high catalytic performance for the hydrogen evolution reaction. J. Mater. Chem. A 9: 22453−22461. DOI: 10.1039/D1TA06553J.

    View in Article CrossRef Google Scholar

    [23] He, Y., Yan, D., Ren Ng, L., et al. (2019). Topological metal and noncentrosymmetric superconductor α-BiPd as an efficient candidate for the hydrogen evolution reaction. Mater. Chem. Front. 3: 2184−2189. DOI: 10.1039/C9QM00410F.

    View in Article CrossRef Google Scholar

    [24] Xie, H., Zhang, T., Xie, R., et al. (2021). Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction. Adv. Mater. 33: 2008373. DOI: 10.1002/adma.202008373.

    View in Article CrossRef Google Scholar

    [25] Xie, R., Zhang, T., Weng, H., and Chai, G.-L. (2022). Progress, advantages, and challenges of topological material catalysts. Small Science 2: 2100106. DOI: 10.1002/smsc.202100106.

    View in Article CrossRef Google Scholar

    [26] Luo, H., Yu, P., Li, G., and Yan, K. (2022). Topological quantum materials for energy conversion and storage. Nat. Rev. Phys. 4: 611−624. DOI: 10.1038/s42254-022-00477-9.

    View in Article CrossRef Google Scholar

    [27] Meng, W., Zhang, X., Liu, Y., et al. (2023). Multifold fermions and fermi arcs boosted catalysis in nanoporous electride 12CaO·7Al2O3. Adv. Sci. 10: 2205940. DOI: 10.1002/advs.202205940.

    View in Article CrossRef Google Scholar

    [28] He, Z., Meng, W., Liu, Y., et al. (2022). Type-II Weyl fermion induced hydrogen adsorption in a two-dimensional electride [Ca2N]+·e. J. Mater. Chem. A 10: 12510−12517. DOI: 10.1039/D2TA01967A.

    View in Article CrossRef Google Scholar

    [29] Kong, X.-P., Jiang, T., Gao, J., et al. (2021). Development of a Ni-doped VAl3 topological semimetal with a significantly enhanced her catalytic performance. J. Phys. Chem. Lett. 12: 3740−3748. DOI: 10.1021/acs.jpclett.1c00238.

    View in Article CrossRef Google Scholar

    [30] Yang, Q., Li, G., Manna, K., et al. (2020). Topological engineering of pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv. Mater. 32: 1908518. DOI: 10.1002/adma.201908518.

    View in Article CrossRef Google Scholar

    [31] Klitzing, K. v., Dorda, G., and Pepper, M. (1980). New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45: 494−497. DOI: 10.1103/PhysRevLett.45.494.

    View in Article CrossRef Google Scholar

    [32] Berry, M. V. (1984). Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392: 45−57. DOI: 10.1098/rspa.1984.0023.

    View in Article CrossRef Google Scholar

    [33] Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. (1982). Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49: 405−408. DOI: 10.1103/PhysRevLett.49.405.

    View in Article CrossRef Google Scholar

    [34] Kane, C. L., and Mele, E. J. (2005). Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett. 95: 146802. DOI: 10.1103/PhysRevLett.95.146802.

    View in Article CrossRef Google Scholar

    [35] Liu, Z. K., Yang, L. X., Sun, Y., et al. (2016). Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15: 27−31. DOI: 10.1038/nmat4457.

    View in Article CrossRef Google Scholar

    [36] Liu, E., Sun, Y., Kumar, N., et al. (2018). Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14: 1125−1131. DOI: 10.1038/s41567-018-0234-5.

    View in Article CrossRef Google Scholar

    [37] Neupane, M., Xu, S.-Y., Sankar, R., et al. (2014). Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5: 3786. DOI: 10.1038/ncomms4786.

    View in Article CrossRef Google Scholar

    [38] Borisenko, S., Gibson, Q., Evtushinsky, D., et al. (2014). Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113: 027603. DOI: 10.1103/PhysRevLett.113.027603.

    View in Article CrossRef Google Scholar

    [39] Schoop, L. M., Ali, M. N., Straßer, C., et al. (2016). Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7: 11696. DOI: 10.1038/ncomms11696.

    View in Article CrossRef Google Scholar

    [40] Chang, G., Wieder, B. J., Schindler, F., et al. (2018). Topological quantum properties of chiral crystals. Nat. Mater. 17: 978−985. DOI: 10.1038/s41563-018-0169-3.

    View in Article CrossRef Google Scholar

    [41] Schröter, N. B. M., Stolz, S., Manna, K., et al. (2020). Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369: 179−183. DOI: 10.1126/science.aaz3480.

    View in Article CrossRef Google Scholar

    [42] Schröter, N. B. M., Pei, D., Vergniory, M. G., et al. (2019). Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15: 759−765. DOI: 10.1038/s41567-019-0511-y.

    View in Article CrossRef Google Scholar

    [43] Yao, M., Manna, K., Yang, Q., et al. (2020). Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa. Nat. Commun. 11: 2033. DOI: 10.1038/s41467-020-15865-x.

    View in Article CrossRef Google Scholar

    [44] Sanchez, D. S., Belopolski, I., Cochran, T. A., et al. (2019). Topological chiral crystals with helicoid-arc quantum states. Nature 567: 500−505. DOI: 10.1038/s41586-019-1037-2.

    View in Article CrossRef Google Scholar

    [45] Chang, G., Yin, J.-X., Neupert, T., et al. (2020). Unconventional photocurrents from surface fermi arcs in topological Chiral semimetals. Phys. Rev. Lett. 124: 166404. DOI: 10.1103/PhysRevLett.124.166404.

    View in Article CrossRef Google Scholar

    [46] Li, G., Yang, H., Jiang, P., et al. (2022). Chirality locking charge density waves in a chiral crystal. Nat. Commun. 13: 2914. DOI: 10.1038/s41467-022-30612-0.

    View in Article CrossRef Google Scholar

    [47] Krieger, J. A., Stolz, S., Robredo, I., et al. (2022). Parallel spin-momentum locking in a chiral topological semimetal. Preprint at https://doi.org/10.48550/arXiv.2210.08221.

    View in Article Google Scholar

    [48] Huber, N., Alpin, K., Causer, G. L., et al. (2022). Network of topological nodal planes, multifold degeneracies, and weyl points in CoSi. Phys. Rev. Lett. 129: 026401. DOI: 10.1103/PhysRevLett.129.026401.

    View in Article CrossRef Google Scholar

    [49] Xiang, Q., Yu, J., and Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41: 782−796. DOI: 10.1039/C1CS15172J.

    View in Article CrossRef Google Scholar

    [50] Li, X., Zhang, L., Huang, M., et al. (2016). Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 4: 14789−14795. DOI: 10.1039/C6TA07009D.

    View in Article CrossRef Google Scholar

    [51] Lv, B., Qian, T., and Ding, H. (2019). Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1: 609−626. DOI: 10.1038/s42254-019-0088-5.

    View in Article CrossRef Google Scholar

    [52] Yang, H., Liang, A., Chen, C., et al. (2018). Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat. Rev. Mater. 3: 341−353. DOI: 10.1038/s41578-018-0047-2.

    View in Article CrossRef Google Scholar

    [53] Chen, Y. L., Chu, J.-H., Analytis, J. G., et al. (2010). Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 329: 659−662. DOI: 10.1126/science.1189924.

    View in Article CrossRef Google Scholar

    [54] Morali, N., Batabyal, R., Nag, P. K., et al. (2019). Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365: 1286−1291. DOI: 10.1126/science.aav2334.

    View in Article CrossRef Google Scholar

    [55] Shekhar, C., Nayak, A. K., Sun, Y., et al. (2015). Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11: 645−649. DOI: 10.1038/nphys3372.

    View in Article CrossRef Google Scholar

    [56] Parameswaran, S. A., Grover, T., Abanin, D. A., et al. (2014). Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4: 031035.

    View in Article Google Scholar

    [57] Zhao, S., Tan, C., He, C.-T., et al. (2020). Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5: 881−890. DOI: 10.1038/s41560-020-00709-1.

    View in Article CrossRef Google Scholar

    [58] Bond, G. C. (1974). Heterogeneous catalysis: principles and applications. Clarendon Press.

    View in Article Google Scholar

    [59] Vojvodic, A., and Nørskov, J. K. (2015). New design paradigm for heterogeneous catalysts. Nat. Sci. Rev. 2: 140−143. DOI: 10.1093/nsr/nwv023.

    View in Article CrossRef Google Scholar

    [60] Liu, Y., Wang, Y., Zhao, S., and Tang, Z. (2022). Metal–organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods 6: 2200773. DOI: 10.1002/smtd.202200773.

    View in Article CrossRef Google Scholar

    [61] Pei, Z., Tan, H., Gu, J., et al. (2023). A polymeric hydrogel electrocatalyst for direct water oxidation. Nat. Commun. 14: 818. DOI: 10.1038/s41467-023-36532-x.

    View in Article CrossRef Google Scholar

    [62] Wu, X., Zhang, H., Zuo, S., et al. (2021). Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13: 136. DOI: 10.1007/s40820-021-00668-6.

    View in Article CrossRef Google Scholar

    [63] Li, X., Zhao, L., Yu, J., et al. (2020). Water splitting: from electrode to green energy system. Nano-Micro Lett. 12: 131. DOI: 10.1007/s40820-020-00469-3.

    View in Article CrossRef Google Scholar

    [64] Zhou, Z., Kong, Y., Tan, H., et al. (2022). Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34: 2106541. DOI: 10.1002/adma.202106541.

    View in Article CrossRef Google Scholar

    [65] Li, X.-M., Lin, Z.-Z., Chen, X.-W., and Chen, X. (2022). Selective CO2 reduction on topological Chern magnet TbMn6Sn6. Phys. Chem. Chem. Phys. 24: 18600−18607. DOI: 10.1039/D2CP02754B.

    View in Article CrossRef Google Scholar

    [66] Nethravathi, C., Dattatreya Manganahalli, A., and Rajamathi, M. (2019). Bi2Te3–MoS2 layered nanoscale heterostructures for electron transfer catalysis. ACS Appl. Nano Mater. 2: 2005−2012. DOI: 10.1021/acsanm.9b00025.

    View in Article CrossRef Google Scholar

    [67] Li, G., Huang, J., Yang, Q., et al. (2021). MoS2 on topological insulator Bi2Te3 thin films: Activation of the basal plane for hydrogen reduction. J. Energy Chem. 62: 516−522. DOI: 10.1016/j.jechem.2021.04.010.

    View in Article CrossRef Google Scholar

    [68] Zhang, N., Zheng, F., Huang, B., et al. (2020). Exploring Bi2Te3 nanoplates as versatile catalysts for electrochemical reduction of small molecules. Adv. Mater. 32: 1906477. DOI: 10.1002/adma.201906477.

    View in Article CrossRef Google Scholar

    [69] Hosono, H., Li, J., Wu, J.-Z., et al. (2022). Topological insulator as an efficient catalyst for oxidative carbonylation of amines. https://www.researchsquare.com/article/rs-1549297/v1 doi:10.21203/rs.3.rs-1549297/v1.

    View in Article Google Scholar

    [70] Fu, L. (2011). Topological crystalline insulators. Phys. Rev. Lett. 106: 106802. DOI: 10.1103/PhysRevLett.106.106802.

    View in Article CrossRef Google Scholar

    [71] Qu, Q., Liu, B., Liu, H., et al. (2021). Role of topological surface states and mirror symmetry in topological crystalline insulator SnTe as an efficient electrocatalyst. arXiv:2102.08062.

    View in Article Google Scholar

    [72] Fernández, I., and Bickelhaupt, F. M. (2014). The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem. Soc. Rev. 43: 4953−4967. DOI: 10.1039/C4CS00055B.

    View in Article CrossRef Google Scholar

    [73] Xu, S.-Y., Belopolski, I., Alidoust, N., et al. (2015). Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349: 613−617. DOI: 10.1126/science.aaa9297.

    View in Article CrossRef Google Scholar

    [74] Lv, B. Q., Weng, H. M., Fu, B. B., et al. (2015). Experimental discovery of weyl semimetal TaAs. Phys. Rev. X 5: 031013.

    View in Article Google Scholar

    [75] Politano, A., Chiarello, G., Li, Z., et al. (2018). Toward the effective exploitation of topological phases of matter in catalysis: chemical reactions at the surfaces of NbAs and TaAs weyl semimetals. Adv. Func. Mater. 28: 1800511. DOI: 10.1002/adfm.201800511.

    View in Article CrossRef Google Scholar

    [76] Hu, X., Guo, S., Zhang, S., et al. (2019). Two-dimensional transition metal diborides: promising Dirac electrocatalysts with large reaction regions toward efficient N2 fixation. J. Mater. Chem. A 7: 25887−25893. DOI: 10.1039/C9TA08820B.

    View in Article CrossRef Google Scholar

    [77] He, Y., Boubeche, M., Zhou, Y., et al. (2020). Topologically nontrivial 1T’-MoTe2 as highly efficient hydrogen evolution electrocatalyst. J. Phys. Mater. 4: 014001.

    View in Article Google Scholar

    [78] Seok, J., Lee, J.-H., Cho, S., et al. (2017). Active hydrogen evolution through lattice distortion in metallic MoTe2. 2D Mater. 4: 025061.

    View in Article Google Scholar

    [79] Yan, M., Jin, Y., Hou, X., et al. (2021). Topological quasi-2D semimetal Co3Sn2S2: insights into electronic structure from NEXAFS and resonant photoelectron spectroscopy. J. Phys. Chem. Lett. 12: 9807−9811. DOI: 10.1021/acs.jpclett.1c02790.

    View in Article CrossRef Google Scholar

    [80] Wang, A., Shen, L., Zhao, M., et al. (2019).Tungsten boride: a 2D multiple dirac semimetal for hydrogen evolution reaction. J. Mater. Chem. C 7: 8868-8873.

    View in Article Google Scholar

    [81] Fu, B.-B., Yi, C.-J., Zhang, T.-T., et al. (2019). Dirac nodal surfaces and nodal lines in ZrSiS. Sci. Adv. 5: eaau6459. DOI: 10.1126/sciadv.aau6459.

    View in Article CrossRef Google Scholar

    [82] Song, Y. K., Wang, G. W., Li, S. C., et al. (2020). Photoemission spectroscopic evidence for the dirac nodal line in the monoclinic semimetal SrAs3. Phys. Rev. Lett. 124: 056402. DOI: 10.1103/PhysRevLett.124.056402.

    View in Article CrossRef Google Scholar

    [83] Kong, X.-P., Jiang, T., Gao, J., et al. (2021). Development of a Ni-Doped VAl3 topological semimetal with a significantly enhanced HER catalytic performance. J. Phys. Chem. Lett. 12: 3740−3748. DOI: 10.1021/acs.jpclett.1c00238.

    View in Article CrossRef Google Scholar

    [84] Li, G., Fu, C., Shi, W., et al. (2019). Dirac nodal arc semimetal PtSn4: an ideal platform for understanding surface properties and catalysis for hydrogen evolution. Angew. Chem. Int. Ed. 131: 13241−13246. DOI: 10.1002/ange.201906109.

    View in Article CrossRef Google Scholar

    [85] Singha, R., Roy, S., Pariari, A., et al. (2018). Planar Hall effect in the type-II Dirac semimetal VAl3. Phys. Rev. B 98: 081103. DOI: 10.1103/PhysRevB.98.081103.

    View in Article CrossRef Google Scholar

    [86] Tang, M., Shen, H., Qie, Y., et al. (2019). Edge-State-Enhanced CO2 electroreduction on topological nodal-line semimetal Cu2Si nanoribbons. J. Phys. Chem. C 123: 2837−2842. DOI: 10.1021/acs.jpcc.8b08871.

    View in Article CrossRef Google Scholar

    [87] Ren, Z., Zhang, H., Wang, S., et al. (2022). Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. J. Mater. Chem. A 10: 8568−8577. DOI: 10.1039/D2TA00504B.

    View in Article CrossRef Google Scholar

    [88] Feng, B., Fu, B., Kasamatsu, S., et al. (2017). Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat. Commun. 8: 1007. DOI: 10.1038/s41467-017-01108-z.

    View in Article CrossRef Google Scholar

    [89] Prinz, J., Gröning, O., Brune, H., and Widmer, R. (2015). Highly enantioselective adsorption of small prochiral molecules on a chiral intermetallic compound. Angew. Chem. Int. Ed. 127: 3974−3978. DOI: 10.1002/ange.201410107.

    View in Article CrossRef Google Scholar

    [90] Liu, Y., Xiao, J., Koo, J., and Yan, B. (2021). Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20: 638−644. DOI: 10.1038/s41563-021-00924-5.

    View in Article CrossRef Google Scholar

    [91] Naaman, R., Paltiel, Y., and Waldeck, D. H. (2019). Chiral molecules and the electron spin. Nat. Rev. Chem. 3: 250−260. DOI: 10.1038/s41570-019-0087-1.

    View in Article CrossRef Google Scholar

    [92] Garcés-Pineda, F. A., Blasco-Ahicart, M., Nieto-Castro, D., et al. (2019). Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4: 519−525. DOI: 10.1038/s41560-019-0404-4.

    View in Article CrossRef Google Scholar

    [93] Ren, X., Wu, T., Sun, Y., et al. (2021). Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12: 2608. DOI: 10.1038/s41467-021-22865-y.

    View in Article CrossRef Google Scholar

    [94] Xu, Q., Li, G., Zhang, Y., et al. (2020). Descriptor for hydrogen evolution catalysts based on the bulk band structure effect. ACS Catal. 10: 5042−5048. DOI: 10.1021/acscatal.9b05539.

    View in Article CrossRef Google Scholar

    [95] Jovic, V., Consiglio, A., Smith, K. E., et al. (2021). Momentum for catalysis: how surface reactions shape the RuO2 flat surface state. ACS Catal. 11: 1749−1757. DOI: 10.1021/acscatal.0c04871.

    View in Article CrossRef Google Scholar

    [96] Wu, G., Chen, H., Sun, Y., et al. (2013). Tuning the vertical location of helical surface states in topological insulator heterostructures via dual-proximity effects. Sci. Rep. 3: 1233. DOI: 10.1038/srep01233.

    View in Article CrossRef Google Scholar

    [97] Boukhvalov, D. W., Kuo, C.-N., Nappini, S., et al. (2021). Efficient electrochemical water splitting with PdSn4 Dirac nodal arc semimetal. ACS Catal. 11: 7311−7318. DOI: 10.1021/acscatal.1c01653.

    View in Article CrossRef Google Scholar

    [98] Liu, X., Meng, J., Zhu, J., et al. (2021). Comprehensive understandings into complete reconstruction of precatalysts: synthesis, applications, and characterizations. Adv. Mater. 33: 2007344. DOI: 10.1002/adma.202007344.

    View in Article CrossRef Google Scholar

    [99] Ahn, H. S., and Bard, A. J. (2016). Surface interrogation scanning electrochemical microscopy of Ni1–xFexOOH (0 < x < 0.27) oxygen evolving catalyst: kinetics of the “fast” iron sites. J. Am. Chem. Soc. 138: 313–318.

    View in Article Google Scholar

    [100] Chen, X.-J., Chen, Y.-M., Yu, S., et al. (2021). In situ spectroscopic diagnosis of CO2 reduction at the pt electrode/pyridine-containing electrolyte interface. ACS Catal. 11: 10836−10846. DOI: 10.1021/acscatal.1c03371.

    View in Article CrossRef Google Scholar

    [101] Li, G., Yang, Q., Manna, K., et al. (2023). Observation of asymmetric oxidation catalysis with b20 chiral crystals. angew. Chem. Int. Ed. e202303296.

    View in Article Google Scholar

  • Cite this article:

    Yang Q., Zhang Y., Sun Y., et al., (2023). Topological catalysis in the language of chemistry. The Innovation Materials 1(1), 100013. https://doi.org/10.59717/j.xinn-mater.2023.100013
    Yang Q., Zhang Y., Sun Y., et al., (2023). Topological catalysis in the language of chemistry. The Innovation Materials 1(1), 100013. https://doi.org/10.59717/j.xinn-mater.2023.100013

Figures(10)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(8073) PDF downloads(2732) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint