The history of topology and topological materials is summarized.
Understanding topological properties from the viewpoint of chemists is given.
Spin and chirality guide the design of advanced catalysts.
[1] | Moore, J. E. (2010). The birth of topological insulators. Nature 464: 194−198. DOI: 10.1038/nature08916. |
[2] | Hasan, M. Z., and Kane, C. L. (2010). Colloquium : Topological insulators. Rev. Mod. Phys. 82: 3045−3067. DOI: 10.1103/RevModPhys.82.3045. |
[3] | Bansil, A., Lin, H., and Das, T. (2016). Colloquium: Topological band theory. Rev. Mod. Phys. 88: 021004. DOI: 10.1103/RevModPhys.88.021004. |
[4] | Bradlyn, B., Elcoro, L., Cano, J., et al. (2017). Topological quantum chemistry. Nature 547: 298−305. DOI: 10.1038/nature23268. |
[5] | Weng, H., Fang, C., Fang, Z., et al. (2015). Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5: 011029. |
[6] | Liu, Z. K., Zhou, B., Zhang, Y., et al. (2014). Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science 343: 864−867. DOI: 10.1126/science.1245085. |
[7] | Huang, S.-M., Xu, S.-Y., Belopolski, I., et al. (2015). A weyl fermion semimetal with surface fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6: 7373. DOI: 10.1038/ncomms8373. |
[8] | Bian, G., Chang, T.-R., Sankar, R., et al. (2016). Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7: 10556. DOI: 10.1038/ncomms10556. |
[9] | Nelson, J. N., Ruf, J. P., Lee, Y., et al. (2019). Dirac nodal lines protected against spin-orbit interaction in IrO2. Phys. Rev. Mater. 3: 064205. DOI: 10.1103/PhysRevMaterials.3.064205. |
[10] | Zhang, H., Liu, C.-X., Qi, X.-L., et al. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5: 438−442. DOI: 10.1038/nphys1270. |
[11] | Liu, Z. K., Jiang, J., Zhou, B., et al. (2014). A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13: 677−681. DOI: 10.1038/nmat3990. |
[12] | A. Springer, M., Liu, T.-J., Kuc, A., and Heine, T. (2020). Topological two-dimensional polymers. Chem. Soc. Rev. 49: 2007−2019. DOI: 10.1039/C9CS00893D. |
[13] | Ambrosi, A., and Pumera, M. (2018). Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47: 7213−7224. DOI: 10.1039/C7CS00811B. |
[14] | Rajamathi, C. R., Gupta, U., Kumar, N., et al. (2017). Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29: 1606202. DOI: 10.1002/adma.201606202. |
[15] | Li, L., Zeng, J., Qin, W., et al. (2019). Tuning the hydrogen activation reactivity on topological insulator heterostructures. Nano Energy 58: 40−46. DOI: 10.1016/j.nanoen.2019.01.007. |
[16] | Xiao, J., Kou, L., Yam, C.-Y., et al. (2015). Toward rational design of catalysts supported on a topological insulator substrate. ACS Catal. 5: 7063−7067. DOI: 10.1021/acscatal.5b01966. |
[17] | Li, J., Ma, H., Xie, Q., et al. (2018). Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family. Sci. China Mater. 61: 23−29. DOI: 10.1007/s40843-017-9178-4. |
[18] | Li, G., Xu, Q., Shi, W., et al. (2019). Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation. Sci. Adv. 5: eaaw9867. DOI: 10.1126/sciadv.aaw9867. |
[19] | Chen, H., Zhu, W., Xiao, D., and Zhang, Z. (2011). CO oxidation facilitated by robust surface states on au-covered topological insulators. Phys. Rev. Lett. 107: 056804. DOI: 10.1103/PhysRevLett.107.056804. |
[20] | He, Q. L., Lai, Y. H., Lu, Y., et al. (2013). Surface reactivity enhancement on a Pd/Bi2Te3 heterostructure through robust topological surface states. Sci. Rep. 3: 2497. DOI: 10.1038/srep02497. |
[21] | Qu, Q., Liu, B., Liang, J., et al. (2020). Expediting hydrogen evolution through topological surface states on Bi2Te3. ACS Catal. 10: 2656−2666. DOI: 10.1021/acscatal.9b04318. |
[22] | Wang, L., Zhang, X., Meng, W., et al. (2021). A topological quantum catalyst: the case of two-dimensional traversing nodal line states associated with high catalytic performance for the hydrogen evolution reaction. J. Mater. Chem. A 9: 22453−22461. DOI: 10.1039/D1TA06553J. |
[23] | He, Y., Yan, D., Ren Ng, L., et al. (2019). Topological metal and noncentrosymmetric superconductor α-BiPd as an efficient candidate for the hydrogen evolution reaction. Mater. Chem. Front. 3: 2184−2189. DOI: 10.1039/C9QM00410F. |
[24] | Xie, H., Zhang, T., Xie, R., et al. (2021). Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction. Adv. Mater. 33: 2008373. DOI: 10.1002/adma.202008373. |
[25] | Xie, R., Zhang, T., Weng, H., and Chai, G.-L. (2022). Progress, advantages, and challenges of topological material catalysts. Small Science 2: 2100106. DOI: 10.1002/smsc.202100106. |
[26] | Luo, H., Yu, P., Li, G., and Yan, K. (2022). Topological quantum materials for energy conversion and storage. Nat. Rev. Phys. 4: 611−624. DOI: 10.1038/s42254-022-00477-9. |
[27] | Meng, W., Zhang, X., Liu, Y., et al. (2023). Multifold fermions and fermi arcs boosted catalysis in nanoporous electride 12CaO·7Al2O3. Adv. Sci. 10: 2205940. DOI: 10.1002/advs.202205940. |
[28] | He, Z., Meng, W., Liu, Y., et al. (2022). Type-II Weyl fermion induced hydrogen adsorption in a two-dimensional electride [Ca2N]+·e−. J. Mater. Chem. A 10: 12510−12517. DOI: 10.1039/D2TA01967A. |
[29] | Kong, X.-P., Jiang, T., Gao, J., et al. (2021). Development of a Ni-doped VAl3 topological semimetal with a significantly enhanced her catalytic performance. J. Phys. Chem. Lett. 12: 3740−3748. DOI: 10.1021/acs.jpclett.1c00238. |
[30] | Yang, Q., Li, G., Manna, K., et al. (2020). Topological engineering of pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv. Mater. 32: 1908518. DOI: 10.1002/adma.201908518. |
[31] | Klitzing, K. v., Dorda, G., and Pepper, M. (1980). New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45: 494−497. DOI: 10.1103/PhysRevLett.45.494. |
[32] | Berry, M. V. (1984). Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392: 45−57. DOI: 10.1098/rspa.1984.0023. |
[33] | Thouless, D. J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. (1982). Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49: 405−408. DOI: 10.1103/PhysRevLett.49.405. |
[34] | Kane, C. L., and Mele, E. J. (2005). Z2 topological order and the quantum spin hall effect. Phys. Rev. Lett. 95: 146802. DOI: 10.1103/PhysRevLett.95.146802. |
[35] | Liu, Z. K., Yang, L. X., Sun, Y., et al. (2016). Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15: 27−31. DOI: 10.1038/nmat4457. |
[36] | Liu, E., Sun, Y., Kumar, N., et al. (2018). Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14: 1125−1131. DOI: 10.1038/s41567-018-0234-5. |
[37] | Neupane, M., Xu, S.-Y., Sankar, R., et al. (2014). Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5: 3786. DOI: 10.1038/ncomms4786. |
[38] | Borisenko, S., Gibson, Q., Evtushinsky, D., et al. (2014). Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113: 027603. DOI: 10.1103/PhysRevLett.113.027603. |
[39] | Schoop, L. M., Ali, M. N., Straßer, C., et al. (2016). Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7: 11696. DOI: 10.1038/ncomms11696. |
[40] | Chang, G., Wieder, B. J., Schindler, F., et al. (2018). Topological quantum properties of chiral crystals. Nat. Mater. 17: 978−985. DOI: 10.1038/s41563-018-0169-3. |
[41] | Schröter, N. B. M., Stolz, S., Manna, K., et al. (2020). Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369: 179−183. DOI: 10.1126/science.aaz3480. |
[42] | Schröter, N. B. M., Pei, D., Vergniory, M. G., et al. (2019). Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15: 759−765. DOI: 10.1038/s41567-019-0511-y. |
[43] | Yao, M., Manna, K., Yang, Q., et al. (2020). Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa. Nat. Commun. 11: 2033. DOI: 10.1038/s41467-020-15865-x. |
[44] | Sanchez, D. S., Belopolski, I., Cochran, T. A., et al. (2019). Topological chiral crystals with helicoid-arc quantum states. Nature 567: 500−505. DOI: 10.1038/s41586-019-1037-2. |
[45] | Chang, G., Yin, J.-X., Neupert, T., et al. (2020). Unconventional photocurrents from surface fermi arcs in topological Chiral semimetals. Phys. Rev. Lett. 124: 166404. DOI: 10.1103/PhysRevLett.124.166404. |
[46] | Li, G., Yang, H., Jiang, P., et al. (2022). Chirality locking charge density waves in a chiral crystal. Nat. Commun. 13: 2914. DOI: 10.1038/s41467-022-30612-0. |
[47] | Krieger, J. A., Stolz, S., Robredo, I., et al. (2022). Parallel spin-momentum locking in a chiral topological semimetal. Preprint at https://doi.org/10.48550/arXiv.2210.08221. |
[48] | Huber, N., Alpin, K., Causer, G. L., et al. (2022). Network of topological nodal planes, multifold degeneracies, and weyl points in CoSi. Phys. Rev. Lett. 129: 026401. DOI: 10.1103/PhysRevLett.129.026401. |
[49] | Xiang, Q., Yu, J., and Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41: 782−796. DOI: 10.1039/C1CS15172J. |
[50] | Li, X., Zhang, L., Huang, M., et al. (2016). Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 4: 14789−14795. DOI: 10.1039/C6TA07009D. |
[51] | Lv, B., Qian, T., and Ding, H. (2019). Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1: 609−626. DOI: 10.1038/s42254-019-0088-5. |
[52] | Yang, H., Liang, A., Chen, C., et al. (2018). Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat. Rev. Mater. 3: 341−353. DOI: 10.1038/s41578-018-0047-2. |
[53] | Chen, Y. L., Chu, J.-H., Analytis, J. G., et al. (2010). Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 329: 659−662. DOI: 10.1126/science.1189924. |
[54] | Morali, N., Batabyal, R., Nag, P. K., et al. (2019). Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365: 1286−1291. DOI: 10.1126/science.aav2334. |
[55] | Shekhar, C., Nayak, A. K., Sun, Y., et al. (2015). Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11: 645−649. DOI: 10.1038/nphys3372. |
[56] | Parameswaran, S. A., Grover, T., Abanin, D. A., et al. (2014). Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4: 031035. |
[57] | Zhao, S., Tan, C., He, C.-T., et al. (2020). Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5: 881−890. DOI: 10.1038/s41560-020-00709-1. |
[58] | Bond, G. C. (1974). Heterogeneous catalysis: principles and applications. Clarendon Press. |
[59] | Vojvodic, A., and Nørskov, J. K. (2015). New design paradigm for heterogeneous catalysts. Nat. Sci. Rev. 2: 140−143. DOI: 10.1093/nsr/nwv023. |
[60] | Liu, Y., Wang, Y., Zhao, S., and Tang, Z. (2022). Metal–organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods 6: 2200773. DOI: 10.1002/smtd.202200773. |
[61] | Pei, Z., Tan, H., Gu, J., et al. (2023). A polymeric hydrogel electrocatalyst for direct water oxidation. Nat. Commun. 14: 818. DOI: 10.1038/s41467-023-36532-x. |
[62] | Wu, X., Zhang, H., Zuo, S., et al. (2021). Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13: 136. DOI: 10.1007/s40820-021-00668-6. |
[63] | Li, X., Zhao, L., Yu, J., et al. (2020). Water splitting: from electrode to green energy system. Nano-Micro Lett. 12: 131. DOI: 10.1007/s40820-020-00469-3. |
[64] | Zhou, Z., Kong, Y., Tan, H., et al. (2022). Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34: 2106541. DOI: 10.1002/adma.202106541. |
[65] | Li, X.-M., Lin, Z.-Z., Chen, X.-W., and Chen, X. (2022). Selective CO2 reduction on topological Chern magnet TbMn6Sn6. Phys. Chem. Chem. Phys. 24: 18600−18607. DOI: 10.1039/D2CP02754B. |
[66] | Nethravathi, C., Dattatreya Manganahalli, A., and Rajamathi, M. (2019). Bi2Te3–MoS2 layered nanoscale heterostructures for electron transfer catalysis. ACS Appl. Nano Mater. 2: 2005−2012. DOI: 10.1021/acsanm.9b00025. |
[67] | Li, G., Huang, J., Yang, Q., et al. (2021). MoS2 on topological insulator Bi2Te3 thin films: Activation of the basal plane for hydrogen reduction. J. Energy Chem. 62: 516−522. DOI: 10.1016/j.jechem.2021.04.010. |
[68] | Zhang, N., Zheng, F., Huang, B., et al. (2020). Exploring Bi2Te3 nanoplates as versatile catalysts for electrochemical reduction of small molecules. Adv. Mater. 32: 1906477. DOI: 10.1002/adma.201906477. |
[69] | Hosono, H., Li, J., Wu, J.-Z., et al. (2022). Topological insulator as an efficient catalyst for oxidative carbonylation of amines. https://www.researchsquare.com/article/rs-1549297/v1 doi:10.21203/rs.3.rs-1549297/v1. |
[70] | Fu, L. (2011). Topological crystalline insulators. Phys. Rev. Lett. 106: 106802. DOI: 10.1103/PhysRevLett.106.106802. |
[71] | Qu, Q., Liu, B., Liu, H., et al. (2021). Role of topological surface states and mirror symmetry in topological crystalline insulator SnTe as an efficient electrocatalyst. arXiv:2102.08062. |
[72] | Fernández, I., and Bickelhaupt, F. M. (2014). The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chem. Soc. Rev. 43: 4953−4967. DOI: 10.1039/C4CS00055B. |
[73] | Xu, S.-Y., Belopolski, I., Alidoust, N., et al. (2015). Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349: 613−617. DOI: 10.1126/science.aaa9297. |
[74] | Lv, B. Q., Weng, H. M., Fu, B. B., et al. (2015). Experimental discovery of weyl semimetal TaAs. Phys. Rev. X 5: 031013. |
[75] | Politano, A., Chiarello, G., Li, Z., et al. (2018). Toward the effective exploitation of topological phases of matter in catalysis: chemical reactions at the surfaces of NbAs and TaAs weyl semimetals. Adv. Func. Mater. 28: 1800511. DOI: 10.1002/adfm.201800511. |
[76] | Hu, X., Guo, S., Zhang, S., et al. (2019). Two-dimensional transition metal diborides: promising Dirac electrocatalysts with large reaction regions toward efficient N2 fixation. J. Mater. Chem. A 7: 25887−25893. DOI: 10.1039/C9TA08820B. |
[77] | He, Y., Boubeche, M., Zhou, Y., et al. (2020). Topologically nontrivial 1T’-MoTe2 as highly efficient hydrogen evolution electrocatalyst. J. Phys. Mater. 4: 014001. |
[78] | Seok, J., Lee, J.-H., Cho, S., et al. (2017). Active hydrogen evolution through lattice distortion in metallic MoTe2. 2D Mater. 4: 025061. |
[79] | Yan, M., Jin, Y., Hou, X., et al. (2021). Topological quasi-2D semimetal Co3Sn2S2: insights into electronic structure from NEXAFS and resonant photoelectron spectroscopy. J. Phys. Chem. Lett. 12: 9807−9811. DOI: 10.1021/acs.jpclett.1c02790. |
[80] | Wang, A., Shen, L., Zhao, M., et al. (2019).Tungsten boride: a 2D multiple dirac semimetal for hydrogen evolution reaction. J. Mater. Chem. C 7: 8868-8873. |
[81] | Fu, B.-B., Yi, C.-J., Zhang, T.-T., et al. (2019). Dirac nodal surfaces and nodal lines in ZrSiS. Sci. Adv. 5: eaau6459. DOI: 10.1126/sciadv.aau6459. |
[82] | Song, Y. K., Wang, G. W., Li, S. C., et al. (2020). Photoemission spectroscopic evidence for the dirac nodal line in the monoclinic semimetal SrAs3. Phys. Rev. Lett. 124: 056402. DOI: 10.1103/PhysRevLett.124.056402. |
[83] | Kong, X.-P., Jiang, T., Gao, J., et al. (2021). Development of a Ni-Doped VAl3 topological semimetal with a significantly enhanced HER catalytic performance. J. Phys. Chem. Lett. 12: 3740−3748. DOI: 10.1021/acs.jpclett.1c00238. |
[84] | Li, G., Fu, C., Shi, W., et al. (2019). Dirac nodal arc semimetal PtSn4: an ideal platform for understanding surface properties and catalysis for hydrogen evolution. Angew. Chem. Int. Ed. 131: 13241−13246. DOI: 10.1002/ange.201906109. |
[85] | Singha, R., Roy, S., Pariari, A., et al. (2018). Planar Hall effect in the type-II Dirac semimetal VAl3. Phys. Rev. B 98: 081103. DOI: 10.1103/PhysRevB.98.081103. |
[86] | Tang, M., Shen, H., Qie, Y., et al. (2019). Edge-State-Enhanced CO2 electroreduction on topological nodal-line semimetal Cu2Si nanoribbons. J. Phys. Chem. C 123: 2837−2842. DOI: 10.1021/acs.jpcc.8b08871. |
[87] | Ren, Z., Zhang, H., Wang, S., et al. (2022). Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. J. Mater. Chem. A 10: 8568−8577. DOI: 10.1039/D2TA00504B. |
[88] | Feng, B., Fu, B., Kasamatsu, S., et al. (2017). Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat. Commun. 8: 1007. DOI: 10.1038/s41467-017-01108-z. |
[89] | Prinz, J., Gröning, O., Brune, H., and Widmer, R. (2015). Highly enantioselective adsorption of small prochiral molecules on a chiral intermetallic compound. Angew. Chem. Int. Ed. 127: 3974−3978. DOI: 10.1002/ange.201410107. |
[90] | Liu, Y., Xiao, J., Koo, J., and Yan, B. (2021). Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20: 638−644. DOI: 10.1038/s41563-021-00924-5. |
[91] | Naaman, R., Paltiel, Y., and Waldeck, D. H. (2019). Chiral molecules and the electron spin. Nat. Rev. Chem. 3: 250−260. DOI: 10.1038/s41570-019-0087-1. |
[92] | Garcés-Pineda, F. A., Blasco-Ahicart, M., Nieto-Castro, D., et al. (2019). Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4: 519−525. DOI: 10.1038/s41560-019-0404-4. |
[93] | Ren, X., Wu, T., Sun, Y., et al. (2021). Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12: 2608. DOI: 10.1038/s41467-021-22865-y. |
[94] | Xu, Q., Li, G., Zhang, Y., et al. (2020). Descriptor for hydrogen evolution catalysts based on the bulk band structure effect. ACS Catal. 10: 5042−5048. DOI: 10.1021/acscatal.9b05539. |
[95] | Jovic, V., Consiglio, A., Smith, K. E., et al. (2021). Momentum for catalysis: how surface reactions shape the RuO2 flat surface state. ACS Catal. 11: 1749−1757. DOI: 10.1021/acscatal.0c04871. |
[96] | Wu, G., Chen, H., Sun, Y., et al. (2013). Tuning the vertical location of helical surface states in topological insulator heterostructures via dual-proximity effects. Sci. Rep. 3: 1233. DOI: 10.1038/srep01233. |
[97] | Boukhvalov, D. W., Kuo, C.-N., Nappini, S., et al. (2021). Efficient electrochemical water splitting with PdSn4 Dirac nodal arc semimetal. ACS Catal. 11: 7311−7318. DOI: 10.1021/acscatal.1c01653. |
[98] | Liu, X., Meng, J., Zhu, J., et al. (2021). Comprehensive understandings into complete reconstruction of precatalysts: synthesis, applications, and characterizations. Adv. Mater. 33: 2007344. DOI: 10.1002/adma.202007344. |
[99] | Ahn, H. S., and Bard, A. J. (2016). Surface interrogation scanning electrochemical microscopy of Ni1–xFexOOH (0 < x < 0.27) oxygen evolving catalyst: kinetics of the “fast” iron sites. J. Am. Chem. Soc. 138: 313–318. |
[100] | Chen, X.-J., Chen, Y.-M., Yu, S., et al. (2021). In situ spectroscopic diagnosis of CO2 reduction at the pt electrode/pyridine-containing electrolyte interface. ACS Catal. 11: 10836−10846. DOI: 10.1021/acscatal.1c03371. |
[101] | Li, G., Yang, Q., Manna, K., et al. (2023). Observation of asymmetric oxidation catalysis with b20 chiral crystals. angew. Chem. Int. Ed. e202303296. |
Yang Q., Zhang Y., Sun Y., et al., (2023). Topological catalysis in the language of chemistry. The Innovation Materials 1(1), 100013. https://doi.org/10.59717/j.xinn-mater.2023.100013 |
Topology and topological invariants in solid state matt
Electronic structures of topological insulators and semimetals
Schematic of atomic electronic energy level to electronic band structure in crystals of
Techniques to characterize topological electronic structures
Schematic of the chiral anomaly in Weyl semimetal
Catalytic properties of topological insulators
The application of topological semimetal catalysts
Nodal line semimetals for hydrogen evolution reaction
The manipulation of chirality and spin polarization for catalysis reactions
Challenges in understanding topological catalysis