[1] | Yu, S.-H., ƠReilly, R., Jiang, L. et al. (2022). The new era of self-assembled nanomaterials. Acc. Chem. Res. 55: 1783−1784. DOI: 10.1021/acs.accounts.2c00327. |
[2] | Mao, L.-B., Gao, H.-L., Yao, H.-B., et al. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science 354: 107−110. DOI: 10.1126/science.aaf8991. |
[3] | Wegst, U.G.K., Bai, H., Saiz, E., et al. (2015). Bioinspired structural materials. Nat. Mater. 14: 23−36. DOI: 10.1038/nmat4089. |
[4] | Huang, W., Restrepo, D., Jung, J.-Y., et al. (2019). Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31: e1901561. DOI: 10.1002/adma.201901561. |
[5] | Meng, X.-S.; Zhou, L.-C., Liu, L. et al. (2023). Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata. Science 380: 1252−1257. DOI: 10.1126/science.ade2038. |
Antonietti M. (2023). Fatigue-resistant deformable biomineral hard tissues. The Innovation Materials 1(2), 100017. https://doi.org/10.59717/j.xinn-mater.2023.100017 |
Multi-scale structural characteristics and fatigue-resistant performance of the FFR in the hinge.5