Host genome-integrated hepatitis B virus (HBV) causes chronic DNA replication stress.
Prognostic DNA replication stress contributes heterogeneity of HBV+ hepatocellular carcinoma (HCC).
A tailored prognostic index (PIRS) improves population-based prognostication.
PIRS enables exploitable therapeutic vulnerabilities.
Four therapeutic targets and five agents were identified for HBV+ HCC.
[1] | Llovet, J.M., Kelley, R.K., Villanueva, A., et al. (2021). Hepatocellular carcinoma. Nature Reviews Disease Primers 7, 6. |
[2] | Torresi, J., Tran, B.M., Christiansen, D., et al. (2019). HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 19, 707. |
[3] | Llovet, J.M., Montal, R., Sia, D., and Finn, R.S. (2018). Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Cncol 15, 599−616. |
[4] | Iloeje, U.H., Yang, H.I., Jen, C.L., et al. (2007). Risk and predictors of mortality associated with chronic hepatitis B infection. Clin Gastroenterol Hepatol 5, 921−931. |
[5] | Geier, A., Gartung, C., and Dietrich, C.G. (2002). Hepatitis B e Antigen and the Risk of Hepatocellular Carcinoma. N Engl J Med 347, 1721−1722. |
[6] | Li, B., Feng, W., Luo, O., et al. (2017). Development and Validation of a Three-gene Prognostic Signature for Patients with Hepatocellular Carcinoma. Sci Rep 7, 5517. |
[7] | Yan, Y., Lu, Y., Mao, K., et al. (2019). Identification and validation of a prognostic four-genes signature for hepatocellular carcinoma: integrated ceRNA network analysis. Hepatol Int 13, 618−630. |
[8] | Hu, B., and Yang, X.B. (2020). Construction of a lipid metabolism-related and immune-associated prognostic signature for hepatocellular carcinoma. Cancer Med 9, 7646−7662. |
[9] | Chen, W., Ou, M., Tang, D., and Dai, Y. (2020). Identification and Validation of Immune-Related Gene Prognostic Signature for Hepatocellular Carcinoma. J Immunol Res 2020, 5494858. |
[10] | Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646−674. |
[11] | Macheret, M., and Halazonetis, T.D. (2015). DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10, 425−448. |
[12] | Williamson, C.T., Miller, R., Pemberton, H.N., et al. (2016). ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun 7, 13837. |
[13] | Brown, J.S., O'Carrigan, B., Jackson, S.P., and Yap, T.A. (2017). Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov 7, 20−37. |
[14] | Dreyer, S.B., Upstill-Goddard, R., Paulus-Hock, V., et al. (2021). Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology 160, 362−377. |
[15] | Gillman, R., Lopes Floro, K., Wankell, M., and Hebbard, L. (2021). The role of DNA damage and repair in liver cancer. Biochimica et biophysica acta. Rev Cancer 1875, 188493. |
[16] | Ghandi, M., Huang, F.W., Jané-Valbuena, J., et al. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503−508. |
[17] | Jiang, P., Gu, S., Pan, D., et al. (2018). Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24, 1550−1558. |
[18] | McGranahan, N., Furness, A.J., Rosenthal, R., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463−1469. |
[19] | Davoli, T., Uno, H., Wooten, E.C., and Elledge, S.J. (2017). Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399. |
[20] | Lu, X., Meng, J., Zhou, Y., et al. (2021). MOVICS: an R package for multi-omics integration and visualization in cancer subtyping. Bioinformatics 36, 5539−5541. |
[21] | Jessen, C., Kreß, J.K.C., Baluapuri, A., et al. (2020). The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene 39, 6841−6855. |
[22] | Sun, X., Wang, Y., Ji, K., et al. (2020). NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res 48, 9109−9123. |
[23] | Malta, T.M., Sokolov, A., Gentles, A.J., et al. (2018). Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell 173, 338−354. |
[24] | Yang, C., Huang, X., Li, Y., et al. (2021). Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief Bioinform 22, bbaa164. |
[25] | Kim, D.W., Talati, C., and Kim, R. (2016). Hepatocellular carcinoma (HCC): beyond sorafenib—chemotherapy. J Gastrointest Oncol 8, 256−265. |
[26] | Ubhi, T., and Brown, G.W. (2019). Exploiting DNA Replication Stress for Cancer Treatment. Cancer Res 79, 1730−1739. |
[27] | Lee, J.H., and Berger, J.M. (2019). Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II. Genes 10, 859. |
[28] | Panvichian, R., Tantiwetrueangdet, A., Angkathunyakul, N., and Leelaudomlipi, S. (2015). TOP2A amplification and overexpression in hepatocellular carcinoma tissues. Biomed Res Int 2015, 381602. |
[29] | Fedoriw, A., Rajapurkar, S.R., O'Brien, S., et al. (2019). Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss. Cancer Cell 36, 100−114. |
[30] | Zhang, X.P., Jiang, Y.B., Zhong, C.Q., et al. (2018). PRMT1 Promoted HCC Growth and Metastasis In Vitro and In Vivo via Activating the STAT3 Signalling Pathway. Cell Physiol Biochem 47, 1643−1654. |
[31] | Wei, H., Liu, Y., Min, J., et al. (2019). Protein arginine methyltransferase 1 promotes epithelial-mesenchymal transition via TGF-beta1/Smad pathway in hepatic carcinoma cells. Neoplasma 66, 918−929. |
[32] | Zhao, J., Adams, A., Roberts, B., et al. (2018). Protein arginine methyl transferase 1- and Jumonji C domain-containing protein 6-dependent arginine methylation regulate hepatocyte nuclear factor 4 alpha expression and hepatocyte proliferation in mice. Hepatology 67, 1109−1126. |
[33] | Wang, J., Wang, C., Xu, P., et al. (2021). PRMT1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Theranostics 11, 5387−5403. |
[34] | Giuliani, V., Miller, M.A., Liu, C.-Y., et al. (2021). PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma. Nat Commun 12, 4626. |
[35] | Schittek, B., and Sinnberg, T. (2014). Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 13, 231. |
[36] | Rosenberg, L.H., Lafitte, M., Quereda, V., et al. (2015). Therapeutic targeting of casein kinase 1δ in breast cancer. Sci Transl Med 7, 318ra202. |
[37] | Uchida, T., Takamiya, M., Takahashi, M., et al. (2003). Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem Biol 10, 15−24. |
[38] | Young, S., Craig, P., and Golzarian, J. (2019). Current trends in the treatment of hepatocellular carcinoma with transarterial embolization: a cross-sectional survey of techniques. Eur Radiol 29, 3287−3295. |
[39] | Shimose, S., Iwamoto, H., Tanaka, M., et al. (2020). Increased Arterio-Portal Shunt Formation after Drug-Eluting Beads TACE for Hepatocellular Carcinoma. Oncology 98, 558−565. |
[40] | Abou-Alfa, G.K., Shi, Q., Knox, J.J., et al. (2019). Assessment of Treatment With Sorafenib Plus Doxorubicin vs Sorafenib Alone in Patients With Advanced Hepatocellular Carcinoma: Phase 3 CALGB 80802 Randomized Clinical Trial. JAMA Oncol 5, 1582−1588. |
[41] | Emanuel, S., Rugg, C.A., Gruninger, R.H., et al. (2005). The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res 65, 9038−9046. |
[42] | Matsuhashi, A., Ohno, T., Kimura, M., et al. (2012). Growth suppression and mitotic defect induced by JNJ-7706621, an inhibitor of cyclin-dependent kinases and aurora kinases. Curr Cancer Drug Targets 12, 625−639. |
[43] | Brasca, M.G., Albanese, C., Alzani, R., et al. (2010). Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing. Bioorg Med Chem 18, 1844−1853. |
[44] | Ehrlich, S.M., Liebl, J., Ardelt, M.A., et al. (2015). Targeting cyclin dependent kinase 5 in hepatocellular carcinoma-A novel therapeutic approach. J Hepatol 63, 102−113. |
[45] | Le Tourneau, C., Faivre, S., Laurence, V., et al. (2010). Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer 46, 3243−3250. |
[46] | Chan, H.L.-Y., Tse, C.-H., Mo, F., et al. (2008). High Viral Load and Hepatitis B Virus Subgenotype Ce Are Associated With Increased Risk of Hepatocellular Carcinoma. J Clin Oncol 26, 177−182. |
[47] | Yu, S.J., and Kim, Y.J. (2014). Hepatitis B viral load affects prognosis of hepatocellular carcinoma. World journal of gastroenterology 20, 12039−12044. |
[48] | Péneau, C., Imbeaud, S., Bella, T.L., et al. (2022). Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 71, 616−626. |
Lu X., Meng J., Wang H., et al., (2023). DNA replication stress stratifies prognosis and enables exploitable therapeutic vulnerabilities of HBV-associated hepatocellular carcinoma: An in-silico precision oncology strategy. The Innovation Medicine 1(1), 100014. https://doi.org/10.59717/j.xinn-med.2023.100014 |
Experimental design
Performance of prognostic prediction based on
Landscape of
Association between immune/metabolism pathways, molecular features and
Identification of
Identification of candidate therapeutic agents with higher sensitivity in patients with high