Immune cell membrane coating can endow nanoparticles with targeting ability.
Cell membrane coating opens up a new field for myocardial ischemia therapy.
The therapeutic effect of nanoparticles can be enhanced by cell membrane coating.
[1] | Yellon, D.M., and Hausenloy, D.J. (2007). Myocardial reperfusion injury. N. Engl. J. Med. 357: 1121-1135. DOI: 10.1056/NEJMra071667. |
[2] | Hausenloy, D.J., and Yellon, D.M. (2013). Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J. Clin. Invest. 123: 92−100. DOI: 10.1172/JCI62874. |
[3] | Heusch, G. (2015). Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr. Physiol. 5: 1123−1145. DOI: 10.1002/cphy.c140075. |
[4] | Zhang, H., Kim, H., Park, B.W., et al. (2022). CU06-1004 enhances vascular integrity and improves cardiac remodeling by suppressing edema and inflammation in myocardial ischemia-reperfusion injury. Exp. Mol. Med. 54: 23−34. DOI: 10.1038/s12276-021-00720-w. |
[5] | Marchant, D.J., Boyd, J.H., Lin, D.C., et al. (2012). Inflammation in myocardial diseases. Circ. Res. 110: 126−144. DOI: 10.1161/CIRCRESAHA.111.243170. |
[6] | Davidson, S.M., Ferdinandy, P., Andreadou, I., et al. (2019). Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J. Am. Coll. Cardiol. 73: 89−99. DOI: 10.1016/j.jacc.2018.09.086. |
[7] | Yu, Y., Yan, Y., Niu, F., et al. (2021). Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7: 193. DOI: 10.1038/s41420-021-00579-w. |
[8] | Cadenas, S. (2018). ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 117: 76−89. DOI: 10.1016/j.freeradbiomed.2018.01.024. |
[9] | Kurian, G.A., Rajagopal, R., Vedantham, S., et al. (2016). The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: Revisited. Oxid. Med. Cell. Longev. 2016: 1656450. DOI: 10.1155/2016/1656450. |
[10] | Liu, Y., Ai, K., Ji, X., et al. (2017). Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 139: 856−862. DOI: 10.1021/jacs.6b11013. |
[11] | Paradies, G., Paradies, V., Ruggiero, F.M., et al. (2018). Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: Implications for pharmacological cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 315: H1341−H1352. DOI: 10.1152/ajpheart.00028.2018. |
[12] | Walters, A.M., Porter, G.A., Jr., and Brookes, P.S. (2012). Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ. Res. 111: 1222−1236. DOI: 10.1161/CIRCRESAHA.112.265660. |
[13] | Wang, R., Wang, M., He, S., et al. (2020). Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: An overview of regulatory mechanisms and therapeutic reagents. Front. Pharmacol. 11: 872. DOI: 10.3389/fphar.2020.00872. |
[14] | Li, Y., Li, Q., and Fan, G.C. (2021). Macrophage efferocytosis in cardiac pathophysiology and repair. Shock 55: 177−188. DOI: 10.1097/SHK.0000000000001625. |
[15] | Doran, A.C., Yurdagul, A., Jr., and Tabas, I. (2020). Efferocytosis in health and disease. Nat. Rev. Immunol. 20: 254−267. DOI: 10.1038/s41577-019-0240-6. |
[16] | Prabhu, S.D., and Frangogiannis, N.G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ. Res. 119: 91−112. DOI: 10.1161/CIRCRESAHA.116.303577. |
[17] | Hu, C.M., Fang, R.H., Copp, J., et al. (2013). A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8: 336−340. DOI: 10.1038/nnano.2013.54. |
[18] | Kechagia, J.Z., Ivaska, J., and Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20: 457−473. DOI: 10.1038/s41580-019-0134-2. |
[19] | Hartman, N.C., and Groves, J.T. (2011). Signaling clusters in the cell membrane. Curr. Opin. Cell Biol. 23: 370−376. DOI: 10.1016/j.ceb.2011.05.003. |
[20] | Yu, J., Duong, V.H.H., Westphal, K., et al. (2018). Surface receptor Toso controls B cell-mediated regulation of T cell immunity. J. Clin. Invest. 128: 1820−1836. DOI: 10.1172/JCI97280. |
[21] | Park, J.H., Mohapatra, A., Zhou, J., et al. (2022). Virus-mimicking cell membrane-coated nanoparticles for cytosolic delivery of mRNA. Angew. Chem. Int. Ed. Engl. 61: e202113671. DOI: 10.1002/anie.202113671. |
[22] | Uchida, S., Perche, F., Pichon, C., et al. (2020). Nanomedicine-based approaches for mRNA delivery. Mol. Pharm. 17: 3654−3684. DOI: 10.1021/acs.molpharmaceut.0c00618. |
[23] | Weingart, J., Vabbilisetty, P., and Sun, X.L. (2013). Membrane mimetic surface functionalization of nanoparticles: Methods and applications. Adv. Colloid. Interface. Sci. 197-198: 68-84. DOI: 10.1016/j.cis.2013.04.003. |
[24] | Kostina, N.Y., Rahimi, K., Xiao, Q., et al. (2019). Membrane-mimetic dendrimersomes engulf living bacteria via endocytosis. Nano. Lett. 19: 5732−5738. DOI: 10.1021/acs.nanolett.9b02349. |
[25] | Thamphiwatana, S., Angsantikul, P., Escajadillo, T., et al. (2017). Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl. Acad. Sci. U. S. A. 114: 11488−11493. DOI: 10.1073/pnas.1714267114. |
[26] | Kou, L., Bhutia, Y.D., Yao, Q., et al. (2018). Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol. 9: 27. DOI: 10.3389/fphar.2018.00027. |
[27] | Blanco, E., Shen, H., and Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33: 941−951. DOI: 10.1038/nbt.3330. |
[28] | Li, M., Jin, X., Liu, T., et al. (2022). Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation. Nat. Commun. 13: 4137. DOI: 10.1038/s41467-022-31882-4. |
[29] | Mu, L., and Feng, S.S. (2003). A novel controlled release formulation for the anticancer drug paclitaxel (Taxol ): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release 1: 33−48. DOI: 10.1016/s0168-3659(02)00320-6. |
[30] | Wang, Q., Song, Y., Chen, J., et al. (2021). Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 276: 121028. DOI: 10.1016/j.biomaterials.2021.121028. |
[31] | Zhou, T., Yang, X., Wang, T., et al. (2022). Platelet-membrane-encapsulated carvedilol with improved targeting ability for relieving myocardial ischemia-reperfusion injury. Membranes (Basel) 12: 605. DOI: 10.3390/membranes12060605. |
[32] | Xu, H., Li, S., and Liu, Y.S. (2022). Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct. Target. Ther. 7: 231. DOI: 10.1038/s41392-022-01082-z. |
[33] | Reda, M., Ngamcherdtrakul, W., Nelson, M.A., et al. (2022). Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat. Commun. 13: 4261. DOI: 10.1038/s41467-022-31926-9. |
[34] | Furtado, D., Björnmalm, M., Ayton, S., et al. (2018). Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 30: e1801362. DOI: 10.1002/adma.201801362. |
[35] | Kasina, V., Mownn, R.J., Bahal, R., et al. (2022). Nanoparticle delivery systems for substance use disorder. Neuropsychopharmacology 47: 1431−1439. DOI: 10.1038/s41386-022-01311-7. |
[36] | Foged, C., Brodin, B., Frokjaer, S., et al. (2005). Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298: 315−322. DOI: 10.1016/j.ijpharm.2005.03.035. |
[37] | Kumari, A., Yadav, S.K., and Yadav, S.C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 75: 1−18. DOI: 10.1016/j.colsurfb.2009.09.001. |
[38] | Tokatlian, T., and Segura, T. (2010). siRNA applications in nanomedicine. Wiley interdisciplinary reviews. Nanomed. Nanobiotechnol. 2: 305−315. DOI: 10.1002/wnan.81. |
[39] | Tang, J., Baxter, S., Menon, A., et al. (2016). Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc. Natl. Acad. Sci. U. S. A. 113: E6731−e6740. DOI: 10.1073/pnas.1601537113. |
[40] | Chen, W., Schilperoort, M., Cao, Y., et al. (2022). Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat.Rev. Cardiol. 19: 228−249. DOI: 10.1038/s41569-021-00629-x. |
[41] | Dos Santos Rodrigues, B., Oue, H., Banerjee, A., et al. (2018). Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J. Control Release 286: 264−278. DOI: 10.1016/j.jconrel.2018.07.043. |
[42] | Ouyang, C., Choice, E., Holland, J., et al. (1995). Liposomal cyclosporine. Characterization of drug incorporation and interbilayer exchange. Transplantation 60: 999−1006. |
[43] | Fonseca-Santos, B., Gremião, M.P., and Chorilli, M. (2015). Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int. J. Nanomedicine 10: 4981−5003. DOI: 10.2147/IJN.S87148. |
[44] | Sercombe, L., Veerati, T., Moheimani, F., et al. (2015). Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6: 286. DOI: 10.3389/fphar.2015.00286. |
[45] | Allen, C., and Evans, J.C. (2020). ‘Hip to be square’: Designing PLGA formulations for the future. J. Control. Release 319: 487−488. DOI: 10.1016/j.jconrel.2020.01.050. |
[46] | Fonseca, C., Simões, S., and Gaspar, R. (2002). Paclitaxel-loaded PLGA nanoparticles preparation,physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release 83: 273−286. DOI: 10.1016/S0168-3659(02)00212-2. |
[47] | Budhian, A., Siegel, S.J., and Winey, K.I. (2008). Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int. J. Pharm. 346: 151−159. DOI: 10.1016/j.ijpharm.2007.06.011. |
[48] | Iwasaki, Y., Maie, H., and Akiyoshi, K. (2007). Cell-specific delivery of polymeric nanoparticles to carbohydrate-tagging cells. Biomacromolecules 8: 3162−3168. DOI: 10.1021/bm700606z. |
[49] | Park, K., Skidmore, S., Hadar, J., et al. (2019). Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J. Control. Release 304: 125−134. DOI: 10.1016/j.jconrel.2019.05.003. |
[50] | Tamada, J.A., and Langer, R. (1993). Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. U. S. A. 90: 552−556. DOI: 10.1073/pnas.90.2.552. |
[51] | von Burkersroda, F., Schedl, L., and Gopferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23: 4221−4231. DOI: 10.1016/S0142-9612(02)00170-9. |
[52] | Kashi, T.S., Eskandarion, S., Esfandyari-Manesh, M., et al. (2012). Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int. J. Nanomedicine 7: 221−234. DOI: 10.2147/IJN.S27709. |
[53] | Tosi, G., Costantino, L., Rivasi, F., et al. (2007). Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J. Control. Release 122: 1−9. DOI: 10.1016/j.jconrel.2007.05.022. |
[54] | Panyam, J., and Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55: 329−347. DOI: 10.1016/S0169-409X(02)00228-4. |
[55] | Fu, K., Pack, D.W., Klibanov, A.M., et al. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17: 100−106. DOI: 10.1023/A:1007582911958. |
[56] | Pandita, D., Kumar, S., and Lather, V. (2015). Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov. Today 20: 95−104. DOI: 10.1016/j.drudis.2014.09.018. |
[57] | Riffault, M., Six, J.L., Netter, P., et al. (2015). PLGA-based nanoparticles: A safe and suitable delivery platform for osteoarticular pathologies. Pharm. Res. 32: 3886−3898. DOI: 10.1007/s11095-015-1748-5. |
[58] | Zhang, C.X., Cheng, Y., Liu, D.Z., et al. (2019). Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J. Nanobiotechnology 17: 18. DOI: 10.1186/s12951-019-0451-9. |
[59] | Millstone, J.E., Hurst, S.J., Metraux, G.S., et al. (2009). Colloidal gold and silver triangular nanoprisms. Small 5: 646−664. DOI: 10.1002/smll.200801480. |
[60] | Lee, S.H., Rho, W.Y., Park, S.J., et al. (2018). Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning. Sci. Rep. 8: 16763. DOI: 10.1038/s41598-018-35195-9. |
[61] | Lee, S.H., Sung, J.H., and Park, T.H. (2012). Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann. Biomed. Eng. 40: 1384−1397. DOI: 10.1007/s10439-011-0457-4. |
[62] | Cao, Y.C., Jin, R., and Mirkin, C.A. (2002). Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297: 1536−1540. DOI: 10.1126/science.297.5586.1536. |
[63] | Haes, A.J., Chang, L., Klein, W.L., et al. (2005). Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 1: 2264−2271. DOI: 10.1021/ja044087q. |
[64] | Georganopoulou, D.G., Chang, L., Nam, J.M., et al. (2005). Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 102: 2273−2276. DOI: 10.1073/pnas.0409336102. |
[65] | Taton, T.A., Mirkin, C.A., and Letsinger, R.L. (2000). Scanometric DNA array detection with nanoparticle probes. Science 289: 1757−1760. DOI: 10.1126/science.289.5485.1757. |
[66] | Park, S.J., Taton, T.A., and Mirkin, C.A. (2002). Array-based electrical detection of DNA with nanoparticle probes. Science 295: 1503−1506. DOI: 10.1126/science.1067003. |
[67] | Astruc, D., Lu, F., and Aranzaes, J.R. (2005). Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl. 44: 7852−7872. DOI: 10.1002/anie.200500766. |
[68] | Rosi, N.L., Giljohann, D.A., Thaxton, C.S., et al. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312: 1027−1030. DOI: 10.1126/science.1125559. |
[69] | Hood, J.D., Bednarski, M., Frausto, R., et al. (2002). Tumor regression by targeted gene delivery to the neovasculature. Science 296: 2404−2407. DOI: 10.1126/science.1070200. |
[70] | Brannon-Peppas, L., and Blanchette, J.O. (2004). Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56: 1649−1659. DOI: 10.1016/j.addr.2004.02.014. |
[71] | Arias, L.S., Pessan, J.P., Vieira, A.P.M., et al. (2018). Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel) 7: 46. DOI: 10.3390/antibiotics7020046. |
[72] | Manshian, B.B., Jimenez, J., Himmelreich, U., et al. (2017). Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials 127: 1−12. DOI: 10.1016/j.biomaterials.2017.02.039. |
[73] | Duncan, B., Kim, C., and Rotello, V.M. (2010). Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release 148: 122−127. DOI: 10.1016/j.jconrel.2010.06.004. |
[74] | Gibson, J.D., Khanal, B.P., and Zubarev, E.R. (2007). Paclitaxel-functionalized gold nanoparticles. J. Am. Che. Soc. 129: 11653-11661. DOI: 10.1021/ja075181k. |
[75] | Wu, R., Peng, H., Zhu, J.J., et al. (2020). Attaching DNA to gold nanoparticles with a protein corona. Front. Chem. 8: 121. DOI: 10.3389/fchem.2020.00121. |
[76] | Kumar, A., Vemula, P.K., Ajayan, P.M., et al. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7: 236−241. DOI: 10.1038/nmat2099. |
[77] | Desireddy, A., Conn, B.E., Guo, J., et al. (2013). Ultrastable silver nanoparticles. Nature 501: 399−402. DOI: 10.1038/nature12523. |
[78] | Atwater, H.A., and Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nat. Mater. 9: 205−213. DOI: 10.1038/nmat2629. |
[79] | Yan, Y., Yang, C., Dai, G., et al. (2021). Folic acid-conjugated CuFeSe2 nanoparticles for targeted T2-weighted magnetic resonance imaging and computed tomography of tumors in vivo. Int. J. Nanomedicine 16: 6429−6440. DOI: 10.2147/IJN.S320277. |
[80] | Blakney, A.K., Zhu, Y., McKay, P.F., et al. (2020). Big is beautiful: Enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano 14: 5711−5727. DOI: 10.1021/acsnano.0c00326. |
[81] | Li, Y., Che, J., Chang, L., et al. (2022). CD47- and integrin alpha4/beta1-comodified-macrophage-membrane-coated nanoparticles enable delivery of colchicine to atherosclerotic plaque. Adv. Healthc. Mater. 11: e2101788. DOI: 10.1002/adhm.202101788. |
[82] | Wang, Y., Zhang, K., Li, T., et al. (2021). Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics 11: 164−180. DOI: 10.7150/thno.47841. |
[83] | Shin, M.J., Park, J.Y., Lee, D.H., et al. (2021). Stem cell mimicking nanoencapsulation for targeting arthritis. Int. J. Nanomedicine 16: 8485−8507. DOI: 10.2147/IJN.S334298. |
[84] | Furtado, D., Bjornmalm, M., Ayton, S., et al. (2018). Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 30: e1801362. DOI: 10.1002/adma.201801362. |
[85] | Jiang, Q., Liu, Y., Guo, R., et al. (2019). Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 192: 292−308. DOI: 10.1016/j.biomaterials.2018.11.021. |
[86] | Song, Y., Huang, Z., Liu, X., et al. (2019). Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE(-/-)) mice. Nanomedicine 15: 13−24. DOI: 10.1016/j.nano.2018.08.002. |
[87] | Ross, K.A., Brenza, T.M., Binnebose, A.M., et al. (2015). Nano-enabled delivery of diverse payloads across complex biological barriers. J. Control. Release 219: 548−559. DOI: 10.1016/j.jconrel.2015.08.039. |
[88] | Parodi, A., Quattrocchi, N., van de Ven, A.L., et al. (2013). Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8: 61−68. DOI: 10.1038/nnano.2012.212. |
[89] | Hu, C.M., Zhang, L., Aryal, S., et al. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U. S. A. 108: 10980−10985. DOI: 10.1073/pnas.1106634108. |
[90] | Oroojalian, F., Beygi, M., Baradaran, B., et al. (2021). Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 17: e2006484. DOI: 10.1002/smll.202006484. |
[91] | Choi, B., Park, W., Park, S.B., et al. (2020). Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods 177: 2−14. DOI: 10.1016/j.ymeth.2019.12.004. |
[92] | Hu, C.M., Fang, R.H., Wang, K.C., et al. (2015). Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526: 118−121. DOI: 10.1038/nature15373. |
[93] | Wei, X., Gao, J., Wang, F., et al. (2017). In situ capture of bacterial toxins for antivirulence vaccination. Adv. Mater. 29: 1701644. DOI: 10.1002/adma.201701644. |
[94] | Dehaini, D., Wei, X., Fang, R.H., et al. (2017). Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 29: 1606209. DOI: 10.1002/adma.201606209. |
[95] | Rao, L., Cai, B., Bu, L.L., et al. (2017). Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11: 3496−3505. DOI: 10.1021/acsnano.7b00133. |
[96] | Hasler, P., Giaglis, S., and Hahn, S. (2016). Neutrophil extracellular traps in health and disease. Swiss Med. Wkly. 146: w14352. DOI: 10.4414/smw.2016.14352. |
[97] | Molinaro, R., Corbo, C., Martinez, J.O., et al. (2016). Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 15: 1037−1046. DOI: 10.1038/nmat4644. |
[98] | Dunlay, S.M., Weston, S.A., Redfield, M.M., et al. (2008). Tumor necrosis factor-alpha and mortality in heart failure: A community study. Circulation 118: 625−631. DOI: 10.1161/CIRCULATIONAHA.107.759191. |
[99] | Frangogiannis, N.G., Smith, C.W., and Entman, M.L. (2002). The inflammatory response in myocardial infarction. Cardiovasc. Res. 53: 31−47. DOI: 10.1016/S0008-6363(01)00434-5. |
[100] | Beekhuizen, H., and van Furth, R. (1993). Monocyte adherence to human vascular endothelium. J. Leukoc. Biol. 54: 363−378. DOI: 10.1002/jlb.54.4.363. |
[101] | Imhof, B.A., and Aurrand-Lions, M. (2004). Adhesion mechanisms regulating the migration of monocytes. Nat. Rev. Immunol. 4: 432−444. DOI: 10.1038/nri1375. |
[102] | Sarma, J., Laan, C.A., Alam, S., et al. (2002). Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation 105: 2166−2171. DOI: 10.1161/01.CIR.0000015700.27754.6F. |
[103] | An, G., Wang, H., Tang, R., et al. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117: 3227−3237. DOI: 10.1161/CIRCULATIONAHA.108.771048. |
[104] | Huo, Y., Schober, A., Forlow, S.B., et al. (2003). Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9: 61−67. DOI: 10.1038/nm810. |
[105] | Nahrendorf, M., Swirski, F.K., Aikawa, E., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204: 3037−3047. DOI: 10.1084/jem.20070885. |
[106] | van der Laan, A.M., Ter Horst, E.N., Delewi, R., et al. (2014). Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35: 376−385. DOI: 10.1093/eurheartj/eht331. |
[107] | Honold, L., and Nahrendorf, M. (2018). Resident and monocyte-derived macrophages in cardiovascular disease. Circ. Res. 122: 113−127. DOI: 10.1161/CIRCRESAHA.117.311071. |
[108] | Dick, S.A., Macklin, J.A., Nejat, S., et al. (2019). Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20: 29−39. DOI: 10.1038/s41590-018-0272-2. |
[109] | Yan, X., Anzai, A., Katsumata, Y., et al. (2013). Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol. 62: 24−35. DOI: 10.1016/j.yjmcc.2013.04.023. |
[110] | Cao, D.J., Schiattarella, G.G., Villalobos, E., et al. (2018). Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation 137: 2613−2634. DOI: 10.1161/CIRCULATIONAHA.117.031046. |
[111] | Yan, X., Zhang, H., Fan, Q., et al. (2017). Dectin-2 deficiency modulates Th1 differentiation and improves wound healing after myocardial infarction. Circ. Res. 120: 1116−1129. DOI: 10.1161/CIRCRESAHA.116.310260. |
[112] | Fan, Q., Tao, R., Zhang, H., et al. (2019). Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation 139: 663−678. DOI: 10.1161/CIRCULATIONAHA.118.036044. |
[113] | Zhang, N., Song, Y., Huang, Z., et al. (2020). Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials 255: 120168. DOI: 10.1016/j.biomaterials.2020.120168. |
[114] | Ong, S.G., and Wu, J.C. (2015). Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circ. Res. 117: 7−9. DOI: 10.1161/CIRCRESAHA.115.306593. |
[115] | Kishore, R., and Khan, M. (2016). More than tiny sacks: Stem cell exosomes as cell-free modality for cardiac repair. Circ. Res. 118: 330−343. DOI: 10.1161/CIRCRESAHA.115.307654. |
[116] | Zhao, J., Li, X., Hu, J., et al. (2019). Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc. Res. 115: 1205−1216. DOI: 10.1093/cvr/cvz040. |
[117] | Xue, Y., Zeng, G., Cheng, J., et al. (2021). Engineered macrophage membrane-enveloped nanomedicine for ameliorating myocardial infarction in a mouse model. Bioeng. Transl. Med. 6: e10197. DOI: 10.1002/btm2.10197. |
[118] | Lesizza, P., Prosdocimo, G., Martinelli, V., et al. (2017). Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ. Res. 120: 1298−1304. DOI: 10.1161/CIRCRESAHA.116.309589. |
[119] | Yang, H., Qin, X., Wang, H., et al. (2019). An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano 13: 9880−9894. DOI: 10.1021/acsnano.9b03343. |
[120] | Summers, C., Rankin, S.M., Condliffe, A.M., et al. (2010). Neutrophil kinetics in health and disease. Trends. Immunol. 31: 318−324. DOI: 10.1016/j.it.2010.05.006. |
[121] | Horckmans, M., Ring, L., Duchene, J., et al. (2017). Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38: 187−197. DOI: 10.1093/eurheartj/ehw002. |
[122] | Han, D., Wang, F., Qiao, Z., et al. (2023). Neutrophil membrane-camouflaged nanoparticles alleviate inflammation and promote angiogenesis in ischemic myocardial injury. Bioact. Mater. 23: 369−382. DOI: 10.1016/j.bioactmat.2022.11.016. |
[123] | Melo, R.C., Liu, L., Xenakis, J.J., et al. (2013). Eosinophil-derived cytokines in health and disease: Unraveling novel mechanisms of selective secretion. Allergy 68: 274−284. DOI: 10.1111/all.12103. |
[124] | Gieseck, R.L., 3rd, Wilson, M.S., and Wynn, T.A. (2018). Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18: 62−76. DOI: 10.1038/nri.2017.90. |
[125] | Liu, J., Yang, C., Liu, T., et al. (2020). Eosinophils improve cardiac function after myocardial infarction. Nat. Commun. 11: 6396. DOI: 10.1038/s41467-020-19297-5. |
[126] | Kandikattu, H.K., Upparahalli Venkateshaiah, S., and Mishra, A. (2019). Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev. 47: 83−98. DOI: 10.1016/j.cytogfr.2019.05.003. |
[127] | Bird., L. (2004). Linking arms key role for IL-5. Nat. Rev. Immunol. 114: 427−437. DOI: 10.1038/nri1454. |
[128] | Chen, J., Song, Y., Wang, Q., et al. (2022). Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment. J. Nanobiotechnology 20: 218. DOI: 10.1186/s12951-022-01433-6. |
[129] | Quach, M.E., Chen, W., and Li, R. (2018). Mechanisms of platelet clearance and translation to improve platelet storage. Blood 131: 1512−1521. DOI: 10.1182/blood-2017-08-743229. |
[130] | van der Meijden, P.E.J., and Heemskerk, J.W.M. (2019). Platelet biology and functions: new concepts and clinical perspectives. Nat. Rev. Cardiol. 16: 166−179. DOI: 10.1038/s41569-018-0110-0. |
[131] | Benkel, T., Zimmermann, M., Zeiner, J., et al. (2022). How Carvedilol activates beta(2)-adrenoceptors. Nat. Commun. 13: 7109. DOI: 10.1038/s41467-022-34765-w. |
[132] | Chen, Z., Wu, Y., Duan, J., et al. (2019). Carvedilol exerts myocardial protection via regulation of AMPK-mTOR-dependent autophagy. Biomed. Pharmacother. 118: 109283. DOI: 10.1016/j.biopha.2019.109283. |
[133] | Hayashi, T., De Velasco, M.A., Saitou, Y., et al. (2010). Carvedilol protects tubular epithelial cells from ischemia-reperfusion injury by inhibiting oxidative stress. Int. J. Urol. 17: 989−995. DOI: 10.1111/j.1442-2042.2010.02644.x. |
[134] | Park, K.M., Teoh, J.P., Wang, Y., et al. (2016). Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 311: H371−383. DOI: 10.1152/ajpheart.00807.2015. |
[135] | Harima, M., Arumugam, S., Wen, J., et al. (2015). Effect of carvedilol against myocardial injury due to ischemia-reperfusion of the brain in rats. Exp. Mol. Pathol. 98: 558−562. DOI: 10.1016/j.yexmp.2015.04.001. |
[136] | Weng, X., Tan, H., Huang, Z., et al. (2022). Targeted delivery and ROS-responsive release of Resolvin D1 by platelet chimeric liposome ameliorates myocardial ischemia-reperfusion injury. J. Nanobiotechnology 20: 454. DOI: 10.1186/s12951-022-01652-x. |
[137] | Tan, H., Song, Y., Chen, J., et al. (2021). Platelet-like fusogenic liposome-mediated targeting delivery of miR-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury. Adv. Sci. (Weinh). 8: e2100787. DOI: 10.1002/advs.202100787. |
[138] | Serhan, C.N. (2014). Pro-resolving lipid mediators are leads for resolution physiology. Nature 510: 92−101. DOI: 10.1038/nature13479. |
[139] | Sun, Y.P., Oh, S.F., Uddin, J., et al. (2007). Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J. Biol. Chem. 282: 9323−9334. DOI: 10.1074/jbc.M609212200. |
[140] | Krishnamoorthy, S., Recchiuti, A., Chiang, N., et al. (2010). Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. U. S. A. 107: 1660−1665. DOI: 10.1073/pnas.0907342107. |
[141] | Gerlach, B.D., Marinello, M., Heinz, J., et al. (2020). Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 27: 525−539. DOI: 10.1038/s41418-019-0370-1. |
[142] | Sansbury, B.E., and Spite, M. (2016). Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology. Circ. Res. 119: 113−130. DOI: 10.1161/CIRCRESAHA.116.307308. |
[143] | Fredman, G., Ozcan, L., Spolitu, S., et al. (2014). Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl. Acad. Sci. U. S. A. 111: 14530−14535. DOI: 10.1073/pnas.1410851111. |
[144] | Wang, T., Zhou, T., Xu, M., et al. (2022). Platelet membrane-camouflaged nanoparticles carry microRNA inhibitor against myocardial ischaemia‒reperfusion injury. J. Nanobiotechnol. 20: 434. DOI: 10.1186/s12951-022-01639-8. |
[145] | Narasimhan, M., and Rajasekaran, N.S. (2016). Exercise, Nrf2 and antioxidant signaling in cardiac aging. Front. Physiol. 7: 241. DOI: 10.3389/fphys.2016.00241. |
[146] | Dinkova-Kostova, A.T., and Abramov, A.Y. (2015). The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 88: 179−188. DOI: 10.1016/j.freeradbiomed.2015.04.036. |
[147] | Chen, X.J., Ren, S.M., Dong, J.Z., et al. (2019). Ginkgo biloba extract-761 protects myocardium by regulating Akt/Nrf2 signal pathway. Drug Des. Devel. Ther. 13: 647−655. DOI: 10.2147/DDDT.S191537. |
[148] | Dehaini, D., Wei, X., Fang, R.H., et al. (2017). Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 29: 1606209. DOI: 10.1002/adma.201606209. |
Lu H., Wang Y., and Yu R. (2023). Immune cell membrane-coated nanoparticles for targeted myocardial ischemia/reperfusion injury therapy. The Innovation Medicine 1(1), 100015. https://doi.org/10.59717/j.xinn-med.2023.100015 |
Schematic for immune cell membrane-coated biomimetic nanoparticle fabrication and targeted treatment for MIRI
Classes of NPs for MIRI delivery
Synthesis and Targeting of Monocyte membrane–exosome fused membrane (Mon-Exos)
The therapeutic effect of neutrophil membrane-camouflaged nanoparticles in ischemic myocardial injury
The fabrication process of FNLM miR for cardiac reprogramming therapy
Targeted delivery of platelet chimeric liposomes
A novel delivery system for treating myocardial ischemia/reperfusion injury