Advanced optical assays utilize external and internal confinement strategies for disease biomarker detection.
Convergence of artificial intelligence (AI) with optical assays boosts diagnostic accuracy and prediction of disease paths.
Embracing biotechnology and information technology permits the revolution of biomarker discovery.
[1] | Cheung, A.H.K., Chow, C., and To, K.F. (2018). Latest development of liquid biopsy. J. Thorac. Dis. 10: S1645-S1651. DOI: 10.21037/jtd.2018.04.68. |
[2] | Miller, D.B., and O’Callaghan, J.P. (2015). Biomarkers of Parkinson’s disease: Present and future. Metabolism 64: S40-S46. DOI: 10.1016/j.metabol.2014.10.030. |
[3] | Counts, S.E., Ikonomovic, M.D., Mercado, N., et al. (2017). Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics 14: 35-53. DOI: 10.1007/s13311-016-0481-z. |
[4] | Gangi, S., Fletcher, J., Nathan, M.A., et al. (2004). Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: Retrospective review of CT scans obtained before diagnosis. Am. J. Roentgenol. 182: 897-903. DOI: 10.2214/ajr.182.4.1820897. |
[5] | Metintas, M., Ak, G., Dundar, E., et al. (2010). Medical thoracoscopy vs CT scan-guided Abrams pleural needle biopsy for diagnosis of patients with pleural effusions: A randomized, controlled trial. Chest 137: 1362-1368. DOI: 10.1378/chest.09-0884. |
[6] | Helpern, J.A., Jensen, J., Lee, S.P., et al. (2004). Quantitative MRI assessment of Alzheimer's disease. J. Mol. Neurosci. 24: 45-48. DOI: 10.1385/JMN:24:1:045. |
[7] | Morrow, M., Waters, J., and Morris, E. (2011). MRI for breast cancer screening, diagnosis, and treatment. Lancet 378: 1804-1811. DOI: 10.1016/S0140-6736(11)61350-0. |
[8] | Gao, Q., Asthana, A., Tong, T., et al. (2014). Multi-scale feature learning on pixels and super-pixels for seminal vesicles MRI segmentation. Medical Imaging 2014: Image Processing. Spie 9034 : 36-41. DOI: 10.1117/12.2043893. |
[9] | Braum, L.S., McGonagle, D., Bruns, A., et al. (2013). Characterisation of hand small joints arthropathy using high-resolution MRI—limited discrimination between osteoarthritis and psoriatic arthritis. Eur. radiol. 23: 1686-1693. DOI: 10.1007/s00330-012-2739-0. |
[10] | Zarovni, N., Corrado, A., Guazzi, P., et al. (2015). Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 87: 46-58. DOI: 10.1016/j.ymeth.2015.05.028. |
[11] | Chi, X., Huang, D., Zhao, Z., et al. (2012). Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33: 189-206. DOI: 10.1016/j.biomaterials.2011.09.032. |
[12] | Zhang, Z., and Chan, D. W. (2010). The Road from discovery to clinical diagnostics: Lessons learned from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic biomarkers. Cancer Epidem. Biomar. 19 : 2995-2999. DOI: 10.1158/1055-9965.EPI-10-0580. |
[13] | Pritchard, C.C., Cheng, H.H., and Tewari, M. (2012). MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet. 13: 358−369. DOI: 10.1038/nrg3198. |
[14] | St John, A., and Price, C.P. (2014). Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 35: 155−167. |
[15] | Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature 442: 368-373. DOI: 10.1038/nature05058. |
[16] | Han, F., Wang, T., Liu, G., et al. (2022). Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 34: e2109055. DOI: 10.1002/adma.202109055. |
[17] | Kaur, J., Jiang, C., and Liu, G. (2019). Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens. Bioelectron. 123: 85-100. DOI: 10.1016/j.bios.2018.06.018. |
[18] | Liu, G., Jiang, C., Lin, X., et al. (2021). Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges. View 2: 20210003. DOI: 10.1002/VIW.20210003. |
[19] | Fu, Y., Jiang, C., Tofaris, G.K., et al. (2020). Facile impedimetric analysis of neuronal exosome markers in Parkinson’s disease diagnostics. Anal. Chem. 92: 13647−13651. DOI: 10.1021/acs.analchem.0c03092. |
[20] | Chen, R., Mias, G.I., Li-Pook-Than, J., et al. (2012). Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148: 1293-1307. DOI: 10.1016/j.cell.2012.02.009. |
[21] | Sharafeldin, M., Yan, S., Jiang, C., et al. (2023). Alternating magnetic field-promoted nanoparticle mixing: the on-chip immunocapture of serum neuronal exosomes for Parkinson’s disease diagnostics. Anal. Chem. 95: 7906–7913. DOI: 10.1021/acs.analchem.3c00357. |
[22] | Jiang, C., Alam, M.T., Silva, S.M., et al. (2016). Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood. ACS Sens. 1: 1432-1438. DOI: 10.1021/acssensors.6b00532. |
[23] | Cao, C., Zhang, Y., Jiang, C., et al. (2017). Advances on aryldiazonium salt chemistry based interfacial fabrication for sensing applications. ACS Appl. Mater. Interfaces 9: 5031-5049. DOI: 10.1021/acsami.6b16108. |
[24] | Vasilieva, A., Yurina, L., Azarova, D.Y., et al. (2022). Development of a diagnostic approach based on the detection of post-translation modifications of fibrinogen associated with oxidative stress by the method of high efficiency liquid chromatography. J. Phys. Chem. B 16: 118−122. DOI: 10.1134/s1990793122010316. |
[25] | Chiki, A. (2020). Development of novel methods and tools to decipher the huntingtin post-translation modifications code. PhD thesis (EPFL). DOI: 10.5075/epfl-thesis-7537. |
[26] | Jiang, C., Hopfner, F., Katsikoudi, A., et al. (2020). Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg. Psychiatry 91: 720−729. DOI: 10.1136/jnnp-2019-322588. |
[27] | Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. PNAS 105: 10513-10518. DOI: 10.1073/pnas.0804549105. |
[28] | Weber, J.A., Baxter, D.H., Zhang, S., et al. (2010). The microRNA spectrum in 12 body fluids. Clin. Chem. 56: 1733-1741. DOI: 10.1373/clinchem.2010.147405. |
[29] | Chen, X., Ba, Y., Ma, L., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18: 997−1006. DOI: 10.1038/cr.2008.282. |
[30] | Lu, X., Hu, C., Jia, D., et al. (2021). Amplification-free and mix-and-read analysis of multiplexed microRNAs on a single plasmonic microbead. Nano Lett. 21: 6718-6724. DOI: 10.1021/acs.nanolett.1c02473. |
[31] | Wang, G., Tian, W., Liu, X., et al. (2020). New CRISPR-derived microRNA sensing mechanism based on Cas12a self-powered and rolling circle transcription-unleashed real-time crRNA recruiting. Anal. Chem. 92: 6702-6708. DOI: 10.1021/acs.analchem.0c00680. |
[32] | Goetzl, L., Merabova, N., Darbinian, N., et al. (2018). Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury. Ann. Clin. Transl. Neurol. 5: 4-10. DOI: 10.1002/acn3.499. |
[33] | Singh, K., Nalabotala, R., Koo, K.M., et al. (2021). Separation of distinct exosome subpopulations: Isolation and characterization approaches and their associated challenges. Analyst 146: 3731−3749. DOI: 10.1039/D1AN00024A. |
[34] | Picciolini, S., Gualerzi, A., Vanna, R., et al. (2018). Detection and characterization of different brain-derived subpopulations of plasma exosomes by surface plasmon resonance imaging. Anal. Chem. 90: 8873-8880. DOI: 10.1021/acs.analchem.8b00941. |
[35] | Yousif, G., Qadri, S., Haik, M., et al. (2021). Circulating exosomes of neuronal origin as potential early biomarkers for development of stroke. Mol. Diagn. Ther. 25: 163−180. DOI: 10.1007/s40291-020-00508-0. |
[36] | Yan, S., Jiang, C., Davis, J.J., et al. (2023). Methodological considerations in neuronal extracellular vesicle isolation for α-synuclein biomarkers. Brain 146 : e95-e97. DOI: 10.1093/brain/awad169. |
[37] | Kang, Y.T., Hadlock, T., Lo, T.W., et al. (2020). Dual-isolation and profiling of circulating tumor cells and cancer exosomes from blood samples with melanoma using immunoaffinity‐based microfluidic interfaces. Adv. Sci. 7: 2001581. DOI: 10.1002/advs.202001581. |
[38] | Słomka, A., Wang, B., Mocan, T., et al. (2022). Extracellular vesicles and circulating tumour cells-complementary liquid biopsies or standalone concepts? Theranostics 12: 5836. DOI: 10.7150/thno.73400. |
[39] | Schwarzenbach, H., Hoon, D.S., and Pantel, K.J. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11: 426-437. DOI: 10.1038/nrc3066. |
[40] | Jahr, S., Hentze, H., Englisch, S., et al. (2001). DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61: 1659−1665. |
[41] | Zhang, H.Y., Wang, S., and Fang, G.Z. (2011). Applications and recent developments of multi-analyte simultaneous analysis by enzyme-linked immunosorbent assays. J. Immunol. Methods 368: 1-23. DOI: 10.1016/j.jim.2011.02.011. |
[42] | Lequin, R.M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51: 2415-2418. DOI: 10.1373/clinchem.2005.051532. |
[43] | Steyer, J.A., and Almers, W.J.N.r.M.c.b. (2001). A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell Biol. 2: 268-275. DOI: 10.1038/35067069. |
[44] | Axelrod, D. (2001). Total internal reflection fluorescence microscopy in cell biology. Traffic 2: 764-774. DOI: 10.1034/j.1600-0854.2001.21104.x. |
[45] | Hartmann, F.J., and Bendall, S.C. (2020). Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 16: 87-99. DOI: 10.1038/s41584-019-0338-z. |
[46] | Robinson, J.P., Rajwa, B., Patsekin, V., et al. (2012). Computational analysis of high-throughput flow cytometry data. Expert Opin. Drug Discov. 7: 679−693. DOI: 10.1517/17460441.2012.693475. |
[47] | Lu, Y., Cheng, H., Li, G.C., et al. (2022). Dynamic cryptography through plasmon-enhanced fluorescence blinking. Adv. Funct. Mater. 32: 2201372. DOI: 10.1002/adfm.202201372. |
[48] | Zheng, Y., Jiang, C., Ng, S.H., et al. (2016). Unclonable plasmonic security labels achieved by shadow-mask-lithography-assisted self-assembly. Adv. Mater. 28: 2330−2336. DOI: 10.1002/adma.201505022. |
[49] | Su, Q., Jiang, C., Gou, D., et al. (2021). Surface plasmon-assisted fluorescence enhancing and quenching: from theory to application. ACS Appl. Bio Mater. 4: 4684−4705. DOI: 10.1021/acsabm.1c00320. |
[50] | Zong, H., Wang, X., Mu, X., et al. (2019). Plasmon-enhanced fluorescence resonance energy transfer. Chem. Rec. 19: 818-842. DOI: 10.1002/tcr.201800181. |
[51] | Min, X., Cao, B., Huang, S., et al. (2023). Bioorthogonal chemistry-based high-efficient quantum dots binding boosts the detection sensitivity of plasmon-enhanced fluorescence platform for immunoassay. Sens. Actuators B Chem. 382: 133516. DOI: 10.1016/j.snb.2023.133516. |
[52] | Luan, J., Seth, A., Gupta, R., et al. (2020). Ultrabright fluorescent nanoscale labels for the femtomolar detection of analytes with standard bioassays. Nat. Biomed. Eng. 4: 518-530. DOI: 10.1038/s41551-020-0547-4. |
[53] | Fan, Z., Jiang, C., Wang, Y., et al. (2022). Engineered extracellular vesicles as intelligent nanosystem for next-generation of nanomedicine. Nanoscale Horiz. 7: 682-714. DOI: 10.1039/D2NH00070A. |
[54] | Jiang, C., Fu, Y., Liu, G., et al. (2022). Multiplexed profiling of extracellular vesicles for biomarker development. Nano-Micro Lett. 14: 3. DOI: 10.1007/s40820-021-00753-w. |
[55] | Jiang, C., Hopfner, F., Berg, D., et al. (2021). Validation of α-synuclein in L1CAM-immunocaptured exosomes as a biomarker for the stratification of Parkinsonian syndromes. Mov. Disord. 36: 2663−2669. DOI: 10.1002/mds.28591. |
[56] | Fan, W., Ren, W., and Liu, C. (2023). Advances in optical counting and imaging of micro/nano single-entity reactors for biomolecular analysis. Anal. Bioanal. Chem. 415: 97-117. DOI: 10.1007/s00216-022-04395-8. |
[57] | Zheng, Y., Soeriyadi, A.H., Rosa, L., et al. (2015). Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat. Commun. 6: 8797. DOI: 10.1038/ncomms9797. |
[58] | Zheng, Y., Rosa, L., Thai, T., et al. (2015). Asymmetric gold nanodimer arrays: Electrostatic self-assembly and SERS activity. J. Mater. Chem. A 3: 240−249. DOI: 10.1039/C4TA05307A. |
[59] | Lu, Y., Chen, H., Cheng, H., et al. (2022). Plasmonic physical unclonable function labels based on tricolored silver nanoparticles: Implications for anticounterfeiting applications. ACS Appl. Nano Mater. 5: 9298−9305. DOI: 10.1021/acsanm.2c01622. |
[60] | Lu, Y., Cheng, H., Francis, P.S., et al. (2023). Nanomaterials and artificial intelligence in anti-counterfeiting. Intelligent Nanotechnology (Elsevier) 2023 : 361-398. DOI: 10.1016/B978-0-323-85796-3.00013-5. |
[61] | Zhao, J., Liu, C., Li, Y., et al. (2020). Thermophoretic detection of exosomal microRNAs by nanoflares. J. Am. Chem. Soc. 142: 4996-5001. DOI: 10.1021/jacs.9b13960. |
[62] | Wu, X., Zhao, H., Natalia, A., et al. (2020). Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6: eaba2556. DOI: 10.1126/sciadv.aba2556. |
[63] | Lu, Y., Chen, H., Cheng, H., et al. (2022). Plasmonic physical unclonable function labels based on tricolored silver nanoparticles: Implications for anticounterfeiting applications. ACS Appl. Nano Mater. 5: 9298−9305. DOI: 10.1021/acsanm.2c01622. |
[64] | Im, H., Shao, H., Park, Y.I., et al. (2014). Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32: 490-495. DOI: 10.1038/nbt.2886. |
[65] | Liang, K., Liu, F., Fan, J., et al. (2017). Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1: 0021. DOI: 10.1038/s41551-016-0021. |
[66] | Sriram, M., Markhali, B.P., Nicovich, P.R., et al. (2018) A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis. Biosens. Bioelectron. 117 : 530-536. DOI: 10.1016/j.bios.2018.06.066. |
[67] | Zhang, Y., Shuai, Z., Zhou, H., et al. (2018). Single-molecule analysis of microRNA and logic operations using a smart plasmonic Nanobiosensor. J. Am. Chem. Soc. 140: 3988-3993. DOI: 10.1021/jacs.7b12772. |
[68] | Lee, K., Fraser, K., Ghaddar, B., et al. (2018). Multiplexed profiling of single extracellular vesicles. ACS Nano 12: 494-503. DOI: 10.1021/acsnano.7b07060. |
[69] | Craw, P., and Balachandran, W. (2012). Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab Chip 12: 2469−2486. DOI: 10.1039/c2lc40100b. |
[70] | Zhao, Y., Xiang, J., Cheng, H., et al. (2021). Flexible photoelectrochemical biosensor for ultrasensitive microRNA detection based on concatenated multiplex signal amplification. Biosens. Bioelectron. 194: 113581. DOI: 10.1016/j.bios.2021.113581. |
[71] | Fu, R., and Xianyu, Y. (2023). Gold nanomaterials-implemented CRISPR-Cas systems for biosensing. Small 19 : e2300057. DOI: 10.1002/smll.202300057. |
[72] | Long, Y., Zhou, X., and Xing, D. (2011). Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology. Biosens. Bioelectron. 26: 2897-2904. DOI: 10.1016/j.bios.2010.11.034. |
[73] | Long, Y., Zhou, X., and Xing, D. (2013). An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification. Biosens. Bioelectron. 46: 102-107. DOI: 10.1016/j.bios.2013.02.003. |
[74] | Wu, C., Garden, P.M., and Walt, D.R. (2020). Ultrasensitive detection of attomolar protein concentrations by dropcast single molecule assays. J. Am. Chem. Soc. 142: 12314-12323. DOI: 10.1021/jacs.0c04331. |
[75] | Wang, W., Wu, J., Zhao, Z., et al. (2022). Ultrasensitive automatic detection of small molecules by membrane imaging of single molecule assays. ACS Appl. Mater. Interfaces 14: 54914-54923. DOI: 10.1021/acsami.2c15373. |
[76] | Jiang, C., Wang, G., Hein, R., et al. (2020). Antifouling strategies for selective in vitro and in vivo sensing. Chem. Rev. 120: 3852-3889. DOI: 10.1021/acs.chemrev.9b00739. |
[77] | Sun, J., Wang, G., Cheng, H., et al. (2022). An antifouling electrochemical aptasensor based on hyaluronic acid functionalized polydopamine for thrombin detection in human serum. Bioelectrochemistry 145: 108073. DOI: 10.1016/j.bioelechem.2022.108073. |
[78] | Yan, H., Wen, Y., Tian, Z., et al. (2023). A one-pot isothermal Cas12-based assay for the sensitive detection of microRNAs. Nat. Biomed. Eng. 7 : 1583-1601. DOI: 10.1038/s41551-023-01033-1. |
[79] | Zhu, Z., Guo, Y., Wang, C., et al. (2023). An ultra-sensitive one-pot RNA-templated DNA ligation rolling circle amplification-assisted CRISPR/Cas12a detector assay for rapid detection of SARS-CoV-2. Biosens. Bioelectron. 228: 115179. DOI: 10.1016/j.bios.2023.115179. |
[80] | Wu, J., Lin, Z., Zou, Z., et al. (2022). Identifying the phenotypes of tumor-derived extracellular vesicles using size-coded affinity microbeads. J. Am. Chem. Soc. 144: 23483-23491. DOI: 10.1021/jacs.2c10042. |
[81] | Akama, K., Iwanaga, N., Yamawaki, K., et al. (2019). Wash- and amplification-free digital immunoassay based on single-particle motion analysis. ACS Nano 13: 13116-13126. DOI: 10.1021/acsnano.9b05917. |
[82] | Zhou, Y., Zhao, W., Feng, Y., et al. (2023). Artificial intelligence-assisted digital immunoassay based on a programmable-particle-decoding technique for multitarget ultrasensitive detection. Anal. Chem. 95: 1589−1598. DOI: 10.1021/acs.analchem.2c04703. |
[83] | Gong, F., Yang, Y., Shan, X., et al. (2023). A microchamber-free and enzyme-free digital assay based on ultrabright fluorescent microspheres. Sens. Actuators B Chem. 380: 133358. DOI: 10.1016/j.snb.2023.133358. |
[84] | Zhang, J., Li, Y., Chai, F., et al. (2022). Ultrasensitive point-of-care biochemical sensor based on metal-AIEgen frameworks. Sci. Adv. 8: eabo1874. DOI: 10.1126/sciadv.abo1874. |
[85] | Wang, X., and Yan, X.P. (2018). Analyte-driven self-assembly of graphene oxide sheets onto hydroxycamptothecin-functionalized upconversion nanoparticles for the determination of type I topoisomerases in cell extracts. Anal. Bioanal. Chem. 410: 6761-6769. DOI: 10.1007/s00216-018-1234-0. |
[86] | Li, Y.F., Lin, Z.Z., Hong, C.Y., et al. (2021). Histamine detection in fish samples based on indirect competitive ELISA method using iron-cobalt co-doped carbon dots labeled histamine antibody. Food Chem. 345: 128812. DOI: 10.1016/j.foodchem.2020.128812. |
[87] | Yang, H., Liu, Y., Guo, Z., et al. (2019). Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 10: 1789. DOI: 10.1038/s41467-019-09830-6. |
[88] | Sun, C., Liu, L., Pérez, L., et al. (2022). Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy. Nat. Biomed. Eng. 6: 1004-1012. DOI: 10.1038/s41551-022-00864-8. |
[89] | Tian, T., Shu, B., Jiang, Y., et al. (2021). An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15: 1167-1178. DOI: 10.1021/acsnano.0c08165. |
[90] | Mou, L., Hong, H., Xu, X., et al. (2021). Digital hybridization human papillomavirus assay with attomolar sensitivity without amplification. ACS Nano 15: 13077-13084. DOI: 10.1021/acsnano.1c02311. |
[91] | Liu, C., Xu, X., Li, B., et al. (2018). Single-exosome-counting immunoassays for cancer diagnostics. Nano Lett. 18: 4226-4232. DOI: 10.1021/acs.nanolett.8b01184. |
[92] | Yelleswarapu, V., Buser, J.R., Haber, M., et al. (2019). Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins. PNAS 116: 4489-4495. DOI: 10.1073/pnas.1814110116. |
[93] | Chen, Z.P., Yang, P., Yang, Z.Z., et al. (2022). One-step digital droplet auto-catalytic nucleic acid amplification with high-throughput fluorescence imaging and droplet tracking computation. Anal. Chem. 94: 9166-9175. DOI: 10.1021/acs.analchem.2c01754. |
[94] | Wang, Y., Shah, V., Lu, A., et al. (2021). Counting of enzymatically amplified affinity reactions in hydrogel particle-templated drops. Lab Chip 21 : 3438-3448. DOI: 10.1039/d1lc00344e. |
[95] | Song, H., Chen, D.L., and Ismagilov, R.F. (2006). Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. Engl. 45: 7336−7356. DOI: 10.1002/anie.200601554. |
[96] | Garstecki, P., Fuerstman, M.J., Stone, H.A., et al. (2006). Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6: 437-446. DOI: 10.1039/b510841a. |
[97] | Rissin, D.M., Kan, C.W., Campbell, T.G., et al. (2010). Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28: 595−599. DOI: 10.1038/nbt.1641. |
[98] | Leirs, K., Dal Dosso, F., Perez-Ruiz, E., et al. (2022). Bridging the gap between digital assays and point-of-care testing: Automated, low cost, and ultrasensitive detection of thyroid stimulating hormone. Anal. Chem. 94: 8919−8927. DOI: 10.1021/acs.analchem.2c00480. |
[99] | Sun, J.J., Hu, J.M., Gou, T., et al. (2019). Power-free polydimethylsiloxane femtoliter-sized arrays for bead-based digital immunoassays. Biosens. Bioelectron. 139: 111339. DOI: 10.1016/j.bios.2019.111339. |
[100] | Li, Q., Bencherif, S.A., and Su, M. (2021). Edge-enhanced microwell immunoassay for highly sensitive protein detection. Anal. Chem. 93: 10292-10300. DOI: 10.1021/acs.analchem.1c01754. |
[101] | Song, Y., Zhao, J., Cai, T., et al. (2021). Machine learning-based cytokine microarray digital immunoassay analysis. Biosens. Bioelectron. 180: 113088. DOI: 10.1016/j.bios.2021.113088. |
[102] | Jeng, M.-J., Sharma, M., Sharma, L., et al. (2019). Raman spectroscopy analysis for optical diagnosis of oral cancer detection. J. Clin. Med. 8: 1313, DOI: 10.3390/jcm8091313. |
[103] | Alkhuder, K. (2023). Raman scattering-based optical sensing of chronic liver diseases. Photodiagn. Photodyn. Ther. 42: 103505. DOI: 10.1016/j.pdpdt.2023.103505. |
[104] | Lü, G., Zheng, X., Lü, X., et al. (2021). Label-free detection of echinococcosis and liver cirrhosis based on serum Raman spectroscopy combined with multivariate analysis. Photodiagn. Photodyn. Ther. 33: 102164. DOI: 10.1016/j.pdpdt.2020.102164. |
[105] | Wang, C., Zhang, T., Wang, P., et al. (2021). Bone metabolic biomarker-based diagnosis of type 2 diabetes osteoporosis by support vector machine. Ann. Transl. Med. 9 : 316. DOI: 10.21037/atm-20-3388. |
[106] | Eke, C.S., Jammeh, E., Li, X., et al. (2020). Early detection of Alzheimer's disease with blood plasma proteins using support vector machines. IEEE J. Biomed. Health. Inf. 25: 218−226. DOI: 10.1109/JBHI.2020.2984355. |
[107] | Javeed, A., Zhou, S., Yongjian, L., et al. (2019). An intelligent learning system based on random search algorithm and optimized random forest model for improved heart disease detection. IEEE Access 7: 180235-180243. DOI: 10.1109/ACCESS.2019.2952107. |
[108] | Wang, S., Wang, Y., Wang, D., et al. (2020). An improved random forest-based rule extraction method for breast cancer diagnosis. Appl. Soft Comput. 86: 105941. DOI: 10.1016/j.asoc.2019.105941. |
[109] | Kumar, A., and Sodhi, S.S. (2020). Comparative analysis of gaussian filter, median filter and denoise autoenocoder. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). IEEE 2020 : 45-51. DOI: 10.23919/INDIACom49435.2020.9083712. |
[110] | Noor, A., Zhao, Y., Khan, R., et al. (2020). Median filters combined with denoising convolutional neural network for Gaussian and impulse noises. Multimed. Tools Appl. 79: 18553−18568. DOI: 10.1007/s11042-020-08657-4. |
[111] | Feng, N., Wang, S., Wei, L., et al. (2023). Artificial intelligence-based imaging transcoding system for multiplex screening of viable foodborne pathogens. Anal. Chem. 95: 8649-8659. DOI: 10.1021/acs.analchem.3c01142. |
[112] | Zhang, F., Kaufman, H.L., Deng, Y., et al. (2013). Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood. BMC Med. Genomics 6: 1−10, DOI: 10.1186/1755-8794-6-1. |
[113] | Zheng, R., Su, R., Xing, F., et al. (2022). Metabolic-dysregulation-based iEESI-MS reveals potential biomarkers associated with early-stage and progressive colorectal cancer. Anal. Chem. 94: 11821-11830. DOI: 10.1021/acs.analchem.2c02072. |
[114] | Li, Y., Pan, J., Zhou, N., et al. (2021). A random forest model predicts responses to infliximab in Crohn’s disease based on clinical and serological parameters. Scand. J. Gastroenterol. 56: 1030−1039. DOI: 10.1080/00365521.2021.1939411. |
[115] | Wager, S., and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113: 1228-1242. DOI: 10.1080/01621459.2017.1319839. |
[116] | Tabib, S., and Larocque, D. (2020). Non-parametric individual treatment effect estimation for survival data with random forests. Bioinform. 36: 629-636. DOI: 10.1093/bioinformatics/btz602. |
[117] | Waljee, A.K., Joyce, J.C., Wang, S., et al. (2010). Algorithms outperform metabolite tests in predicting response of patients with inflammatory bowel disease to thiopurines. CGH 8: 143−150. DOI: 10.1016/j.cgh.2009.09.031. |
[118] | Ellahham, S. (2020). Artificial intelligence: The future for diabetes care. AM. J. Med. 133: 895−900. DOI: 10.1016/j.amjmed.2020.03.033. |
[119] | Blanco, F.C., Bigi, F., and Soria, M.A. (2014). Identification of potential biomarkers of disease progression in bovine tuberculosis. Vet. Immunol. Immunopathol. 160: 177-183. DOI: 10.1016/j.vetimm.2014.04.008. |
[120] | Rizk-Jackson, A., Stoffers, D., Sheldon, S., et al. (2011). Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington's disease using machine learning techniques. NeuroImage 56: 788-796. DOI: 10.1016/j.neuroimage.2010.04.273. |
[121] | Lin, C.-H., Chiu, S.-I., Chen, T.-F., et al. (2020). Classifications of neurodegenerative disorders using a multiplex blood biomarkers-based machine learning model. Int. J. Mol. Sci. 21: 6914. DOI: 10.3390/ijms21186914. |
[122] | Ghiti Moghadam, M., Lamers-Karnebeek, F.B., Vonkeman, H.E., et al. (2018). Multi-biomarker disease activity score as a predictor of disease relapse in patients with rheumatoid arthritis stopping TNF inhibitor treatment. PLoS One 13: e0192425. DOI: 10.1371/journal.pone.0192425. |
[123] | Diao, X., Li, X., Hou, S., et al. (2023). Machine learning-based label-free SERS profiling of exosomes for accurate fuzzy diagnosis of cancer and dynamic monitoring of drug therapeutic processes. Anal. Chem. 19: 7552-−7559. DOI: 10.1021/acs.analchem.3c00026. |
[124] | Guinney, J., Dienstmann, R., Wang, X., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nat. Med. 21: 1350-1356. DOI: 10.1038/nm.3967. |
[125] | Menyhárt, O., and Győrffy, B. (2021). Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 19: 949-960. DOI: 10.1016/j.csbj.2021.01.009. |
[126] | Khater, I.M., Nabi, I.R., and Hamarneh, G. (2020). A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns 1: 100038. DOI: 10.1016/j.patter.2020.100038. |
[127] | Scalisi, S., Pisignano, D., Cella Zanacchi, F. (2023). Single-molecule localization microscopy goes quantitative. Microsc. Res. Tech. 86: 494-504. DOI: 10.1002/jemt.24281. |
[128] | Mahmoudpour M, Jouyban A, Soleymani J, et al. (2022) Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv. Colloid Interface Sci. 302, 102637. |
[129] | Dou, B., Zhu, Z., Merkurjev, E., et al. (2023). Machine learning methods for small data challenges in molecular science. Chem. Rev. 123: 8736-8780. DOI: 10.1021/acs.chemrev.3c00189. |
[130] | Fan, W., Dong, Y., Ren, W., and Liu, C. (2023). Single microentity analysis-based ultrasensitive bioassays: Recent advances, applications, and perspectives. TrAC, Trends Anal. Chem. 162: 117035. DOI: 10.1016/j.trac.2023.117035. |
[131] | Wang, F., Li, Y., Han, Y., et al. (2019). Single-particle enzyme activity assay with spectral-resolved dark-field optical microscopy. Anal. Chem. 91: 6329-6339. DOI: 10.1021/acs.analchem.9b01300. |
[132] | Cohen, L., Cui, N., Cai, Y., et al. (2020). Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano 14: 9491-9501. DOI: 10.1021/acsnano.0c02378. |
[133] | Schmidt, K., Hageneder, S., Lechner, B., et al. (2022). Rolling circle amplification tailored for plasmonic biosensors: from ensemble to single-molecule detection. ACS Appl. Mater. Interfaces 14: 55017-55027. DOI: 10.1021/acsami.2c14500. |
[134] | Chen, D., Zhang, X., Zhu, L., et al. (2022). All on size-coded single bead set: a modular enrich-amplify-amplify strategy for attomolar level multi-immunoassay. Chem. Sci. 13: 3501-3506. DOI: 10.1039/D1SC07048G. |
[135] | You, M., Peng, P., Xue, Z., et al. (2021). A fast and ultrasensitive ELISA based on rolling circle amplification. Analyst 146: 2871-2877. DOI: 10.1039/D1AN00355K. |
[136] | Cui, J.Q., Liu, F.X., Park, H., et al. (2022). Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection. Biosens. Bioelectron. 202: 114019. DOI: 10.1016/j.bios.2022.114019. |
[137] | Xu, S., Wu, J., Chen, C., et al. (2021). A micro-chamber free digital biodetection method via the “sphere-labeled-sphere” strategy. Sens. Actuators B: Chem. 337: 129794. DOI: 10.1016/j.snb.2021.129794. |
[138] | Wang, F., Han, Y., Wang, S., et al. (2019). Single-particle LRET aptasensor for the sensitive detection of aflatoxin B(1) with upconversion nanoparticles. Anal. Chem. 91: 11856-11863. DOI: 10.1021/acs.analchem.9b02599. |
[139] | Farka, Z., Mickert, M.J., Hlavacek, A., et al. (2017). Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal. Chem. 89: 11825-11830. DOI: 10.1021/acs.analchem.7b03542. |
[140] | Guan, Z., Zou, Y., Zhang, M., et al. (2014). A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. Biomicrofluidics 8: 014110. DOI: 10.1063/1.4866766. |
[141] | Zhou, W. (2018). Development of immunomagnetic droplet-based digital immuno-PCR for the quantification of prostate specific antigen. Anal. Methods 10: 3690-3695. DOI: 10.1039/C8AY00921J. |
[142] | Maley, A.M., Garden, P.M., and Walt, D.R. (2020). Simplified digital enzyme-linked immunosorbent assay using tyramide signal amplification and fibrin hydrogels. ACS Sens. 5: 3037-3042. DOI: 10.1021/acssensors.0c01661. |
[143] | Hu, J., Gou, T., Wu, W., et al. (2019). Proximity ligation assays for precise quantification of femtomolar proteins in single cells using self-priming microfluidic dPCR chip. Anal. Chim. Acta 1076: 118-124. DOI: 10.1016/j.aca.2019.05.034. |
[144] | Morasso, C., Ricciardi, A., Sproviero, D., et al. (2022). Fast quantification of extracellular vesicles levels in early breast cancer patients by Single Molecule Detection Array (SiMoA). Breast Cancer Res Treat. 192: 65-74. DOI: 10.1007/s10549-021-06474-3. |
Zhang W., Lu Y., Su C., et al., (2023). Confinement-guided ultrasensitive optical assay with artificial intelligence for disease diagnostics. The Innovation Medicine 1(2), 100023. https://doi.org/10.59717/j.xinn-med.2023.100023 |
Schematic illustration of confinement based ultrasensitive optical detection.
Ultrasensitive plasmonic detection strategies
Strategies utilizing plasmonic coupled fluorescence
Various single-molecule detection methods based on nucleic acid amplification
Various single-molecule detection methods based on microspheres
Droplet-based strategies for single-molecule detection
Microwell confinement-based detection platforms
The general process of AI techniques for data interpretation.
AI-assisted strategies for disease diagnosis