Gasotransmitter delivery for bone diseases and regeneration
Yaoyao Xu, Yanyue Li, Ang Gao, Paul K. Chu, and Huaiyu Wang

Correspondence: ang.gao1@siat.ac.cn (A. G.); paul.chu@cityu.edu.hk (P. C.); hy.wang1@siat.ac.cn (H. W.)

Received: April 28, 2023; Accepted: May 11, 2023; Published Online: June 2, 2023; https://doi.org/10.59717/j.xinn-life.2023.100015
© 2023 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

GRAPHICAL ABSTRACT

PUBLIC SUMMARY
- Endogenous gaseous signaling molecules (gasotransmitters) include nitric oxide, carbon monoxide, and hydrogen sulfide.
- These gasotransmitters have gained significant interest due to their unique properties.
- Various donors and delivery platforms have been developed for controlled and targeted delivery of these gasotransmitters.
- Therapeutic application of these gasotransmitters in treating bone diseases are reviewed.
Endogenous gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H$_2$S), collectively called gasotransmitters, regulate various physiological and pathophysiological processes. Thus, they offer significant advantages over traditional small-molecule drugs in treating bone diseases. However, their clinical use is limited by their gaseous nature, extensive reactivity, and short half-life. Also, these gasotransmitters behave as a double-edged sword, providing therapeutic effects at physiological concentrations while exhibiting acute toxicity at high concentrations. Therefore, controlled, sustained, and even targeted delivery of gasotransmitters is highly desirable. In this review, we emphasize recent significant advances in gasotransmitter delivery materials, including the gas-releasing molecules and their delivery platforms. We further focus on the therapeutic application of these gasotransmitters in treating bone diseases, including implant-associate infection, immunomodulation, bone regeneration, osteoporosis, and arthritis, aiming to provide references for the development of novel therapeutic strategies for bone diseases.

INTRODUCTION

Bone diseases encompass a wide range of skeletal-related disorders, including osteoporosis, osteoarthritis (OA), rheumatoid arthritis (RA), and bone defects associated with tumors or infections. With the growing number of patients in an aging society, the medical and socioeconomic impacts of bone diseases will continue to rise. For instance, osteoporotic fractures can cause significant morbidity, leading to a loss of productivity and reduced quality of life for many individuals. The mortality rate in the first year following a hip fracture is 20–30%, and over half of those who experience a hip fracture are unable to return to their previous lifestyle. As for bone defects, although bone tissue has an intrinsic capacity for repair, there are cases where bone healing is either impaired or insufficient, such as in diabetic or osteoporotic patients. Osteoarthritis is another age-related condition that will become more prevalent as the population ages. Consequently, treating bone diseases poses significant challenges in clinical practice.

Limited effective treatments are available for some of the most common bone diseases such as OA and RA. On the other hand, while current osteoporosis therapies using small-molecule drugs like bisphosphonates have proven successful in preventing osteoporotic fractures, concerns have been raised regarding their long-term safety, such as osteonecrosis of the jaw and a painful condition with exposed bone in the oral cavity. The repair of bone defects usually utilizes various artificial implantable scaffolds, whereas the integration between the orthopedic implants and the native bone tissue is far from satisfying. Therefore, there is an urgent need to develop new therapy strategy for safe and efficient clinical treatments of bone diseases.

Gas therapy, which involves the use of gasotransmitters to treat diseases, has gained significant interest as a promising therapeutic approach for bone diseases, due to its high therapeutic efficiency, low systemic side effects, and biosafety. To date, three gasotransmitters have been identified: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H$_2$S). These gasotransmitters have revolutionized conventional ideas of intercellular communication. They play crucial roles in vasodilation, neurotransmission, and anti-inflammatory and antioxidative responses. The regulatory effects of gasotransmitters in various physiological functions open up the possibility to deliver them exogenously as therapeutic agents. Therefore, these endogenous gas signaling molecules offer significant advantages over traditional small-molecule drugs for the treatment of bone diseases.

The in vivo therapeutic application of these gasotransmitters through systemic administration is challenging due to their high diffusion rates, low solubility, and rapid systemic clearance. Additionally, the therapeutic effects of these gases depend on factors such as concentration, diffusion velocity, location, and retention at the lesion site. These gasotransmitters behave as a double-edged sword, exhibiting acute toxicity at high concentrations while providing therapeutic effects at physiological concentrations. To improve the efficiency of gas therapy, it is crucial to utilize carriers to deliver the gases. Biocompatible materials that deliver gases in a sustained and controlled manner can be used as a single therapeutic method, or synergized with other strategies such as photothermal therapy. To date, many kinds of materials are utilized to deliver gasotransmitters, mainly including various multifunctional polymer/organic/inorganic carriers with good biocompatibility, such as micelle, peptide amphiphiles, poly (lactic-co-glycolic acid) (PLGA), silica/mesoporous silica, metal-organic framework (MOF), Prussian blue (PB) nanoparticles, graphene, and upconversion nanoparticles (UCNP).

In this review, we firstly introduce the physiological roles and therapeutic mechanisms of NO, CO, and H$_2$S. Then the recent progress on the gas delivery materials, including gas-releasing donors, and delivery platforms is reviewed. Following is the discuss on the gas delivery materials for bone diseases, including the anti-infection application, immunomodulation, bone regeneration, osteoporosis, and arthritis, aiming to provide references for the development of novel therapeutic strategies for bone diseases.

PHYSIOLOGICAL MECHANISMS

NO

As first identified gasotransmitter, NO has been extensively studied and documented for its significant role in regulating various physiological processes in cardiovascular system, nervous system, and immune system. Endogenous NO is produced enzymatically from L-Arginine by three isoforms of nitric oxide synthase (NOS): endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). NO can also be generated non-enzymatically through reduction of nitrite and decomposition of S-nitrosothiols. The eNOS and nNOS act as constitutively expressed protein mainly in vascular endothelial cells and neurons, respectively. Unlike eNOS and nNOS, which are tightly regulated and dependent on calcium fluxes entry into the cells, the iNOS is less susceptible to feedback inhibition by NO. It predominates in immune cells to produce large amounts of NO that aids in the host defense mechanisms in response to extracellular stimuli, such as pro-inflammatory cytokines (IL-1, TNF-α) and bacterial lipopolysaccharide (LPS) endotoxin.

NO is an excellent messenger molecule due to its highly reactive and diffusible properties. This short-lived signaling molecule operates across a wide physiological concentration ranging from subnanomolar levels (associated with cell survival signaling) to micromolar levels (linked to cytotoxic effects and apoptotic signaling) in different tissues. The regulation role of NO is concentration-dependent. At low concentrations, NO produced by endothelial cells and neurons plays a vital role in regulating processes such as vasodilation, angiogenesis, and neurotransmission. The primary function of NO is identified as endothelial-derived relaxation factor (EDRF), which plays a critical role in maintaining proper vascular tone and preventing leukocytes and platelets from adhering to the vascular wall. In addition, NO has been proven to enhance endothelization and promote angiogenesis, which is the indispensable process for the regeneration of damaged tissues. In its classical physiological pathway, NO reacts to the heme group of the soluble guanylate cyclase (sGC), resulting in generation of cyclic guanosine monophosphate (cGMP) and following activation of protein kinase G (PKG).
NO also reacts with thiol group of a cysteine residues to form S-nitrosothiol (RSNOs). This reaction called S-nitrosylation has been shown to modify the activity of proteins involved in cellular regulatory mechanisms. Conversely, this radical gas produced at higher concentrations from macrophages and neutrophils react with oxygen or superoxide spontaneously, producing reactive nitrogen and oxygen intermediates. These resultant reactive nitrogen oxide species (RNOS) cause oxidative and nitrosative damage to pathogens by modifying DNA, inhibiting enzyme function, and inducing lipid peroxidation, contributing to the antimicrobial action of NO. On the other hand, excessive NO also exerts pro-inflammatory effects by activating nuclear factor kappa B (NF-κB) and promoting oxidative stress.

CO

The colorless, odorless, and tasteless gas CO has long been regarded as a “silent killer” due to its higher binding affinity (approximately 230-fold) for hemoglobin (Hb) than that of oxygen. It competitively displaces oxygen to form carboxyhemoglobin (COHb), thus reducing the oxygen-carrying capacity of the blood, leading to tissue hypoxia and eventually death. Nowadays CO has been demonstrated to participate in multifaceted regulation of biological activities and has important cytoprotective and homeostatic properties. The endogenous production of CO is mediated by the activity of heme oxygenases (HO), including both inducible (HO-1) and constitutive (HO-2 and HO-3) enzymes, which catalyze the degradation of heme, yielding biliverdin, Fe²⁺ and biological CO. As an inert gaseous molecule, CO is chemically much more stable under physiological conditions than other signaling molecules, (e.g. NO and H₂S), and it also is freely diffusible and traverses all membranes. The typical biological reactivity of CO is exemplified by its interaction with transition metals, which are present in structural and functional proteins. For example, the binding of CO to heme alters the conformation and thus the activity of various heme-containing proteins, such as sGC, heme-containing potassium channels, cytochrome c oxidase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and NOS. These interactions endow the CO many potential pathophysiological effects, including modulation of vasomotor tone, anti-inflammation, redox control and cell apoptosis/proliferation. CO shares similar vasoactive actions with NO involving the stimulation of the sGC-cGMP pathway. It also serves as a significant regulator of intracellular ROS production through interaction with NADPH oxidase and cytochrome c oxidase, which is linked with redox homeostasis. The anti-inflammatory effects of CO stem from its direct interaction with proteins participating in mitogen-activated protein kinases (MAPKs) signal transduction. The pro-apoptosis and pro-proliferation effects of CO mainly depend on its concentrations, which show different metabolic effects on mitochondria, the energy powerhouse of cells. The inhibition of the respiratory chain in bacteria and production of adenosine triphosphate (ATP) contributes the antimicrobial activity of CO.

H₂S

H₂S, a colorless gas with a smell of rotten eggs, was considered as a highly toxic gas molecule. Now it has been identified as the third endogenous gasotransmitter following the NO and CO, playing an important role in many physiological processes. H₂S is a lipophilic compound that easily permeates cell membranes without using specific transporters. The physiological effects of H₂S are closely correlated with its concentrations. At physiological concentration, H₂S exhibits cytoprotective effects that could protect cells and tissues from harmful oxidative injuries, while prolonged and high-dose exposure disrupts normal biological processes, leading to cell dysfunction and apoptosis. Dissolved gaseous H₂S is in a dynamic equilibrium under physiological conditions (pH = 7.4, 37 °C), with hydrosulfide anions (HS⁻) constituting about 80% of the speciation, neutral H₂S about 20%, and dianionic S²⁻ less than 1%. These sulfur compounds are named as reactive sulfur species (RSS) that arguably contribute to most of the documented biological effects of H₂S. Generally, the term “H₂S” refers to the equilibrium mixture of these total RSS. The protonation states of H₂S and HS⁻ confer water-solubility and lipophilicity, respectively. HS⁻ exhibits high nucleophilicity and can interact with various electrophilic targets within cells, including reactive sulfur, oxygen, and nitrogen species. These protonation states possess distinct metal-ligation and redox properties. The biological sulfur redox landscape is intricate, spanning from -2 in H₂S to +6 in SO₄²⁻, indicating that H₂S/HS⁻ can be readily oxidized to other biologically significant sulfur species including persulfide and polysulfide.

Endogenous H₂S can be generated through enzymatic and nonenzymatic pathways. In the enzymatic routine, the production of H₂S is directly catalyzed by cystathionine-lyase (CST) and cystathionine-β-synthase (CBS), or indirectly by desulfhydration catalyzed by 3-mercaptopyrurate sulfur-transferase (3-MST) with the help of cysteine aminotransferase (CAT). CBS is mainly expressed in the liver and the central nervous system, while CSE is found primarily in the cardiovascular system. Both of them are distributed in the cytosol, and 3-MST is located predominantly in the mitochondria. The sulfur atom integrated into H₂S originates from the sulfhydryl group of either homocysteine or L-cysteine. Both CBS and CAT are pyridoxal 5'-phosphate-dependent enzymes that directly catalyze the conversion of L-cysteine into H₂S. CBS also catalyzes the condensation of homocysteine and L-serine to form L-cystathionine with the release of water. In the presence of L-cysteine, CBS performs the same β-replacement reaction but releases H₂S instead of water. In addition, CSE catalyzes the breakdown of cystathionine to L-cysteine, which supplies more H₂S sources. In mitochondria, CAT utilizes L-cysteine and α-ketoglutarate to generate 3-mercaptopyrurate, which in turn is catalyzed to pyruvate and H₂S by 3-MST. In addition, the 3-MST pathway also accounts for a small portion of H₂S production. It involves the reduction of elemental sulfur to H₂S using reducing equivalents obtained from the oxidation of glucose. Not only glucose, other electron carriers such as NADH and NAPDH may also help sulfur reduction. Moreover, another non-enzymatic H₂S production in vivo has also been reported through a reaction specific for the cysteine serving as substrate and coordinated catalysis by pyridoxal phosphate, and iron under physiological conditions.

Endogenous H₂S serves as a versatile physiological mediator, exhibiting a wide range of properties, including anti-inflammatory, neuromodulating, cardioprotective, antioxidant defense, vasodilatory, pro-angiogenic, and cytoprotective effects. H₂S is known to exert its biological effects through three primary routes: interactions with metal centers in protein, scavenging reactive oxygen species (ROS)/reactive nitrogen species (RNS), and S-persulfidation. Direct actions of H₂S on metal centers and the oxidized thiol products constitutes the chemical mechanisms of the physiological effects of H₂S. In addition, H₂S is considered an endogenous reducing agent produced in response to oxidative stress. Evidence has shown that H₂S is a highly reactive molecule that readily reacts with ROS and RNS. Moreover, S-persulfidation of proteins is widely accepted as the key process through which H₂S operates in a signaling capacity. S-persulfidation is the process in which a thiol (R-SH) is converted into a persulhydryl (R-S-SH). This post-translational modification process alters the structure and functionality of target proteins. Numerous proteins have been identified to be the targets of H₂S for S-sulfhydration modification, and these proteins mediates the biological effects of H₂S in regulating cell behaviors.

MATERIALS FOR GAS DELIVERY

The simplest way to administer therapeutic gases is through inhalation, which has been widely used in clinical practice. However, the effectiveness of these gases greatly depends on their concentration at the target site. Due to their low solubility in blood and short half-lives, the therapeutic potential of these gases through inhalation is limited. One solution is the use of chemical donors which act as gas releasing molecules. Systemic administration of these donors are prone to nonspecific distribution, and small molecule donors also suffer from the burst release, rapid clearance, and even acute toxicity. In order to realize the accurate gas release and efficient gas delivery for the clinical translation of gas therapy, these gas releasing molecules have been encapsulated into a range of multifunctional nanocarriers (e.g. polymers, peptides, proteins, micelles, liposomes, mesoporous silica, organosilica, and inorganic multifunctional nanoparticles), which act as...
physical barriers to extend the half-lives of gases, and to realize targeted and controlled delivery of gases for various biomedical applications. This section will firstly introduce the recent advances in design of gas-releasing molecules and then summarize the materials and coatings for therapeutic gas delivery.

NO donors and NO delivery platforms

NO donors. Various NO donors have been designed to deliver exogenous NO into biological entities, including organic nitrates (RONO₂), nitrites (RONO), N-diazениumdiolate (NONOate), S-nitrosothiol (RSNO), and metal–NO complexes (Figure 1A).43,44

![Figure 1](https://www.the-innovation.org/life/Assets/Any/46019353/figure1.png)
Organic nitrates and nitrates, such as nitroglycerin, isosorbide mononitrate, and amyl nitrite, are the oldest category of NO donors and have been widely used as vasodilators for the treatment of angina pectoris. Among these, nitroglycerin is the most commonly used organic nitrate for clinically treating hypertension and angina pain.44 Nitroglycerin releases one mole equivalent of NO upon bioactivation by mitochondrial aldehyde dehydrogenase (mtALDH).

NONOate is one of the most investigated NO donors synthesized by reactions between primary or secondary amines with NO under high pressure. It spontaneously generates two mole equivalents of NO per mole of donor via hydrolysis at physiological pH. The release of NO can also be triggered by different stimuli, including thermal, photochemical, or enzymatic reactions. Although NONOates donors face the drawbacks of burst NO release with short NO release duration, their ease of modification and relatively high thermal stability make them a promising candidate for the development of NO-releasing biomaterials.47

S-nitrosothiol (referred to as RSNOs), consisting of molecular bonding between thiol and nitric oxide, is another category of prominent and diverse NO donors.48 Being different from NONOate, RNOS is endogenously exist in both tissue and blood, include S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO), S-nitrosoalbumin (AlbSN0), and S-nitrosohemoglobin (HbSNO). It can also be synthesized chemically by reacting thiols with nitric acid. The release of NO from RSNOs can be induced by multiple pathways, including (1) Cu2+ mediated catalytic decomposition, (2) redox reaction with ascorbate, (3) light or thermal-triggered homolytic cleavage of S–NO bond, and (4) enzymemediated release.49,50 GSNO and S-nitroso-N-acetylpenicillamine (SNAP) are two widely used RSNOs that have been intensively studied in biomedical applications. GSNO are found endogenously in mammalian systems and have intrinsically low toxicity, making them attractive NO donors for therapeutic applications. The SNAP is one of the most stable nonpeptide S-NO donors reported. It releases NO slowly under physiologically relevant conditions and has already been shown to be a very promising candidate for fabricating long-term NO releasing polymeric materials.

Metal nitrosyl complexes are a class of NO donors that consists of nitric oxide bonded to a transition metal.51 Sodium nitroprusside (SNP, Na2[Fe(CN)5(NO)]) has long been clinically used as a powerful vasodilator to alleviate hypertension. Other examples include Rousseins’s black salt (RBS, [Fe2S3(NO)2]2−) and Rousssin’s red salt (RRS, [Fe2S2(NO)4]2−), which are synthetic iron–nitrosyl complexes mimicking the complexes found in nature, such as those in enzymes and metalloproteins.52 Knowing to the light responsive NO releasing properties, metal nitrosyl have drawn significant attention for spatially and temporally controlled NO delivery systems.53–55

NO delivery platforms. The direct application of these NO donors in clinical settings faces the limitations of rapid clearance, degradation, and non-targeted delivery. Therefore, they have been further physically encapsulated in or chemically conjugated onto a variety of biomaterial vectors to develop NO delivery systems, including organic (e.g. micelles, liposomes, dendrimers, polymeric nanoparticles, hydrogels and scaffolds) and inorganic (e.g. silica particles, metallic nanoparticles, zeolite and metal organic frameworks (MOFs)) biomaterial vectors. These NO-delivery platforms allows for a large control over the kinetics of NO release.56

Polymeric micelles are self-assembled nano-structures formed by amphiphilic block copolymers with a hydrophobic inner core stabilized by a hydrophilic outer shell. The hydrophobic NO donors can be conjugated with the hydrophilic hyaluronic acid to form a hydrophilic polymer, which could be self-assembled into micelles.57 The hydrophobic microenvironment within the micellar core also protect the NONOates from proton-catalyzed NO liberation, facilitating delayed NO liberation over 3 weeks under physiological conditions without the initial burst release.58 The NO donor GSNO has been conjugated to lipophilic end of the amphiphilic copolymer. The GSNO functionalized nanoparticles show high NO loading capacity, good stability and sustained NO release with specific GSH activated NO-releasing kinetics (Figure 1B).59 The light-responsive NO donor can also be integrated into the middle block of an amphiphilic triblock copolymer, which self-assembles into micellar nanoparticles in aqueous solution without premature NO leakage. The obtained micelles thus release NO selectively under visible light irradiation both in vitro and in vivo (Figure 1C).60 Besides, the micelles deposits of NO can also be generated in situ after phase transition of surfactant molecules capric acid (CA), which instantly cover the NO bubbles generated from NONOate donor and protect NO against attack from hemoglobin (Hb). The entrapped NO passively diffuse through the micellar deposits over time, performing a long-lasting therapeutic function (Figure 1D).61

Liposomes are spherical vesicles consisting an aqueous core surrounded by synthetic or natural phospholipid bilayers, with an overall structure mimicking the natural cell membranes.62 They can either accumulate the hydrophobic donors inside the bilayer interface or encapsulating the hydrophilic donors in the hydrophilic core. Their main function also is to ensure a slow NO donor decomposition and consequently a prolonged NO release.63 In addition, the compactness of the lipid chains upon liposome formation can also be tuned to regulate the water permeability of the lipid bilayer and further the NO-release kinetics of the loaded NO donors (Figure 1H).64

Dendrimers are globular macromolecules with a central core surrounded by a hyperbranched mantle and a highly branched corona with reactive surface groups.65 They can be synthesized via a divergent (dendrimers are synthesized outward from a central core) method or the convergent (dendrimers are synthesized inward from the surface group toward the core) approach. Their accessible functional groups at the periphery allow a multiple functionalization of the structure, and they are an attractive tool for NO delivery owing to their high NO payload by functionalizing NO-releasing motifs on their hyperbranched side chains (Figure 1E).66 For instance, hyperbranched polymerdiamines can be functionalized with NONOate donors achieving a wide range of NO storage capacities (~1-2.50 μmol/ml) and NO-release kinetics (t1/2 ~ 30-80 min) (Figure 1F).67 When the dendritic polyamidoamine is grafted on the surface of a nanoparticle core coated with polydopamine (PDA), which is an effective photoconversion agent, controllable NO release property under intermittent 808 nm laser irradiation can be obtained (Figure 1G).68

A wide range of natural and synthetic polymers also have been utilized for NO delivery applications. NO-releasing agents are either covalently linked with polymeric chains or physically encapsulated into polymers. Natural polymers, such as chitosan, dextran, hyaluronic acid, gelatin, and alginate are attractive as NO donor scaffolds due to their biodegradability, biocompatibility, and ease of gelation.69–73 Cyclodextrins (CDs) with a hydrophobic central cavity and hydrophilic exterior have also been developed as tunable NO-releasing agents.74–76 Jin et al. reported the synthesis of NONOate functionalized β-CD derivatives as NO-releasing biopolymers with variable NO payloads and highly tunable NO-release kinetics (Figure 1J).77 Several biodegradable synthetic polymers have also been reported for the encapsulation of NO-releasing small molecules. Poly (factic-co-glycolic acid) (PLGA) is a Food and Drug Administration (FDA) approved drug carrier owing to its excellent biocompatibility. NO-releasing PLGA nanoparticles can be prepared as a core-shell structure, consisting of hydrophilic NO donors in an aqueous core and a hydrophobic PLGA shell (Figure 1K and L).78–80 When load the light-responsive NO donor, NiN₄·di-sec-Butyl-N₄·N′-dinitroso-1,4-phenylenediamine (BNN6) into the PLGA nanoparticles, the resultant nanoformula exhibits stimuli-responsive decomposition of BNN6 for NO gas release upon ultraviolet-visible irradiation (Figure 1J).81

Silica nanoparticles and mesoporous silica nanoparticles (MSNs) have been widely used for storage and controlled release of NO due to their straightforward synthesis that enables tunable porous structures and tailorable surface functionalities. Various NO donors has been encapsulated into the mesoporous silica nanoparticles for controlled or responsive release of NO (Figure 2A and B).82–86 Besides, the nitrosation of thiol containing silica nanoparticles synthesized by classical Stöber method facilitates the NO release durations exceed 48 h.87 In addition, after the branched polyethylene imine (BPEI) polymer, which is rich in amine group, is self-assembled onto silica nanoparticles using electrostatic interactions, NONOate donors can be generated on the surface of silica nanoparticles via a high-pressure reaction with NO (Figure 2C).88

Recently, zeolites and metal–organic frameworks (MOFs) have garnered attention for their potential in NO storage and release applications.89–92 Owing to their intriguing porous architecture, these materials possess high loading
capacity to either NO gas molecules or NO donors, exhibiting remarkable stability for NO storage and controlled release (Figure 2D and E). As an important subclass of MOF, zeolitic imidazolate framework 8 (ZIF-8), which is self-assembled from Zn²⁺ ion and 2-methylimidazolate, have attracted much attention for NO delivery due to its unique physical, magnetic, optical, and electronic properties. Superparamagnetic iron oxide nanoparticles with NO release capability and upconversion nanoparticles, serve as a versatile platform for gas delivery due to their unique physical, magnetic, optical, and electronic properties. Superparamagnetic iron oxide nanoparticles with NO release capability and upconversion nanoparticles have been developed (Figure 2G). Upconversion nanoparticles (UCNPs) efficiently harvest incident near-infrared (NIR) photons and upconvert them into visible light, which can be utilized for NO release. Metal nanoparticles, such as gold nanoparticles and iron oxide nanoparticles, and upconversion nanoparticles, serve as a versatile platform for gas delivery due to their unique physical, magnetic, optical, and electronic properties. Superparamagnetic iron oxide nanoparticles with NO release capability and upconversion nanoparticles, serve as a versatile platform for gas delivery due to their unique physical, magnetic, optical, and electronic properties.
CO releasing molecules and CO delivery platforms

Carbon Monoxide Releasing Molecules (CORM). Controlled delivery of CO using CORMs as pharmaceutical agents represents an attractive and promising alternative to the administration of gaseous CO as an inhaled gas. Motterlini et al. pioneered the development of CORMs with identification of transition-metal carbonyl complexes (Fe(CO)_5, Mn(CO)_5, and Ru(CO)_5(CN)_2) (CORM-1). The limitation of CORM-2 with the poor solubility in water and short CO releasing half-life promotes the emergence of water-soluble CORMs, such as [Ru(Cl)(CO)(glycinate)] (CORM-3). These transition metal complexes are susceptible to ligand exchange in biological environments, resulting in CO leakage and the formation of protein adducts. The commercially available CORM-2 and CORM-3 are the most frequently utilized CORMs to examine physiological functions of CO both in vitro and in vivo. Besides solvent-induced CORMs, photoCORMs which are stable in dark in aqueous solution while release CO at an appropriate wavelength upon photoactivation are also developed taking advantage of the inherent photolytic feature of CORMs. PhotoCORMs allow for a spatial and temporal control in the CO delivery. However, the release of CO from these photoresponsive metal carbonyls typically requires the irradiation of light in near-UV regions, which is not suitable for biomedical applications due to the poor tissue and inherent phototoxicity. Therefore, several metal-free photoCORMs have been developed, including 3-hydroxyflavone (3-HF) derivatives, xanthene-9-carboxylic acid, BODIPY derivatives, and unsaturated diketone derivatives, among others. Notably, some of these photoCORMs can be selectively activated to release CO under visible and even NIR light, offering significant benefits for biomedical applications. In recent decades, the development of CORMs has progressed considerably, resulting in an extensive library of compounds that can be categorized based on the mode of CO release activation. These categories include enzyme-triggered CORMs (ET-CORMs), thermal-triggered CORMs, oxidation-triggered CORMs, pH-triggered CORMs, etc. This diverse range of activation methods has expanded the potential applications of CORMs in various biomedical contexts.

CO delivery platforms. CORMs have been chemically conjugated or physically encapsulated into various carriers to improve the delivery efficiency of CO. Advantages of this strategy include 1) stabilization of the CORMs after CO release; 2) modulation of CO-releasing profiles; 3) improvement in solubility and stability of CORMs; 4) higher CO payloads; 5) targeted delivery to specific sites. The carriers can be categorized into organic macro-molecules (e.g. peptides, proteins, polymers, and micelles) and inorganic nanoparticles (e.g. silica nanoparticles, Prussian blue nanoparticles, graphene-oxide nanoparticles, upconversion nanoparticles, and MOFs). Another potential remedy for CO delivery is based on endogenous substance or metabolic pathway, fully independent of delivery of CORMs. For example, photocatalytic nanomaterial can be delivered to act as a catalyst to convert endogenous substance into CO under the precise control of body penetrable 630 nm light.

Similar with the carrier for NO delivery, polymeric micelles are a very promising carrier due to their high drug-loading capacity, easy formulation, and low toxicity. CO-releasing micelles have been prepared from triblock copolymers composed of a hydrophilic poly(ethylene glycol) block, a poly(Ru(CO)5Cl) (ornithinate acrylamide) block capable of releasing CO, and a hydrophobic poly(n-butylacrylamide) block (Figure 3B). In addition, copolymer consisting of hydrophilic endothelial cells-adhesive peptides covalently linked with hydrophobic polyhedral oligomeric silsesquioxane self-assemble into micelles allowing the high payload of CORM and controlled release of CO. Moreover, a copolymer consisting a NO-releasing N-nitrosamine moiety and the CO-releasing 3-hydroxyflavone (3-HF) antenna self-assemble into spherical micelles that releases NO and CO simultaneously under visible light irradiation (Figure 3C).

Peptide amphiphiles (PAs) have been extensively studied over the past three decades for biomedical application. They can self-assemble into various well-ordered nanostuctures such as micelles, vesicles, and nanofibers. It consists of a hydrophobic peptide sequence covalently bound to a hydrophobic alkyl tail, which provides driving force for self-assembly. After covalently attached with water-soluble CORM-3, the PA self-assembles to be nanofiber hydrogel that release CO with the half-life more than eight-fold longer than that of bare CORM-3. This can be ascribed to the slow water–gas ligand exchange of CORM-3 located onto the entangled nanofibril. In addition, the self-assembly of the CORM-attached peptides with a gel-forming diphenylalanine-derivative gives rise to a syringe- injectable hydrogel exhibiting prolonged CO-releasing properties (Figure 3D). The PA can also self-assemble into stable nanoparticles in aqueous solutions when using fluorinated amphiphilic dendritic peptide. The nanoparticles provide ample hydrophobic cores for the simultaneous physical encapsulation of photosensitizer Ce6 and H2O2-sensitive CORM, thus developing a photodynamic therapy (PDT)-driven CO-controlled delivery system. When irradiated with NIR light, CORM is oxidized by H2O2 generated during the PDT process to release CO (Figure 3E and F).

Protein assemblies are a class of highly organized biomolecules that hold promise for development of a new gas delivery platform. One of the general methods involves encapsulation of CORMs within the protein scaffold. Protein crystals represent precise protein assemblies in the solid state with inner pores that suitable for use as nanovessels to immobilize CORMs. Protein cages composed of multimeric protein assemblies have been used for development of biomaterials. Protein ferritin has been engineered to encapsulate CORM, providing a release rate that is 18-fold slower and uptake ratio that is 4-fold greater than those of CORM-3 (Figure 3G).

The water insoluble and photoactive CORM-1 has also been non-covalently embedded into nanoporous poly(L-lactide-co-D/L-lactide) fibers via electrosprinning to enable bioavailability and water accessibility of CORM-1. CORM and glucose oxidase (GOx) are encapsulated in the biodegradable polymer PLGA, which is further covered with the red blood cell (RBC) membrane to obtain RBC membrane-biomimetic gas nanofactory. In the presence of O2, the GOx in the nanofactory effectively catalyze the conversion of endogenous glucose to H2O2, which further trigger CO release from CORM. In another study, photoCORM has also been embedded in polycaprolactone together with a triplet photosensitizer to fabricate nonwoven polymer fabrics using electrosprinning. Under near-UV irradiation, energy transfer occurs from triplet excited-state photosensitizer to photCORM and thus trigger the release of CO.

A new strategy to prepare CO-releasing polymeric nanoparticles has been reported through phenylboronic acid-catechol complexation. The phenylboronic acid form cyclic boronate esters with compounds having cis diol groups and have especially high affinity toward catechol-containing compounds. So a catechol-bearing analogue of CORM-3 is synthesized and loaded to the nanoparticle by simply mixing them together at physiological pH. The resultant nanoparticles are stable in fetal bovine serum while release CO in the presence of cysteine (Figure 3H). In addition, coordination assembled strategy has been proposed to fabricate Cu[II]-flavone coordination polymer (NCu-FleCP) CORM nanoprodrug, which is stable in normal physiological conditions, and yet readily reduces to small size prodrug complex and releases CO on demand under glutathione (GSH) and NIR light (Figure 3I).

The Innovation Life 1(1): 100015, June 25, 2023

The Innovation Life 1(1): 100015, June 25, 2023

![Image](https://via.placeholder.com/150)

Figure 2. CO delivery platforms. (A) CORMs have been chemically conjugated or physically encapsulated into various carriers to improve the delivery efficiency of CO. (B) Advantages of this strategy include 1) stabilization of the CORMs after CO release; 2) modulation of CO-releasing profiles; 3) improvement in solubility and stability of CORMs; 4) higher CO payloads; 5) targeted delivery to specific sites. The carriers can be categorized into organic macro-molecules (e.g. peptides, proteins, polymers, and micelles) and inorganic nanoparticles (e.g. silica nanoparticles, Prussian blue nanoparticles, graphene-oxide nanoparticles, upconversion nanoparticles, and MOFs). Another potential remedy for CO delivery is based on endogenous substance or metabolic pathway, fully independent of delivery of CORMs. For example, photocatalytic nanomaterial can be delivered to act as a catalyst to convert endogenous substance into CO under the precise control of body penetrable 630 nm light.

Figure 3. CO-releasing polymeric nanoparticles have been reported through phenylboronic acid-catechol complexation. The phenylboronic acid form cyclic boronate esters with compounds having cis diol groups and have especially high affinity toward catechol-containing compounds. So a catechol-bearing analogue of CORM-3 is synthesized and loaded to the nanoparticle by simply mixing them together at physiological pH. The resultant nanoparticles are stable in fetal bovine serum while release CO in the presence of cysteine (Figure 3H). In addition, coordination assembled strategy has been proposed to fabricate Cu[II]-flavone coordination polymer (NCu-FleCP) CORM nanoprodrug, which is stable in normal physiological conditions, and yet readily reduces to small size prodrug complex and releases CO on demand under glutathione (GSH) and NIR light (Figure 3I).
Inorganic nanomaterials have been proven an attractive platform for CO delivery, owing to their physiological stability and unique optical, electronic, and magnetic field response properties, which enable them to respond to special stimuli to achieve CO release in an on-demand manner.

Solid SiO$_2$ nanoparticles and MSN have been wildly used as carriers for CORMs to fabricate CO-releasing materials (Figure 4A and B). Photo-CORM is conjugated to the surface of the SiO$_2$ nanoparticles via the click reaction (Figure 4C). Through a coordination linkage reaction between mercapto propyltriphenylphosphonium (TPP-SH) and CORM, a mitochondria-targeted and intramitochondrial microenvironment-responsive prodrug can be synthesized. This positively charged prodrug can be effectively loaded into the negatively charged MSNs through electrostatic assembly. The developed nanoparticles release the FeCO-TPP prodrug through acid-responsive disassembly, and further release of CO is triggered by the intracellular ROS.
Mesoporous polydopamine (MPDA) nanoparticles have also been utilized to deliver CORM because of their intrinsic biocompatibility, strong NIR photothermal conversion efficiency, and facile surface functionalization. Thermosensitive CORM is encapsulated into MPDA nanoparticles through hydrophobic interactions. Therefore, CO release can be triggered by the NIR irradiation. (Figure 4E).

Prussian blue nanoparticle is a novel and potential drug delivery system due to their favorable biocompatibility, porous and surface-modifiable features, as well as various unique properties, such as adsorbability, photocoustic and magnetic resonance imaging ability, photothermal effects, and nancenzyme activities. PRussian blue (PB) nanoparticle has the structural composition composed of an Fe\(^{3+}\)-N≡C-Fe\(^{3+}\) unit that has endowed PB as an ideal candidate to process derivatization with iron carbonyl. The exposure of the cyano group –CN\(^-\) acts as the active sites for the coordination of iron carbonyl. Taking advantage of the photothermal effects of PB, the photon-to-heat conversion upon exposure of NIR light is anticipated to cleave the Fe-CO coordinating bond, releasing CO from the PB nanoparticles (Figure 4F and G).

Another mesoporous nanoplatform is constructed with hollow CuS nanoparticles carrying CORM. This CO delivery nanoplatform reveals superior properties in colloidal stability, photothermal conversion, \(\text{H}_2\text{O}_2/NIR\)-stimulated CO release and tumoral accumulation.

Lanthanide ion doped upconversion NPs (UCNPs) have a specific optical characteristic that makes them absorb light in the NIR range and enables different ranges of UV-vis-NIR light emissions. A water-soluble NIR inducible CO delivery system is prepared by encapsulating the UCNPs with amphiphilic polymer, which incorporates a hydrophobic interior containing the photoCORM. Irradiation of this system with NIR light could induce the UCNPs core to emit visible range photons, which are then absorbed by the loaded photoCORM and ultimately results in photochemical uncaging of CO (Figure 4H).

Gold nanoparticles exploit their unique chemical and physical properties for transporting and unloading the pharmaceuticals. \(\text{Au}\) nanocage is utilized to transport and unload the pharmaceuticals.

Figure 4. Inorganic vectors of CORMs

(A) Schematic illustration of mMMn preparation. Reprinted with permission from Zhang et al. Copyright 2020 Elsevier. (B) Preparation process of FeCO-DOX@MCN nanoparticles. Reprinted with permission from Yao et al. Copyright 2019 Elsevier. (C) Covalent attachment of the [Mn(CO)\(_3\)(tpm-L1)\(^3+\)] complex to the surface of the (3-Azidoproplyl)-functionalized SiO\(_2\) nanoparticles. Reprinted with permission from Dördelmann et al. Copyright 2011 American Chemical Society. (D) Schematic illustration of multistage assembly method for construction of the FeCO-TPP@MSN@HA nanomedicine. Reprinted with permission from Meng et al. Copyright 2020 American Association for the Advancement of Science. (E) Schematic illustration for the preparation of DNase-CO@MPDA NPs. Reprinted with permission from Yuan et al. Copyright 2021 Wiley-VCH. (F) The composition of the nanoparticles and their CO release triggered by NIR irradiation. Reprinted with permission from Li et al. Copyright 2016 American Chemical Society. (G) Schematic illustration of PPPPB-CO-TP2 NPs with enhanced bioreductive chemotherapy and CO-mediated pro-apoptotic gas therapy. Reprinted with permission from Li et al. Copyright 2019 Elsevier. (H) Schematic illustration of a water-soluble nanocarrier used for CO uncaging. Upon 980 nm irradiation (red arrow), the up-converted visible range emission from the UCNPs gets re-absorbed by the photoCORM, leading to CO release. Reprinted with permission from Pierri et al. Copyright 2015 The Royal Society of Chemistry. (I) Preparation of Fe(CO)\(_5\)@Au. Under aerobic conditions, the excess Fe(CO)\(_5\) in solution is oxidized on the surface of the Au nanocage to form an iron oxide shell. Reprinted with permission from Wang et al. Copyright 2017 The Royal Society of Chemistry. (J) Schematic showing the loading of MnBr(bpy)(CO)\(_3\) on UiO-67-bpy to synthesize CORF-1, and the subsequent CO release upon light irradiation. Reprinted with permission from Diring et al. Copyright 2017 The Royal Society of Chemistry. (K) Schematic representation of the coordination strategy for the construction of the MnCO@Ti-MOF. Reprinted with permission from Jin et al. Copyright 2019 Elsevier. (L) Molecular structure and NIR-responsive CO release mechanism of CORM loaded graphene oxide. Reprinted with permission from He et al. Copyright 2015 Wiley-VCH. (M) Structures and reactivity of the various nucleotides of Ru–CO clusters on GO. Green stick represents carbon monoxide. Reprinted with permission from Tan et al. Copyright 2018 Wiley-VCH.
encapsulate the iron pentacarbonyl \((\text{Fe(CO)}_5)\) under an oxygen-free atmosphere. \((\text{Fe(CO)}_5)\) in solution is oxidized to iron oxide on the surface of the Au nanocage under aerobic conditions, obtaining the nanoplatform with a core-shell structure. The formation of an iron oxide shell efficiently prevents the leakage and oxidation of caged \((\text{Fe(CO)}_5)\) and increases the stability and biocompatibility of \((\text{Fe(CO)}_5)@\text{Au}\). Under NIR irradiation, the photothermal effect of Au nanocages causes the decomposition of caged \((\text{Fe(CO)}_5)\) releasing CO gas and iron ions (Figure 4I).

MOFs are receiving considerable attention for CO delivery due to their high payloads and simple synthesis protocol. The one-pot synthesis-encapsulation strategy has been proposed using hierarchical metal organic frameworks as a host of the photoCORM \((\text{Figure 4L})\). Aluminum-based MOFs prepared by means of the coordination modulation method are synthesized to adsorb the photoCORM. The hybrid system retains the photoactive properties of the pristine CORM in both phosphate saline solution and solid state. Besides, Ti-based MOF has also been utilized to realize an \(\text{H}_2\text{O}_2\)-triggered CO release and real-time CO release monitoring by fluorescence imaging (Figure 4K).

GO has been noted for its favorable properties of high NIR photothermal conversion efficiency. A NIR-responsive nanomedicine for controlled CO release has been constructed through binding CORMs into GO nanosheets. The nanomedicine could collect and convert NIR light energy to break the bonds of CORM resulting in CO release (Figure 4L). The NIR-responsive CO-release platform can also be developed by utilizing the size-dependent adsorption properties of CORM onto GO (Figure 4M).

H\(_2\)S donors and H\(_2\)S delivery platforms

H\(_2\)S donors. Sodium hydroxysulfide (NaHS) and sodium sulfide (Na\(_2\)S) are the most prevalent H\(_2\)S donors utilized in earlier biological research for elucidating endogenous roles and therapeutic prospects of H\(_2\)S. However, upon dissolution in water, they undergo immediate hydrolysis and spontaneously release H\(_2\)S, initially reaching supraphysiological levels before gradually declining due to H\(_2\)S gas volatilization. This makes it challenging to deliver H\(_2\)S that matches the slower, continuous, enzymatic production characteristic of endogenous H\(_2\)S synthesis. Plenty studies have reported even opposite biological effects of H\(_2\)S when utilizing sulfide salts and slow-releasing donors. Unlike NaHS and Na\(_2\)S, other insoluble sulfide salts, such as ZnS, \(\text{FeS}_2\), \(\text{MnS}_2\), and \(\text{MoS}_2\), generate H\(_2\)S under the attack of \(\text{H}^+\) in acidic conditions (Figure 5A). For biomedical applications, these sulfide salts have been synthesized as nanoparticles for durable and targeted delivery of H\(_2\)S.

Hydrolysis-activated H\(_2\)S donors can spontaneously release H\(_2\)S in aqueous solutions (Figure 5B). Lawesson’s reagent’s reaction is the most well-known and has been widely used in studies investigating the physiological effects of H\(_2\)S. Another type of phosphorodithioate–containing H\(_2\)S donor is the JK donor, which possesses a unique acidic pH-accelerated H\(_2\)S releasing behavior. Additionally, 1,2-dithiole-3-thiones (DTSs) are another class of compounds commonly considered to be in the family of hydrolysis-triggered H\(_2\)S donors.

Natural occurring polysulfides, such as diallyl disulfide (DADS) and diallyl trisulfide (DATS) isolated from garlic and other alliums, provide a source of sulfane sulfur that can be converted into H\(_2\)S upon reduction. Nucleophilic attack by GSH or other thiols on the polysulfides gives rise to release of H\(_2\)S. Inspired by disulfide exchange chemistry, chemists have also developed various synthetic donors that are activated by nucleophilic attack by endogenous thiols, including N-benzylthio)benzamides, S-aroylthioximes (SATOs), arylothioamides (Ar(OC)(S)=NH)\(_2\), and acyl perthiols. These donors are particularly suitable for controlled delivery of H\(_2\)S to the pathologically redox microenvironments (Figure 5C).

As enzymes often exhibit substrate specificity and tissue localization, utilizing enzymes as triggers for H\(_2\)S release enables specific targeting to a tissue of interest (Figure 5D). For example, enzyme-activated H\(_2\)S donors hold great promise for targeted H\(_2\)S delivery to enzyme-overexpressed microenvironments of lesions. Design of enzyme-activated donors involve incorporating an enzymatically cleaved trigger on a sulfide donor, which remains stable until the activating group is cleaved or modified by the target enzyme, subsequently releasing H\(_2\)S. A typical example is the H\(_2\)S donor containing a trimethyl lock group exhibit esterase-activated characteristics. In this system, esterase-mediated cleavage of an acyl-protecting group on the donor motif generates an unstable phenolic intermediate, which then undergoes intramolecular lactonization with a pendant thioacid to release H\(_2\)S.

Another example combines the concepts of enzyme-specific cleavable functionalities with the protected geminal dithiol as an H\(_2\)S releasing moiety.

Light-triggered H\(_2\)S donors enable spatiotemporal control over H\(_2\)S release, allowing for noninvasive activation of H\(_2\)S release on skin or at shallow subcutaneous levels (Figure 5E). These donors typically contain photocaged species that, when exposed to the appropriate wavelength of light, cleave the protecting group and reveal the H\(_2\)S-releasing moiety. Examples include α-nitrobenzyl caged geminal dithiols and ketoprofenate caged H\(_2\)S donors, which release H\(_2\)S under ultraviolet (UV) light. α-Thioetherketones are UV light-activated prodrugs of thioldialdehydes, which subsequently release H\(_2\)S in the presence of amines.

Furthermore, \(\text{p-hydroxyphenyl} \) photocaged H\(_2\)S donors respond to visible light to release H\(_2\)S. Most current H\(_2\)S donors are activated by UV or visible light with limited tissue penetration depth. Developing NIR light-triggered donors, which can penetrate tissues more deeply, remains an area for further exploration.

Carbonyl sulfide (COS) can be rapidly hydrolyzed to H\(_2\)S by the ubiquitous enzyme carbonic anhydrase (CA). Therefore, a recent innovation in H\(_2\)S donor design is the synthesis of compounds that release COS (Figure 5F). The ring-opening polymerization of N-thiocarboxanhydrolytes (NTA) by biological nucleophiles such as glyoxyl is utilized to generate COS with peptides as byproducts.

Another class of COS-releasing prodrugs relies on a self-immolative reaction mechanism, in which COS release results from the decomposition of a thiocarbamate-containing compound in the presence of a specific trigger. As a result, COS-based H\(_2\)S donors triggered by various stimuli, such as biothiols, enzymes, light, and reactive oxygen species (ROS), have emerged as versatile releasing templates.

H\(_2\)S delivery platforms. Though lots of H\(_2\)S donors have been developed, they are usually unable to meet the requirements of in vivo applications, such as the poor stability, low solubility, short release duration, lack of target specificity, and the potential cytotoxicity. Therefore, various H\(_2\)S delivery platforms have been developed. Similar to NO and CO, H\(_2\)S donors can also be encapsulated or conjugated into various macromolecules, such as polymer conjugates, micelles, hydrogels and nanopofers, for controlled, targeted, and/or responsive delivery of H\(_2\)S.

Acid-sensitive H\(_2\)S donors, such as dithiocarbamate (DTC) and J-K=1, have been encapsulated into the self-assembled micelle (Figure 5G). Sodium alginateg (SA) dressing (Figure 5H), collagen hydrogel, hyaluronic acid (HA) hydrogel, and electrosprinning PCL fiber. Additionally, thiol-initiated polysulfide-based donors are also loaded into PLGA microparticles (Figure 5I), protein nanoemulsion formed by bovine serum albumin (BSA) (Figure 5J), and nanoparticles formed by amphiphilic block polymers. The release of H\(_2\)S is triggered by the intracellular GSH. The hydrophobic H\(_2\)S donor anethole diholothione (ADT) can also be doped in the phospholipid shell of liposomes. The release of ADT gives rise to large numbers of microsized H\(_2\)S bubbles via an enzymatic trigger.

The polycaprolactone (PCL) electrospray scaffold is engineered to include azide functional groups with different densities through modular mixing of phospholipid shell of liposomes. The release of ADT gives rise to large numbers of microsized H\(_2\)S bubbles via an enzymatic trigger. Another example combines the concepts of enzyme-specific cleavable functionalities with the protected geminal dithiol as an H\(_2\)S releasing moiety.

Besides physical encapsulation, covalently binding of H\(_2\)S donor to the polymer scaffold ensures well-defined chemical structure and avoids uncontrollable leakage. A block copolymer consisting of a hydrophilic poly (N-acryloyl morpholine) segment and a hydrophobic diholothione-bearing segment (PAM-PADT) has been synthesized using reversible addition–fragmentation
chain-transfer polymerization. The PAM-PADT polymers self-assembled in water to form spherical micelles with an average hydrodynamic diameter of 34 nm (Figure 5K). Through ring-opening metathesis polymerization, an amphiphilic block copolymer consisting of norbornene-mPEG (Nor-mPEG) as a hydrophilic part and norbornene-conjugated SATO moiety (Nor-SATO) as a hydrophobic part is constructed. The block copolymer self-assembles into micelles with a range of sizes from 41 to 57 nm and releases H$_2$S with the peak time of 60–70 min (Figure 5L). In addition, polymersome is fabricated through self-assembly of poly(ε-caprolactone)-b-poly[lysine$_{23}$]-stat-(SATO)$_{15}$. The gradual generation of H$_2$S is realized by the multilayered poly-

Figure 5. Some H$_2$S donors and H$_2$S delivery platforms (A) Chemical structures of sulfides salts. (B) Chemical structures of hydrolysis-based donors. (C) Chemical structures of thiol-activated donors. (D) Chemical structures of enzyme-activated donors. (E) Chemical structure of photo-activated donor. (F) Chemical structures of cabonyl sulfide precursors. (G) Schematic diagram of Hf-PSP-DTC@PLX nanosensitizer preparation. Reprinted with permission from Li et al. Copyright 2022 Wiley-VCH. (H) Diagram illustrating the pH-dependent H$_2$S releasing SA sponge dressing. Reprinted with permission from Zhao et al. Copyright 2019 Elsevier. (I) Composition/structure of DATS@MPs, which act as an in situ slow-releasing H$_2$S donor depot. Reprinted with permission from Hsieh et al. Copyright 2019 Elsevier. (J) Schematic illustration of AB-DS@BSA-N$_3$NYs. Reprinted with permission from Zheng et al. Copyright 2020 The Royal Society of Chemistry. (K) A block copolymer having ADT-groups (PAM-PADT) forms ADT micelles by self-assembly. Reprinted with permission from Takatani-Nakase et al. Copyright 2017 The Royal Society of Chemistry. (L) Self-assemble and cysteine-triggered H$_2$S release of the PNEG-b-PNSATO polymeric micelles. Reprinted with permission from Le et al. Copyright 2022 Elsevier. (M) PCL$_{24}$-b-P(Lys$_{23}$)-stat-SATO$_{15}$ copolymer was self-assembled into polymersomes. Reprinted with permission from Liu et al. Copyright 2021 American Chemical Society. (N) Schematic representation of hyperthermia triggered H$_2$S releasing MSN coating and drug release. Reprinted with permission from Xia et al. Copyright 2022 American Chemical Society. (O) Schematic illustration of the synthesis of the DCC–HA NCs. Reprinted with permission from Liu et al. Copyright 2021 Wiley-VCH. (P) Construction of SP-loaded PEG-UCNPs platform for NIR-triggered H$_2$S release. Reprinted with permission from Chen et al. Copyright 2015 The Royal Society of Chemistry. (Q) Illustration of the synthesis of a rGO–PEI-DTC nanocomposite and its H$_2$S photothermal release for suppression of cell viability. Reprinted with permission from Li et al. Copyright 2019 The Royal Society of Chemistry.
Bacteria, including both Gram-positive and Gram-negative species, as well as their critical roles in many pathological processes. These gases have also been utilized as potent bactericidal agents to kill bacteria, disperse biofilms, and prevent implant-associated infection while avoiding resistance.

MSNs are widely used drug delivery platform due to their biocompatibility and mesoporous architecture. Natural occurring H₂S donor DATS can be loaded into MSN (DATS-MSN) to construct an H₂S sustained-release system activated by endogenous GSH. Further coating the DATS-MSN with temperature-sensitive polymer poly(N-n-propylacrylamide-co-ntert-butyl acrylamide) (PNPNTA) gives rise to hypothermia-triggered hydrogen sulfide (H₂S) releasing particles (Figure 5N).

Dendritic mesoporous silicon nanoparticles (DMSNs), which have larger pore sizes than traditional silicon nanoparticles, have been successfully applied as efficient nanocarriers. To enhance their biodegradability, the physiologically inert -Si-O-Si- frameworks in DMSNs are partially replaced with tetra-sulfide bonds. These tetra-sulfide bonds are sensitive to GSH, triggering the decomposition of the bonds and releasing H₂S. As a result, tetra-sulfide bond-incorporating dendritic mesoporous organosilica can be used as a novel H₂S delivery platform (Figure 5O). In addition, MOF is another promising platform for H₂S delivery under physiologically relevant conditions.

Most H₂S donors are inherently responsive to UV–vis light and therefore have limited therapeutic utility. UCNPs can absorb long wavelength NIR light and emit narrow and sharp emissions ranging from UV to visible. A NIR light induced H₂S release platform based on UCNPs has been constructed. Under NIR light excitation, UCNPs can emit UV light which triggers H₂S release in a spatial and temporal pattern (Figure 5P).

Reduced graphene oxide (rGO) has an excellent photothermal conversion rate for NIR and is a good carrier for photothermal therapy. H₂S donor DTC can be pyrolyzed to H₂S at high temperature. Therefore, a NIR-photoresponsive H₂S gas generation nanoplatform is developed through the electrostatic adsorption of positively charged DTC and negatively charged rGO. Under irradiation with NIR light, light energy is converted into thermal energy based on the photothermal effect of rGO, and a large amount of H₂S is released due to the thermal degradation of DTC (Figure 5Q).

The ionization of insoluble sulfide salts provides an alternative strategy for sustainable H₂S release. For example, ZnS nanoparticles, tetramethylene phase manganese sulfide (MnS) nanoparticles, and two-dimensional layered molybdenum disulfide (MoS₂) nanosheets have been synthesized. The as-prepared nanoparticles can be degraded in response to the mildly acidic tumor microenvironment, releasing H₂S for gas therapy. Furthermore, the ferrous sulfide has also been utilized for pH responsive release of H₂S. It can be embedded into BSA to form amorphous nanoclusters via a self-assembly approach, or synthesized via a one-pot hydrothermal method to form crystalline nanoparticles. Both of them release H₂S in acid conditions under physiological pH = 6.5 and pH = 5.5.

APPLICATION IN TREATING BONE DISEASES
Anti-infection
Infections related to orthopedic implants are a common and serious issue after orthopedic surgery, involving components such as prosthetic joints, fixation systems, artificial ligaments, and bone cements. Typically caused by Staphylococcus aureus and other pathogens, orthopedic implant infections often stem from biofilms, where bacterial clusters tightly bind to the material surface and become encased in an abundant extracellular polymeric substance matrix. To prevent infection, it is essential to avoid bacterial adhesion and biofilm formation by endowing orthopedic implants with the antibacterial ability. Antibacterial gas therapy has attracted much attention not only because they are endogenous signaling molecules, but also due to their critical roles in many pathological processes. These gases have also been utilized as potent bactericidal agents to kill bacteria, disperse biofilms, and prevent implant-associated infection while avoiding resistance.

NO. NO demonstrates potent antibacterial activity against a wide range of bacteria, including both Gram-positive and Gram-negative species, as well as methicillin-resistant Staphylococcus aureus (MRSA). At low concentrations, NO can inhibit biofilm formation or break down existing biofilms, while at higher concentrations, it exhibits bactericidal properties. When NO is present at high concentrations (typically in the mM range), it reacts with the superoxide free radical (O²⁻) to generate reactive species such as nitrogen dioxide (NO₂), dinitrogen trioxide (N₂O₃), and peroxynitrite (ONOO⁻). These reactive species induce significant nitrosative and oxidative stress on bacteria, resulting in the disruption of bacterial membranes and impairment of cell function.

Although NO is clearly identified as a potent antimicrobial, its clinical utility is challenging as NO is a highly reactive gas with a short half-life. Therefore, NO releasing coatings have been fabricated on orthopedic implants to endow the implant with antibacterial ability. Joshua et al. synthesized aminosilane-based xerogel films capable of storing large payloads of NO. NO releasing xerogel coatings can reduce bacterial colonization of external fixation pins up to 48 days post-implantation, despite the fact that the xerogel coatings have released the majority of their NO during the initial five days.

Wang et al. proposed a magneto-based synergetic therapy to destruct biofilm on the orthopedic implants. Firstly, the fabricated magnetic nanoparticles generate sufficient thermal effect to cause dense biofilm dispersal under an alternating magnetic field. Loosened biofilms allow the penetration of magnetic nanoparticles, which are also coated with thermosensitive RSNPs. The RSNPs further release NO inside the biofilm, thus efficiently killing sessile bacteria under the magnetothermal effect of nanoparticles. As a result, the synthesized nanoparticles are able to disrupt the dense 3D biofilm structure, presenting the promising potential for the effective and durable control and elimination of implant-associated infections (Figure 6A).

Yuan et al. reported a NIR light responsive hydrogel coating with NO plus superoxide (•O₂⁻) release ability. The Ti substrate is firstly coated with red phosphorus (RP) nanofilm, which produce •O₂⁻ under the irradiation of NIR. Then the substrate is modified with a hydrophilic and adhering hydrogel coating consisting of chitosan (CS), polydopamine (PDA) and NO release donor RSNP. Under the irradiation of NIR, peroxynitrite (ONOO⁻) can be formed by the reaction between the released NO and •O₂⁻ produced by the RP nanofilm. The generated ONOO⁻ is proven to effectively eradicate biofilm formed by methicillin-resistant Staphylococcus aureus (MRSA). Additionally, osteogenic differentiation is promoted and inflammatory polarization is regulated by the released NO without NIR irradiation through upregulating the expression of OPN and OCN genes and TNF-α. The in vivo results also confirms excellent osteogenesis and biofilm eradication by released NO under NIR irradiation (Figure 6B).

Li et al. developed an efficient NO-releasing coating via functionalization of Ti with aminosilanes and the subsequent tethering of NONOates onto the silanes. They utilized the osseointegrative promoting silane containing a secondary amine (6-aminohexyl-3-aminopropylmethoxysilane (AHAP3)). The silane modified Ti substrates are then exposed to high pressures of NO (5 bar) over 72 h to allow formation of NONOate. At pH 4, AHAP3 modified surfaces released NO at a maximum instantaneous NO release concentration of 1.8 μM/s with 1005.4 μM NO being released in a burst during the first hour. The modified surface demonstrates a reduction in S. aureus and P. aeruginosa adhered to the surface. Of particular interest is that the modified surface is capable of preventing of biofilm formation while not displaying cytotoxicity toward human primary osteoblast cells (Figure 6C).

A multifunctional coating which can be triggered by near-infrared II (NIR-II) light to achieve bone tumor treatment, anti-biofilm formation, as well as osseointegration simultaneously is designed and fabricated on Ti implants. The ytterbium (Yb) and erbium (Er) doped TiO₂ nano-shovel arrays are formed on the Ti implants by hydrothermal treatment. Incorporation of Yb and Er enhances the upconversion capability, thereby facilitating generation of reactive oxygen species (ROS) during exposure to NIR-II light. Quercetin (Qr) is immobilized covalently on the surface of the TiO₂ nano-shovel with organosilane as the coupling reagent, while the positively charged L-arginine adsorb electrostatically onto the negatively charged Qr. L-arginine can be catalyzed by ROS to release NO. In vitro and in vivo experiments indicate that the combined actions of ROS, Qr, and NO eliminate Staphylococcus aureus biofilms on the Ti implants at a mild temperature of 45 °C upon illumination with a 1,060 nm laser. Moreover, this surface promotes angiogenesis and osteogenic differentiation, reduces inflammation, and accelerates formation of new bone tissues (Figure 6D).
The bactericidal effect of CO arises from inhibiting the respiratory chain of bacteria and its action on adenosine triphosphate (ATP) production. CO has also been shown to increase the concentration of ROS in the biofilms, resulting in bacterial membrane polarization and struc-
tural damage.228 Besides, CO promotes phagocytosis of macrophage to uptake bacteria, such as Escherichia coli via p38-mediated surface expression of toll-like receptor 4 (TLR4) and to activate the host immune response.236

Zhang et al. proposed an interfacial functionalization strategy to modify the orthopedic Ti implants with a CO nanogenerator, followed by covalently grafting arginine-glycine-aspartic acid (RGD) polypeptide. Under NIR irradiation, the designed surface displays great light-activable antibiosis through CO-potentialized mild photothermal therapy. More importantly, after bacteria elimination, on-demand CO delivery alleviated inflammatory response of infection microenvironment by inhibiting M1 macrophages to secrete pro-inflammatory cytokines. Light-activatable substrate further drive the polarization of M1 macrophages toward anti-inflammatory M2-phenotype, thereby remodeling the damaged microenvironment into a pro-regenerative microenvironment, which is beneficial for accelerated bone repair (Figure 6E).237

\textbf{H$_2$S.} The toxicity of H$_2$S to microorganisms is associated with the oxidative damage via inhibition of antioxidant proteins. In addition, it has also been reported to results from the DNA damage, lipid peroxidation, protein denaturation through disulfide disruption, and inactivation of redox centers in metalloenzymes due to its binding to the metals.238,239 Zheng et al. proposed a “H$_2$S-sensitized hyperthermia” strategy to overcome drug resistance in bacterial biofilm infections. They fabricate a MOF-sealed Prussian blue-based nanocarrier (MSDG), which carries glutathione-responsive H$_2$S donor DATS. Upon reaching the biofilm, MOF is decomposed in response to the acidic biofilm microenvironment, allowing the release of DATS. The released DATS further reacts with the overexpressed glutathione within the biofilm to generate H$_2$S gas. Upon NIR irradiation, H$_2$S-sensitized hyperthermia arising from Prussian blue efficiently eliminate biofilms through H$_2$S-induced extracellular DNA damage and heat-induced bacterial death, thus realizing the renaissance of precision treatment of refractory implant related infections (Figure 6F).239

\section*{Immunomodulation}

When an orthopedic implant is introduced into body, the immune system recognizes it as foreign and triggers an acute inflammatory response mediated by macrophages.238 Although inflammation is essential for healing following an injury, its resolution is crucial for bone tissue repair, as excessive acute or chronic inflammation has been linked to impaired healing in both patients and animal models.30,238 Macrophages, a type of immune cell, play a pivotal role in bone tissue repair and regeneration. In the early stages of bone repair, macrophages primarily differentiate into the M1 phenotype, which releases inflammatory factors such as TNF-α, IL-6, and IL-1β. These factors promote inflammation and help eliminate pathogenic microorganisms and aged or necrotic cells. Over time, macrophages polarize into the M2 phenotype, releasing anti-inflammatory factors like IL-4 and IL-10, which inhibit the inflammatory environment and promote bone regeneration.233,234 Modulate the initial inflammatory phase and promoting its resolution create a favorable environment for bone regeneration. Biomaterial-assisted delivery of biomolecules with the ability of immunomodulation is an attractive strategy to these efforts.20 Owing to the potent immunomodulatory ability of gaseous signaling molecules, delivery of NO, CO, and H$_2$S have natural advantages over other biomolecules to tailor a favorable immune environment for bone regeneration.

\textbf{NO.} NO has been shown to possess both pro- and anti-inflammatory properties. The balance between the two depends on the concentration and duration of released NO. Small amounts of NO, like those derived from eNOS, are thought to be beneficial, as they inhibit the adhesion and migration of inflammatory cells. In contrast, the relatively high amounts of NO, like those produced by iNOS upon stimulation by LPS or inflammatory cytokines (e.g. IL-1β and TNF-α), are thought to contribute to inflammatory response.235 NO and its role in several models of inflammatory diseases, such as RA, have been well addressed.233 NO produced by macrophages is responsible for tricarboxylic acid cycle alterations and citrate accumulation associated with polarization.232 Therefore, special attention needs to be paid when using NO releasing materials for immunomodulatory purpose.

Won et al. developed a polymer capable of controlled NO release to promote the osteogenic capacity in artificial scaffolds. The synthesized NO-releasing compound modulates macrophage polarization toward a regenerative phenotype (from M1 to M2) under LPS stimulation. The compound also promotes ALP activity and mineralization in osteoblastic lineage. In bone defects, NO-releasing scaffolds enhanced angiogenesis and bone growth.239

Qi et al. reported a NIR light triggered nanoplatform with anti-inflammatory and antibacterial dual functions.240 The nanoplatform consists of core-shell structure with photothermal agent gold nanorods as core and mesoporous silica as drug carrier shell. The mesoporous silica is loaded with indocyanine green (ICG) and the NO donor RSNO. Under the irradiation of NIR light, RSNO would be thermally activated to release NO, contributing to decrease of the inflammmasome activation related components and inhibition of NF-κB pathway, thus consequently suppressing the inflammmasome activation and improving local inflammatory status. Additionally, the nanoplatform also presents antibacterial abilities based on the photodynamic therapy (PDT), photothermal therapy (PTT), as well as NO gas therapy (Figure 7A).240

\textbf{CO.} The immunomodulatory role of CO is highlighted in innate immunity, especially in macrophages. In previous studies, both the in vivo and in vitro studies show that CO at low concentrations selectively inhibited the expression of LPS-induced pro-inflammatory cytokines TNF-α, IL-1β, and macrophage inflammatory protein-1β (MIP-1β) and increased the LPS-induced expression of the anti-inflammatory cytokine IL-10. In vivo experiments indicated that CORM-3 induced more M2 macrophages in periodontal tissues in mice with experimental periodontitis.241

Liu et al. presented a CO-releasing nano-platform for in vivo synergistic anti-inflammation, which could achieve targeted CORMs delivery and spatiotemporally controllable in situ CO release. The hollow mesoporous MnO$_2$ nanoparticles were chosen as the carriers and used for encapsulating Fla, a small molecule produrg for CO release. Then the MnO$_2$ nanoparticles were further coated with neutrophil cell membrane to target the nanoparticles to the inflammatory sites. In an LPS-induced paw inflammation model, the subsequently administrated nanoparticles are primed by the chemottractants and migrate to the inflammatory sites. Afterward, nanoparticles achieve in situ rapid photo-induced CO release in the presence of ample oxygen and the light and thus produce a significant synergistic anti-inflammatory effect (Figure 7B).242

In addition, the aforementioned CO nanogenerator possesses immunomodulatory effects to suppress M1 polarization while activating macrophages transformation toward the M2 phenotype. The underlying anti-inflammatory mechanisms have been speculated that CO gas participates in the activation of HO-1 antioxidant system and downregulation of pro-inflammatory signaling pathways such as p38 MAPK and NF-κB (p50/p65) simultaneously, resulting in inhibited oxidative stress and diminished secretion of pro-inflammatory cytokine. The positive induction of HO-1 upregulates the expression of typical polarization-related M2 markers such as CD206 and Arg-1 by activating JAK-STAT6 signaling pathways, thereby driving the pheno-type shift of macrophages (Figure 7C).243

Zhang et al. fabricated a biomimetically hierarchical scaffold composed of deferoxamine(poly(e-caprolactone)) nanoparticles (DFO@PCL NPs), manganese carbonyl (MnCO) nanoshapes, gelatin methacryloyl hydrogel, and a polylactide/hydroxyapatite (HA) matrix. This 3D printed stiff scaffold augment bone repair by facilitating the balance of the immune system and bone metabolism. A Fenton-like reaction between MnCO and endogenous H$_2$O$_2$ generated at the implant-tissue site triggers continuous release of CO and Mn$^{2+}$, thus significantly lessening inflammatory response by upregulating the M2 phenotype of macrophages, which also secretes vascular endothelial growth factor to induce vascular formation. The immunomodulatory, angiogenic, and osteogenic abilities of such an osteoimmunity-regulating scaffold present a profound effect on improving bone regeneration (Figure 7D).244
the antiinflammatory chemokine IL-10 through NF-κB/ATF-2/HSP-27–dependent pathways. Similarly, Huang et al. recently reported that 3-dihydro2-phenyl-2-sulfanylenebenzo[d] [1,3,2]oxazaphosphole (FW1256) releases H₂S in vitro over a period of several hours. FW1256 decreases TNF-α, IL-6, PGE₂ and NO generation in LPS-stimulated RAW264.7 macrophages in concentration-dependent manner via inhibition of the NF-κB system (Figure 7E). Zheng et al. encapsulated a pH-responsive H₂S donor JK1 into collagen hydrogel (Col-JK1). This hydrogel could control the release of H₂S by responding to the condition that mimic the intervertebral disc degeneration environment (acidic pH and overexpression of matrix metalloproteinases). In vitro studies indicate that Col-JK1 could inhibit apoptosis of nucleus pulposus cells (the major cells in discs), which eventually contributes to the recovery of disc degeneration by restoring the stability of disc ECM through up-regulation of the expression of anabolic proteins (for example, collagen II, aggrecan and sox-9), and down-regulation of the expression of catabolic proteins (for example, MMP13 and ADAMST5). H₂S also can promote the polarization of macrophages toward M2 phenotype for ameliorating the immune microenvironment through activation of adenosine monophosphate-activated protein kinase (AMPK) (Figure 6F).

Figure 7. Gasotransmitter delivery for immunomodulation application (A) Schematic illustration of design of GNRs@mSiO₂-SNO/ICG NPs and their anti-biofilm and inflammatory regulation functions to target periodontal diseases. Reprinted with permission from Qi et al. Copyright 2022 Elsevier. (B) Schematic representation of synergistic anti-inflammatory and anti-biofilm activity of ICG@CMCSA NPs and their anti-biofilm and inflammatory regulation functions to target periodontal diseases. Reprinted with permission from Yuan et al. Copyright 2022 Wiley-VCH. (C) Schematic illustration of potential mechanism of anti-inflammation and M2-type macrophage polarization by NIR-triggered CO release. Reprinted with permission from Zhang et al. Copyright 2022 Wiley-VCH. (D) Structure and immunomodulation performance of H₂S delivery platform. Reprinted with permission from Huang et al. Copyright 2019 Elsevier.

Bone regeneration

Bone defects caused by trauma, tumor and inflammation diseases seriously reduce the quality of life of patients. The limited intrinsic regenerative ability of the bone following destruction remains a notable medical problem, and thus it is important to develop methods of stimulating bone healing.
Bone marrow mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple cell lineages and are a major source of osteoblast precursors. Scaffolding biomaterials loaded with the osteogenic signals hold the potential to promote bone regeneration.

NO. NO plays a crucial role in physiology and pathology related to osteogenesis and bone regeneration. It exhibits a biphasic, dose-dependent effects on the activity of osteoblasts. A rapid release and high concentrations of NO lead to osteoblast apoptosis, while a slow and moderate release of NO encourages osteoblast differentiation, proliferation, and survival. The specific concentration of NO in a localized area depends on the release kinetics of NO from the donor species. Of note is the timing and dosage of local NO promotes the osteogenic differentiation of osteoblasts by altering expression and activity of the osteoblast master transcription factor Runx2.

Yang et al. construct a 3D-printing scaffold by integration of 2D Nb$_2$C MXene with S-nitrosothiol with bioactive glass. The NIR-triggered photonic hyperthermia of MXene precisely controls release of NO, which plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration (Figure 8B).

CO. In previous study, CORM-3 has been shown to promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. Levels of Runx2, osteocalcin (OCN) and osteopontin (OPN) mRNA and protein in the CORM-3-osteogenic group are significantly increased compared with the osteogenic group. The association of CO with bone homeostasis and orthopedic diseases need to be further investigated.

H$_2$S. In recent years, H$_2$S is emerging as a critical gasotransmitter in bone homeostasis. It regulates multiple signaling pathways in mammalian cells, and abnormal H$_2$S metabolism has been linked to defects in bone homeostasis. It has become recognized to impact various aspects during bone regeneration such as calcium uptake regulation, oxidative stress reduction, and angiogenesis. H$_2$S effect in critical-sized defects (Figure 8A).
cells (BMSCs). BMSCs are the original source of osteoblasts for bone formation. BMSCs produce H$_2$S to regulate their self-renewal and osteogenic differentiation. H$_2$S deficiency results in decreased intracellular Ca$^{2+}$ influx and then downregulates PKC/ERK-mediated Wnt/β-catenin signaling which controls osteogenic differentiation of BM-MSCs. CSE majorly contributed to endogenous H$_2$S production in the primary osteoblast. Overexpressed CSE increases osteoblast differentiation and maturation with higher BMP-2 and OPN expression, ALP activity, and calcium nodule formation via RUNX2 pathway, in contrast, knockdown of CSE has opposite effects. Implantation of a gelatin sponge containing the CSE adenovirus in a rat bone fracture results in repair of the fracture lesion after 2 weeks. Exogenous H$_2$S prevents high glucose-induced damage to osteoblasts through regulation of K$_{ATP}$ channels. H$_2$S also mediates recovery of osteoblast dysfunction by maintaining mitochondrial biogenesis in homocysteine-treated osteoblasts. H$_2$S facilitates osteogenesis and angiogenesis while suppressing overactive osteoclastogenesis.

Administration of H$_2$S both holds good therapeutic potential for bone regeneration. To control the delivery of potential therapeutic agents in bone, researchers have developed various scaffolds that can be embedded into the defect site. For example, the common H$_2$S donor GYY4137 has been embedded in a silk fibroin scaffold for bone regeneration while promoting neo-vascularization. H$_2$S-releasing silk fibroin scaffold is shown to support adhesion, proliferation and viability of BMSCs. Moreover, H$_2$S activates genes and proteins involved in ossification, osteoblast differentiation, bone mineral metabolism and angiogenesis allowing a high and early mineralization.

Al-Bishari fabricated an electrospray membrane loaded with H$_2$S donor JK-2 for promoting bone regeneration. After 4 and 7 d of culture, the ALP activity and expression of osteogenic genes of MC3T3-E1 cells cultured on this scaffold is significantly higher than that in the control group. After 2 months implantation of scaffolds in the rabbit skull, this scaffold is nearly covered with new bone whereas the control group shows a significantly lesser amount of new bone formation, indicating JK-2 donor loaded nanofiber membrane could be a promising candidate for bone tissue regeneration.

Osteoporosis

Osteoporosis is an emerging medical and socioeconomic threat with an ageing population. It is characterized by a systemic impairment of bone mass, strength, and microarchitecture, which increases the propensity of fragility fractures. Under normal physiological conditions, the metabolism of bone is a dynamic balance between bone formation and bone resorption. Osteoblasts mediated bone formation and osteoclasts mediated resorption are key processes that are necessary for the constant remodeling of bone tissue to keep it healthy. Osteoporosis results from an imbalance of bone resorption and bone formation that causes bone fragility and increases the risk of fracture. Postmenopausal osteoporosis is the most common type of osteoporosis. Due to the lack of estrogen, the bone resorption process is primarily increased by osteoclast maturation.

NO. Estrogen exerts its positive effects on bone partly through the NO/cGMP pathway. Hence NO donor therapy serves as an alternative to estrogen, estrogen agonists-antagonists, and androgen receptor modulatory therapy for preventing and treating osteoporosis. Nitrates, which generate NO, improved bone mineral density in estrogen-deficient rats and improve bone formation markers and bone mineral density in postmenopausal women in clinical trials. However, clinical benefits of organic nitrates are limited by development of tolerance and induction of oxidative stress. Kalyanaraman et al. developed a NO-releasing donor nitrosyl-cobinamide (NO-Cbi) for treating osteoporosis. In murine primary osteoblasts, NO-Cbi increases intracellular cGMP, Wnt/β-catenin signaling, proliferation, and osteoblastic gene expression, and protects cells from apoptosis. NO-Cbi reduces osteoclasts in intact mice and prevents the known increase in osteoclasts in ovariectomized (OVX) mice. Lin et al. delivered NO donor by encapsulation into an injectable microparticle system, which consists of phase-change materials capric acid (CA) and octadecane. Upon subcutaneous administration, the MPs undergo a phase transition, leaching out the NO donor and generating NO bubbles that are instantly covered by a micropellet depot, thus effectively reversing OVX-induced osteoporosis (Figure 9A). Ye et al. developed a NO delivery nanoplateform with bone targeting property based on the UCNP s that can convert NIR light into UV/blue light, and further stimulate the release of NO. Both in vitro and in vivo experiments demonstrate the bone targeting ability of the nanoparticles and a favorable curative effect of reversing osteoporosis (Figure 9B). Lee et al. fabricated a NO-releasing bioinspired scaffold with bioactive agents for the exquisite regeneration of osteoporotic bone. Nanoparticles containing bioactive agents of zinc oxide (ZO), alendronate, and BMP2 are incorporated to the biomimetic scaffold. The scaffold imparts multifunctionality such as anti-inflammatory, angiogenesis, anti-osteoclastogenesis, and bone regeneration. These synergistic effects contribute to enhanced new bone formation even in the osteoporotic rat model (Figure 9C).

CO. CO has been demonstrated to provide remarkable therapeutic benefits at low doses by suppressing inflammatory reaction of macrophages, which are also precursors for osteoclasts. Intraperitoneal injection of CORM-2 into mice with reduced bone mass due to ovariectomy results in a significant increase in bone mass. Treatment with CORM-2 also reduces the serum levels of collagen-type I fragments, trarate-resistant acid phosphatase 5b, and ROS, all of which are increased due to ovariectomy. In vitro study indicates that CORM-2 hinders receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation without affecting bone resorption. CORM-2 lowers long-lasting ROS levels and NF-κB activation in response to RANKL. Collectively, the inhibitory effect of CO on osteoclastogenesis is a result of impaired RANKL signaling due to defective NF-κB activation and decreased levels of long-lasting ROS (Figure 9D).

H$_2$S. Decrease in serum H$_2$S levels and the bone marrow levels of two key H$_2$S-generating enzymes, CBS and CSE, has been observed in ovariectomized mice, a model of postmenopausal bone loss (Figure 9E). Pharmacological administration of H$_2$S has achieved encouraging results in preclinical studies in the treatment of osteoporosis. Treatment with the H$_2$S donor GYY4137 normalizes serum H$_2$S in OVX mice, increases bone formation, and completely prevents the loss of trabecular bone induced by OVX. Mechanistic studies revealed that GYY4137 increases osteoblastogenesis by activating Wnt signaling (Figure 9F). In another study, NaHS dose-dependently decreases human osteoblast differentiation at concentrations which did not induce toxicity. The inhibition of human osteoblast differentiation is associated with a down-regulation in RANKL-dependent intracellular ROS levels in human pre-osteoclasts cells. Moreover, oxidative damage is an important contributor to the pathological development of osteoporosis. H$_2$S has been reported to protect MC3T3-E1 osteoblastic cells against H$_2$O$_2$-induced oxidative injury. H$_2$S not only increases cell viability and reduces cell apoptosis caused by H$_2$O$_2$ but also stimulates osteoblast proliferation by enhancing both transcription and activity of ALP in MC3T3-E1 osteoblastic cells. Moreover, treatment with NaHS stimulated the transcriptional level of OCN, the main bone matrix protein, and the protein expression of collagen, a major constituent of bone tissue. The above effects are mediated by the antioxidant effect of H$_2$S.
As for the treating of OA, an opposite strategy is proposed. More NO is delivery to the joint to facilitate decrease activity of the macrophage. Chen et al. constructed a novel photothermal-triggered NO generation platform for the precise therapy of OA by combining photothermal agents, NO and Notch1-siRNA into a single particle. NO nanogenerator exhibits precisely controlled NO production under the irradiation of a 650 nm laser in an aqueous solution and RAW 264.7 cells, effectively inhibit the activity of macrophages and the level of proinflammatory cytokines. In vivo experiments indicate that the nanoparticles can effectively accumulate in OA region, reduce the inflammatory pro-inflammatory cytokine levels in LPS-stimulated macrophage cell lines in vitro. Finally, the intraarticularly injected M-NO gel with anti-inflammatory dexamethasone significantly alleviates the symptoms of RA, with negligible toxicity, in animal models (Figure 10B).

As for the treating of OA, an opposite strategy is proposed. More NO is delivery to the joint to facilitate decrease activity of the macrophage. Chen et al. constructed a novel photothermal-triggered NO generation platform for the precise therapy of OA by combining photothermal agents, NO and Notch1-siRNA into a single particle. NO nanogenerator exhibits precisely controlled NO production under the irradiation of a 650 nm laser in an aqueous solution and RAW 264.7 cells, effectively inhibit the activity of macrophages and the level of proinflammatory cytokines. In vivo experiments indicate that the nanoparticles can effectively accumulate in OA region, reduce the inflammatory pro-inflammatory cytokine levels in LPS-stimulated macrophage cell lines in vitro. Finally, the intraarticularly injected M-NO gel with anti-inflammatory dexamethasone significantly alleviates the symptoms of RA, with negligible toxicity, in animal models (Figure 10B).

CO. CORM is an interesting strategy for the development of new treatments in articular conditions. Recently study reported CORMs are protective in OA. CORM-2 exhibits protecting effects on cartilage metabolism through the depression of catabolic activities and the stimulation of glycosaminoglycan synthesis. CORM-2 also regulates the inflammatory process in articular cartilage. Monocytes/macrophages have been found to massively infiltrate synovial membranes, playing a central role in the pathophysiology of inflammation. Inflammatory cytokines are crucial factors in the onset of OA. In response to inflammatory stimuli including IL-1β, TNF-α, and NO, chondrocytes synthesize the MMPs involved in the degradation of the extracellular matrix (ECM) of the cartilage.

Figure 9. Gasotransmitter delivery for treating osteoporosis (A) Fabrication/structure of test MPs and the functional mechanisms. Reprinted with permission from Lin et al. Copyright 2018 Wiley-VCH. (B) The UCPA-BNN can specifically chelate calcium ion in bone tissue. Reprinted with permission from Ye et al. Copyright 2021 American Chemical Society. (C) Schematic illustration of the ZAB-immobilized bioinspired polymeric scaffold. Reprinted with permission from Lee et al. Copyright 2022 Wiley-VCH. (D) CO protects against bone loss induced by OVX in mice. Reprinted with permission from Van Phan et al. Copyright 2013 Elsevier. (E) 3D image reconstruction of one representative femur per group. Reprinted with permission from Grassi et al. Copyright 2015 American Society for Bone and Mineral Research. (F) Representative pictures showing the effect of NaHS on osteoclasts differentiation and function. Reprinted with permission from Gambari et al. Copyright 2014 Elsevier.
modified hyaluronic acid (HA). The naongel is capable of efficiently entering activated macrophages via FA- and HA-mediated specific targeting effects and then rapidly release large amounts of CO by massive consumption of H$_2$O$_2$. The anti-inflammatory effects results from the generated CO, together with the depletion of intracellular H$_2$O$_2$, contribute to the suppression of articular cartilage degradation (Figure 10E).

H$_2$S. The effect of H$_2$S on joint inflammation has been investigated in the last few years due to its anti-inflammatory effect. H$_2$S shows a protective effect on cartilage damage in OA patients in different studies. The H$_2$S-release donor exerts anti-inflammatory effects of in multiple cell types relevant for the pathogenesis of arthritis. NaHS treatment of FLSs obtained from OA patients reduces both spontaneous and IL-1β-induced secretion of IL-6, IL-8, and various MMPs such as MMP-2 and MMP-14. H$_2$S partially antagonizes IL-1β stimulation via selective manipulation of the MAPK and the PI3K/Akt pathways.

Pretreatment with the H$_2$S donor NaHS dramatically attenuates IL-1β - induced over-production of inflammatory cytokines (IL-8, IL-6, TNF-α) and improves the balance between anabolic and catabolic chondrocyte capacities via PI3K/AKT pathway - mediated inhibition of NF -κB. Moreover, mitochondrial dysfunction - related apoptosis is significantly reversed by NaHS in IL-1β - stimulated chondrocytes though suppressing IL -1β - induced phosphorylation of the MAPK cascades. Furthermore, in the destabilization of the medial meniscus mouse model, OA progression is ameliorated by NaHS administration. Surgery-induced activation of p-p38 and p-JNK MAPKs (including p-ERK1/2) are elevated, which are markedly reversed after NaHS-treatment (but not p-ERK1/2) (Figure 10F).

Another in vitro study reveals that GYY4137 exerts anti-inflammatory properties on LPS-treated normal human synoviocytes (HFLS) and articular chondrocytes (HAC). When cells are treated with GYY4137 previously (for 1 h prior to LPS addition) and subsequently (at 6 or 18 h after LPS addition), the levels of pro-inflammatory markers PGE$_2$, TNF-α, IL-6 and NO are reduced. Intracellular levels of COX-2 and iNOS and NF-κB activation in both cell types.

osteoarthritic chondrocytes. Treatment of chondrocytes with CORM-2 strongly down-regulates NOS-2 and mPGES-1 protein expression, as well as the production of ROS, nitrite, PGE2, and IL-1β-induced TNF-α. CORM-3 reduces the cellular infiltration into the joints and production of relevant inflammatory mediators such as cytokines and PGE2. CORM-3 inhibits IL-1β, TNF-α and IL-6 production, which may result in a decreased infiltration and activation of inflammatory cells in arthritic joints leading to an amelioration of the disease. Tao et al. developed a “breathing” micellar platform that can inhale NO and exhale CO. The micelle can simultaneously scavenge overproduced NO and release CO to attenuate proinflammatory cytokines in LPS-challenged macrophage cells. In vivo studies reveal that the micelle outperformed conventional nonsteroidal anti-inflammatory drugs such as dexamethasone in treatment of RA in adjuvant-induced arthritis (AIA) rats (Figure 10D). Yang et al. fabricated a peptide dendrimer nanogel, which physically encapsulates CO donor CORM-401 and wraps its surface with folic acid (FA)-
are also reduced when GYY4137 is administered 1 h prior to LPS. Both H₂S sources NaHS and GYY4137 show anti-inflammatory and anti-catabolic properties when added to IL-1β activated osteoarthritic human chondrocytes. Supplementation with exogenous H₂S sources can regulate the expression of relevant genes in OA pathogenesis and progression, counteracting IL-1β pro-inflammatory signals that lead to cartilage destruction in part by reducing NF-kB activation. In addition, co-culture the OA cartilage disks with H₂S-forming reagents NaHS and GYY4137 for long-term up to 21 days effectively avoids GAGs destruction.

Yu et al. prepared and constructed the dendritic mesoporous silica nanoparticles (DMSN) and a sustained H₂S delivery system consisted of SPRC and DMSN (SPRC@DMSN). The SPRC@DMSN could elevate the H₂S concentration for 3 days with single oral administration, while the SPRC lasted for only 6 h. The SPRC@DMSN suppresses the expression of LPS-induced pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release and increases the release of IL-10 detected in AIA rats. In SPRC@DMSN group, decrease level of paw volume and arthritis index could be observed. The SPRC@DMSN@treated rats have a marked reduction in cartilage degradation and bone erosion in comparison with the AIA group or SPRC-treated group.

Geng et al. fabricated a block polymer composed of an NO-responsive monomer and a cysteine-triggered H₂S donor. The block polymer self-assembles to nanomicelles, which simultaneously scavenge NO and releases therapeutic H₂S for RA treatment. In vitro experiments demonstrate that the polymer exhibits a synergistic effect on suppressing ROS levels and pro-inflammatory cytokine production via NF-kB signaling pathway. In vivo studies with an RA rat model show that the system mitigates the synovial inflammation, osteoporosis, and clinical symptoms of RA rats (Figure 10G).

CONCLUSION AND OUTLOOK

In summary, gas therapy, which utilizes endogenous gas signaling molecules to treat diseases, holds natural advantages over traditional therapy strategies in dealing with bone diseases. Various multifunctional gas delivery platforms have been developed, with the abilities not only to delivery gasotransmitter molecules in a sustained and controlled manner, but also to realize responsible release to endogenous or exogenous stimuli, synergize with other therapy strategies such as photothermal treatment, and to target a desired site of release through systemic administration. Despite the encouraging results in treatment of bone diseases, several challenges remain in the field of gasotransmitter delivery for further development, and more effort is required to accelerate the clinical application of this novel therapy approach.

a Biocompatibility and biosafety of gas delivery platforms. Although the gas delivery platforms show low cytotoxicity and good biocompatibility at suitable concentration, the platforms still suffer from the long-term biosafety concern, including biodistribution, biodegradation, metabolism, and hemo-compatibility. For example, photoresponsive gasotransmitter donors usually yield cytotoxic byproducts. Additionally, some gas delivery platforms are initially developed for cancer treatment, the long-term toxicity of these materials needs to be studied in depth when utilize them to treat bone diseases.

b The mechanism of gas therapy. Although gas therapy has been studied for many years, with its therapeutic potential evaluated in vitro and in animal models for various diseases, the underlying mechanisms remain incompletely understood. This is especially true for gas therapies assisted by gas-releasing materials. For example, the precise concentration threshold has yet to be determined. Clinical trials involving gas therapy are scarce, but highly desirable. Future research should focus on elucidating the specific action mechanisms of gas therapy, which will aid in the development of gas-releasing platforms with improved biocompatibility and controlled release behaviors for clinical applications. Moreover, advanced techniques need to be developed for accurately measuring the concentrations of these therapeutic gases when administered to the body.

c Controllable gas release and precise delivery of platforms. Delivering gases to specific targets and achieving controllable release through a feasible trigger are crucial for obtaining optimal therapeutic effects. Therefore, it is essential to develop more platforms with high sensitivity to exogenous and endogenous stimuli to enable efficient and controlled release of gaseous donors. It is important to note that if administered at inappropriate levels (either too high or too low), these gases may produce adverse effects.

d Orthopedic application. Gas-releasing molecules hold great potential for orthopedic applications. With the help of platforms, gaseous molecules can be delivered to specific bone sites through injection or implantation, ensuring in situ release of the corresponding gas under stimuli and enhancing therapeutic efficacy. More importantly, the dosage and release rate of gaseous molecules within the platforms need to be precisely tuned through molecular design and further regulated by internal or external stimuli specific for the microenvironment of bone tissues.

e Co-delivery of multiple gasotransmitters. An intriguing and currently underexplored area for future research is the development of delivery systems that co-activate multiple therapeutic gases simultaneously for potential combination therapy. There is evidence that crosstalk exists among these gases, with some displaying similar pharmacological profiles and even acting on the same targets. For instance, both H₂S and CO are widely known as potent anti-inflammatory agents that act on the Nrf2 pathway. Additionally, synergistic effects have been observed between some gasotransmitters. As such, it would be highly desirable to create drug delivery systems designed for the co-delivery of multiple gasotransmitters.

REFERENCES

sponge synergizes with antibacterial, antioxidant and pro-vascularization activities.

ACKNOWLEDGMENTS

This work was financially supported by grants from the National Natural Science Foundation of China (Grant No. 82001965 and 82272157), Shenzhen Science and Technology Research Foundation (JCYJ20190808166516542).

AUTHOR CONTRIBUTIONS

A. G. and H. W. supervised and revised the manuscript. Y. X. and Y. L. wrote and edited the manuscript. All authors contributed to the article and approved the submitted version.

DECLARATION OF INTERESTS

The authors declare no competing interests.

LEAD CONTACT WEBSITE

http://htod.siat.ac.cn/index.php/Team/detail.shtml?id=4&cid=11

http://htod.siat.ac.cn/index.php/Team/detail.shtml?id=36&cid=11