Climate change is accelerated by anthropogenic greenhouse gas emissions, and its effects are increasingly felt globally.
Transitioning to renewable energy sources and enhancing carbon sinks are crucial steps in mitigating climate change.
Adaptation to climate change requires a combination of strategies that foster resilience in local communities and ecosystems.
Carbon quantification, modeling, and pricing are key areas that need to be further developed to address climate change.
This review discusses the current status and prospects of global climate change, focusing on mitigation and adaptation strategies.
[1] | Piguet, E. (2022). Linking climate change, environmental degradation, and migration: An update after 10 years. Wiley Interdiscip. Rev. Clim. Change 13: e746. |
[2] | Lubchenco, J., Heather, T., and Eli, F. (2022). Accounting for nature on earth day 2022. The White House. |
[3] | Wang, F., Harindintwali, J.D., Yuan, Z., et al. (2021). Technologies and perspectives for achieving carbon neutrality. The Innovation 2, 100180, 10.1016/j.xinn.2021.100180. |
[4] | EPA (2020). Sources of greenhouse gas emissions. Environmental Protection Agency. |
[5] | NOAA (2022). 2022 was world’s 6th-warmest year on record. Antarctic sea ice coverage melted to near-record lows. National Oceanic and Atmospheric Administration. |
[6] | Canadell, J.G., Meyer, C.P., Cook, G.D., et al. (2021). Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12: 6921. DOI: 10.1038/s41467-021-27225-4. |
[7] | Marlon, J.R., Bartlein, P.J., Gavin, D.G., et al. (2012). Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 109: E535−E543. DOI: 10.1073/pnas.1119351109. |
[8] | Perkins, S. (2022). How much of the Earth’s ice is melting. New and old techniques combine to paint a sobering picture. Proc. Natl. Acad. Sci. USA 119: e2213762119. |
[9] | Gudmundsson, L., Boulange, J., Do, H.X., et al. (2021). Globally observed trends in mean and extreme river flow attributed to climate change. Science 371: 1159−1162. DOI: 10.1126/science.aba3996. |
[10] | Sun, Y., Zhang, X.B., Ding, Y.H., et al. (2022). Understanding human influence on climate change in China. Natl. Sci. Rev. 9: nwab113. DOI: 10.1093/nsr/nwab113. |
[11] | Meza, I., Rezaei, E.E., Siebert, S., et al. (2021). Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Sci. Total Environ. 799: 149505. DOI: 10.1016/j.scitotenv.2021.149505. |
[12] | Roman-Palacios, C., and Wiens, J.J. (2020). Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. U.S.A. 117: 4211−4217. DOI: 10.1073/pnas.1913007117. |
[13] | Ford, J., Zavaleta-Cortijo, C., Ainembabazi, T., et al. (2022). Interactions between climate and COVID-19. Lancet Planet. Health 6: E825−E833. DOI: 10.1016/S2542-5196(22)00174-7. |
[14] | Heavens, N.G., Ward, D.S., and Natalie, M.M. (2013). Studying and projecting climate change with earth system models. Nat. Educ. Knowl. 4: 4. |
[15] | Voosen, P. (2018). Science insurgents plot a climate model driven by artificial intelligence. Science. |
[16] | Shaikh Farzaneh, K., Aysin, D.-H., Michael, H., and Elnaz, T. (2021). Can public awareness, knowledge and engagement improve climate change adaptation policies? Discover Sustain. 2. |
[17] | Prakash, A., and Bernauer, T. (2020). Survey research in environmental politics: why it is important and what the challenges are introduction. Env. Polit. 29: 1127−1134. DOI: 10.1080/09644016.2020.1789337. |
[18] | Schmid, N., Beaton, C., Kern, F., et al. (2021). Elite vs. mass politics of sustainability transitions. Environ. Innov. Soc. Transit. 41: 67−70. |
[19] | UNCC (2021). The Paris agreement What is the Paris agreement? United Nations Climate Change. |
[20] | Fuhr, H. (2021). The rise of the Global South and the rise in carbon emissions. Third World Q. 42: 2724−2746. DOI: 10.1080/01436597.2021.1954901. |
[21] | Jin, Y., Hu, S., Zhang, Z., et al. (2022). The path to carbon neutrality in China: a paradigm shift in fossil resource utilization. Res. Chem. Mater. 1: 129−135. |
[22] | Marquardt, J., Fünfgeld, A., and Elsässer, J.P. (2023). Institutionalizing climate change mitigation in the Global South: current trends and future research. Earth Syst. Gov. 15: 100163. DOI: 10.1016/j.esg.2022.100163. |
[23] | IPCC (2022). Climate change 2022: Mitigation of climate change. Mitigation pathways compatible with long-term goals. Intergovernmental Panel on Climate Change. |
[24] | Ratwatte, P., Wehling, H., Phalkey, R., and Weston, D. (2023). Prioritising climate change mitigation behaviours and exploring public health co-benefits: a delphi study. Int. J. Environ. Res. Public Health 20: 5094. DOI: 10.3390/ijerph20065094. |
[25] | HERRING, D., and LINDSEY, R. (2020). Hasn't earth warmed and cooled naturally throughout history? NOAA Climate.gov. |
[26] | Forster, P., V. Ramaswamy, P. Artaxo, et al. (2007). Changes in atmospheric constituents and in radiative forcing. (Cambridge University Press)L. |
[27] | EPA (2023). Causes of climate change. United States Environmental Protection Agency. |
[28] | Friedlingstein, P., O'Sullivan, M., Jones, M.W., et al. (2022). Global carbon budget 2022. Earth Syst. Sci. Data 14: 4811−4900. DOI: 10.5194/essd-14-4811-2022. |
[29] | Liu, Z., Deng, Z., Davis, S., and Ciais, P. (2023). Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 4: 205−206. DOI: 10.1038/s43017-023-00406-z. |
[30] | Cui, C., Guan, D., Wang, D., et al. (2022). Global mitigation efforts cannot neglect emerging emitters. Natl. Sci. Rev. 9: nwac223. DOI: 10.1093/nsr/nwac223. |
[31] |
Keeling, C.D., Piper, S.C., Bacastow, R.B., et al. (2001). Exchanges of atmospheric CO2 and |
[32] | Lüthi, D., Le Floch, M., Bereiter, B., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453: 379−382. DOI: 10.1038/nature06949. |
[33] | Waters, C.N., Zalasiewicz, J., Summerhayes, C., et al. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351: aad2622. DOI: 10.1126/science.aad2622. |
[34] | Steffen, W., Rockstrom, J., Richardson, K., et al. (2018). Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 115: 8252−8259. DOI: 10.1073/pnas.1810141115. |
[35] | Crutzen, P.J. (2002). Geology of mankind. Nature 415: 23−23. DOI: 10.1038/415023a. |
[36] | Cowie, R.H., Bouchet, P., and Fontaine, B. (2022). The Sixth Mass Extinction: fact, fiction or speculation. Biol. Rev. Camb. Philos. Soc. 97: 640−663. DOI: 10.1111/brv.12816. |
[37] | Isbell, F., Balvanera, P., Mori, A.S., et al. (2023). Expert perspectives on global biodiversity loss and its drivers and impacts on people. Front. Ecol. Environ. 21: 94−103. DOI: 10.1002/fee.2536. |
[38] | Gulev, S.K., Thorne, P.W., Ahn, J., et al. (2021). In climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. In changing state of the climate system, Masson-Delmott, P.Z. V., A. Pirani, et al., eds. (Cambridge University Press), 287–422. |
[39] | Jungclaus, J.H., Bard, E., Baroni, M., et al. (2017). The PMIP4 contribution to CMIP6 – Part 3: the last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev. 10: 4005−4033. DOI: 10.5194/gmd-10-4005-2017. |
[40] | Goldblatt, C., and Zahnle, K.J. (2011). Faint young sun paradox remains. Nature 474: E3−E4. |
[41] | Feulner, G. (2012). The faint young sun problem. Rev. Geophys. 50: RG2006. |
[42] | Hay, W.W. (1996). Tectonics and climate. Geol. Rundsch. 85: 409−437. DOI: 10.1007/BF02369000. |
[43] | Smith, A.G. (1999). Tectonic boundary conditions for climate reconstructions. In Oxford Monographs on geology and geophysics, T.J. CROWLEY, and K.C. BURKE, eds. (Oxford University Press), pp. 599-606. |
[44] | Ruddiman, W.F. (2012). Tectonic uplift and climate change (Springer; Softcover reprint of the original 1st ed. 1997 edition)L. |
[45] | Marshall, L.R., Maters, E.C., Schmidt, A., et al. (2022). Volcanic effects on climate: recent advances and future avenues. Bull. Volcanol. 84: 54. DOI: 10.1007/s00445-022-01559-3. |
[46] | Robock, A. (2000). Volcanic eruptions and climate. Rev. Geophys. 38: 191−219. DOI: 10.1029/1998RG000054. |
[47] | Hays, J.D., Imbrie, J., and Shackleton, N.J. (1976). Variations in the earth's orbit: pacemaker of the ice ages. Science 194: 1121−1132. DOI: 10.1126/science.194.4270.1121. |
[48] | Laskar, J., Robutel, P., Joutel, F., et al. (2004). A long-term numerical solution for the insolation quantities of the earth. Astron. Astrophys. 428: 261−285. DOI: 10.1051/0004-6361:20041335. |
[49] | Zachos, J., Pagani, M., Sloan, L., et al. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686−693. DOI: 10.1126/science.1059412. |
[50] | Li, J., and Fang, X. (1999). Uplift of the Tibetan Plateau and environmental changes. Chin. Sci. Bull. 44: 2117−2124. DOI: 10.1007/BF03182692. |
[51] | Wu, F., Fang, X., Yang, Y., et al. (2022). Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3: 684−700. DOI: 10.1038/s43017-022-00331-7. |
[52] | Ruddiman, W.F., and Kutzbach, J.E. (1991). Plateau uplift and climatic change. Sci. Am. 264: 66−72. |
[53] | Hollis, C.J., Dunkley Jones, T., Anagnostou, E., et al. (2019). The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model Dev. 12, 3149-3206. |
[54] | Cox, G.M., Halverson, G.P., Stevenson, R.K., et al. (2016). Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth Planet. Sci. Lett. 446: 89−99. DOI: 10.1016/j.jpgl.2016.04.016. |
[55] | Brantley, S.L., Shaughnessy, A., Lebedeva, M.I., and Balashov, V.N. (2023). How temperature-dependent silicate weathering acts as Earth's geological thermostat. Science 379: 382−389. DOI: 10.1126/science.add2922. |
[56] |
Dessert, C., Dupré, B., François, L.M., et al. (2001). Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett. 188: 459−474. DOI: 10.1016/S0012-821X(01)00317-X.
View in Article
CrossRef 87Sr/ |
[57] | Black, B.A., Neely, R.R., Lamarque, J.-F., et al. (2018). Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11: 949−954. DOI: 10.1038/s41561-018-0261-y. |
[58] | Burgess, S.D., and Bowring, S.A. (2015). High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1: e1500470. DOI: 10.1126/sciadv.1500470. |
[59] | Hoffman, P.F. (1999). The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J. Afr. Earth Sci. 28: 17−33. DOI: 10.1016/S0899-5362(99)00018-4. |
[60] | Claussen, M. (2009). Late Quaternary vegetation-climate feedbacks. Clim. Past 5: 203−216. DOI: 10.5194/cp-5-203-2009. |
[61] | Curry, J.A., Schramm, J.L., and Ebert, E.E. (1995). Sea ice-albedo climate feedback mechanism. J. Clim. 8: 240−247. DOI: 2.0.CO;2">10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2. |
[62] | Goosse, H., Kay, J.E., Armour, K.C., et al. (2018). Quantifying climate feedbacks in polar regions. Nat. Commun. 9: 1919. DOI: 10.1038/s41467-018-04173-0. |
[63] | Pepin, N., Bradley, R.S., Diaz, H.F., et al. (2015). Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5: 424−430. DOI: 10.1038/nclimate2563. |
[64] | Yang, F., Kumar, A., Wang, W., et al. (2001). Snow–albedo feedback and seasonal climate variability over North America. J. Clim. 14: 4245−4248. DOI: 2.0.CO;2">10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2. |
[65] | Cess, R.D. (2005). Water vapor feedback in climate models. Science 310: 795−796. DOI: 10.1126/science.1119258. |
[66] | Dessler, A.E., Zhang, Z., and Yang, P. (2008). Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys. Res. Lett. 35: L20704. DOI: 10.1029/2008GL035333. |
[67] | Schädel, C., Bader, M.K.F., Schuur, E.A.G., et al. (2016). Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6: 950−953. DOI: 10.1038/nclimate3054. |
[68] | Dean, J.F., Middelburg, J.J., Röckmann, T., et al. (2018). Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56: 207−250. DOI: 10.1002/2017RG000559. |
[69] | Walker, X.J., Baltzer, J.L., Cumming, S.G., et al. (2019). Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572: 520−523. DOI: 10.1038/s41586-019-1474-y. |
[70] | Mack, M.C., Bret-Harte, M.S., Hollingsworth, T.N., et al. (2011). Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475: 489−492. DOI: 10.1038/nature10283. |
[71] | Moritz, M.A., Parisien, M.-A., Batllori, E., et al. (2012). Climate change and disruptions to global fire activity. Ecosphere 3: 49. |
[72] | Liu, Z., Notaro, M., Kutzbach, J., and Liu, N. (2006). Assessing global vegetation–climate feedbacks from observations. J. Clim. 19: 787−814. DOI: 10.1175/JCLI3658.1. |
[73] | Turner, S.K. (2018). Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum. Philos. Trans. R. Soc., A 376: 20170082. DOI: 10.1098/rsta.2017.0082. |
[74] | Gutjahr, M., Ridgwell, A., Sexton, P.F., et al. (2017). Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature 548: 573−577. DOI: 10.1038/nature23646. |
[75] | Zeebe, R.E., Ridgwell, A., and Zachos, J.C. (2016). Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9: 325−329. DOI: 10.1038/ngeo2681. |
[76] | Anagnostou, E., John, E.H., Babila, T.L., et al. (2020). Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11: 4436. DOI: 10.1038/s41467-020-17887-x. |
[77] | Cheng, H., Zhang, H., Spotl, C., et al. (2020). Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. U.S.A. 117: 23408−23417. DOI: 10.1073/pnas.2007869117. |
[78] | Condron, A., and Winsor, P. (2012). Meltwater routing and the Younger Dryas. Proc. Natl. Acad. Sci. U.S.A. 109: 19928−19933. DOI: 10.1073/pnas.1207381109. |
[79] | Carlson, A. (2013). The Younger Dryas climate event. In The Encyclopedia of Quaternary Science, E. S.A., ed. (Elsevier), 126-134. |
[80] | Ezer, T. (2013). Sea level rise, spatially uneven and temporally unsteady: Why the U. S. East Coast, the global tide gauge record, and the global altimeter data show different trends. Geophys. Res. Lett. 40: 5439−5444. |
[81] | Caesar, L., Rahmstorf, S., Robinson, A.V., et al. (2018). Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556: 191−196. DOI: 10.1038/s41586-018-0006-5. |
[82] | Lee, J.-Y., Marotzke, J., Bala, G., et al. (2021). Scenario-based projections and near-term information. In climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In Future Global Climate, Masson-Delmott, P.Z. V., A. Pirani, et al., eds. (Cambridge University Press), 553–672. |
[83] | Manabe, S., and Wetherald, R.T. (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci 24: 241−259. DOI: 2.0.CO;2">10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2. |
[84] | Hasselmann, K. (1976). Stochastic climate models: Part I. Theory. Tellus A: Dynamic Meteorology and Oceanography. |
[85] | Castelvecchi, D., and Gaind, N. (2021). Climate modellers and theorist of complex systems share physics Nobel. Nature, 598: 246−247. |
[86] | IPCC (2021). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergove. Intergovernmental Panel on Climate Change. |
[87] | Graedel, T.E., and Crutzen, P.J. (1993). Atmospheric change: an earth system perspective Nature, 367, 695. |
[88] | Isaksen, I.S.A., Granier, C., Myhre, G., et al. (2009). Atmospheric composition change: climate–chemistry interactions. Atmos. Environ. 43: 5138−5192. DOI: 10.1016/j.atmosenv.2009.08.003. |
[89] | Zittis, G., Almazroui, M., Alpert, P., et al. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 60: e2021RG000762. |
[90] | Diaz, J.H. (2013). Recognizing and reducing the threats to human health and environmental ecosystems from stratospheric ozone depletion. In Climate Vulnerability, R.A. Pielke, ed. (Academic Press), 17-38. |
[91] | Crutzen, P.J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Q. J. R. Meteorol. Soc. 96: 320−325. DOI: 10.1002/qj.49709640815. |
[92] | Molina, M.J., and Rowland, F.S. (1974). Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249: 810−812. DOI: 10.1038/249810a0. |
[93] | Barnes, P.W., Williamson, C.E., Lucas, R.M., et al. (2019). Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat. Sustain. 2: 569−579. DOI: 10.1038/s41893-019-0314-2. |
[94] | Feng, Z., Xu, Y., Kobayashi, K., et al. (2022). Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 3: 47−56. DOI: 10.1038/s43016-021-00422-6. |
[95] | Mukherjee, A., and Agrawal, M. (2017). World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 15: 283−309. DOI: 10.1007/s10311-017-0611-9. |
[96] | EPA (2022). Climate change impacts on air quality. United States Environmental Protection Agency. |
[97] | Brasseur, G.P. (2009). Implications of climate change for air quality. World Meteorological Organization (WMO) Bulletin 58: 10. |
[98] | Pinder, R.W., Davidson, E.A., Goodale, C.L., et al. (2012). Climate change impacts of US reactive nitrogen. Proc. Natl. Acad. Sci. USA 109: 7671−7675. DOI: 10.1073/pnas.1114243109. |
[99] | Shi, Y., Cui, S., Ju, X., et al. (2015). Impacts of reactive nitrogen on climate change in China. Sci. Rep. 5: 8118. DOI: 10.1038/srep08118. |
[100] | Wang, C., Jeong, G.R., and Mahowald, N. (2009). Particulate absorption of solar radiation: Anthropogenic aerosols vs. dust. Atmos. Chem. Phys. 9: 3935−3945. DOI: 10.5194/acp-9-3935-2009. |
[101] | de Wit, C.A., Vorkamp, K., and Muir, D. (2022). Influence of climate change on persistent organic pollutants and chemicals of emerging concern in the Arctic: state of knowledge and recommendations for future research. Environ. Sci.: Processes Impacts 24: 1530−1543. DOI: 10.1039/D1EM00531F. |
[102] | Friedlingstein, P., Jones, M., O'Sullivan, M., et al. (2021). Global carbon budget 2021. Earth Syst. Sci. Data 14: 1917−2005. |
[103] | Lal, R. (2008). Carbon sequestration. Philos. Trans. R. Soc., B 363: 815−830. DOI: 10.1098/rstb.2007.2185. |
[104] | Lehmann, J., Hansel, C.M., Kaiser, C., et al. (2020). Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13: 529−534. DOI: 10.1038/s41561-020-0612-3. |
[105] | Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623−1627. DOI: 10.1126/science.1097396. |
[106] | Rengel, Z. (2011). Soil pH, soil health and climate change. In soil health and climate change, B.P. Singh, A.L. Cowie, and K.Y. Chan, eds. (Springer Berlin Heidelberg), 69-85. |
[107] | Davidson, E.A., and Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165−173. DOI: 10.1038/nature04514. |
[108] | Wickland, K.P., and Neff, J.C. (2008). Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87: 29−47. DOI: 10.1007/s10533-007-9166-3. |
[109] | Schuur, E.A.G., McGuire, A.D., Schädel, C., et al. (2015). Climate change and the permafrost carbon feedback. Nature 520: 171−179. DOI: 10.1038/nature14338. |
[110] | Melillo, J.M., Frey, S.D., DeAngelis, K.M., et al. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358: 101−104. DOI: 10.1126/science.aan2874. |
[111] | Zhang, J., Kuang, L., Mou, Z., et al. (2022). Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest. Plant Soil 481: 349−365. DOI: 10.1007/s11104-022-05642-8. |
[112] | Verbrigghe, N., Leblans, N.I.W., Sigurdsson, B.D., et al. (2022). Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil. Biogeosciences 19: 3381−3393. DOI: 10.5194/bg-19-3381-2022. |
[113] | Soong, J.L., Castanha, C., Pries, C.E.H., et al. (2021). Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Science Adv. 7: eabd1343. DOI: 10.1126/sciadv.abd1343. |
[114] | Jia, J., Cao, Z., Liu, C., et al. (2019). Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Global Change Biol. 25: 4383−4393. DOI: 10.1111/gcb.14823. |
[115] | Wang, H., Liu, H., Cao, G., et al. (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23: 701−710. DOI: 10.1111/ele.13474. |
[116] | Feng, X., Simpson, A.J., Wilson, K.P., et al. (2008). Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1: 836−839. DOI: 10.1038/ngeo361. |
[117] | Fenner, N., and Freeman, C. (2011). Drought-induced carbon loss in peatlands. Nat. Geosci. 4: 895−900. DOI: 10.1038/ngeo1323. |
[118] | Meyer, N., Welp, G., and Amelung, W. (2018). The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Global Biogeochem. Cycles 32: 306−323. DOI: 10.1002/2017GB005644. |
[119] | Zhou, T., Shi, P., Hui, D., and Luo, Y. (2009). Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. J. Geophys. Res.: Biogeosci. 114. |
[120] | Fierer, N., Colman, B.P., Schimel, J.P., and Jackson, R.B. (2006). Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Global Biogeochem. Cy. 20: 1−10. |
[121] | Terrer, C., Jackson, R.B., Prentice, I.C., et al. (2019). Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9: 684−689. DOI: 10.1038/s41558-019-0545-2. |
[122] | Vitousek, P.M., Porder, S., Houlton, B.Z., and Chadwick, O.A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20: 5−15. DOI: 10.1890/08-0127.1. |
[123] | Bauters, M., Janssens, I.A., Wasner, D., et al. (2022). Increasing calcium scarcity along Afrotropical forest succession. Nat. Ecol. Evol. 6: 1122−1131. DOI: 10.1038/s41559-022-01810-2. |
[124] | Batterman, S.A., Hedin, L.O., van Breugel, M., et al. (2013). Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502: 224−227. DOI: 10.1038/nature12525. |
[125] | Craine, J.M., Morrow, C., and Fierer, N. (2007). Microbial nitrogen limitation increases decomposition. Ecology 88: 2105−2113. DOI: 10.1890/06-1847.1. |
[126] | Meyer, N., Welp, G., Rodionov, A., et al. (2018). Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biol. Biochem. 119: 152−161. DOI: 10.1016/j.soilbio.2018.01.024. |
[127] | Wrage, N., Velthof, G.L., van Beusichem, M.L., and Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723−1732. DOI: 10.1016/S0038-0717(01)00096-7. |
[128] | Griffis, T.J., Chen, Z., Baker, J.M., et al. (2017). Nitrous oxide emissions are enhanced in a warmer and wetter world. Proc. Natl. Acad. Sci. USA 114: 12081−12085. DOI: 10.1073/pnas.1704552114. |
[129] | Stocker, B.D., Roth, R., Joos, F., et al. (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Change 3: 666−672. DOI: 10.1038/nclimate1864. |
[130] | Moss, B., Kosten, S., Meerhoff, M., et al. (2011). Allied attack: climate change and nutrient pollution. Inland Waters 18: 101−105. |
[131] | Jeppesen, E., Kronvang, B., Meerhoff, M., et al. (2009). Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J. Environ. Qual. 38: 1930−1941. DOI: 10.2134/jeq2008.0113. |
[132] | Steinhäuser, K.G., Von Gleich, A., Große Ophoff, M., and Körner, W. (2022). The necessity of a global binding framework for sustainable management of chemicals and materials—interactions with climate and biodiversity. Sustainable Chem. 3: 205−237. DOI: 10.3390/suschem3020014. |
[133] | Sigmund, G., Ågerstrand, M., Antonelli, A., et al. (2023). Addressing chemical pollution in biodiversity research. Global Change Biol. |
[134] | Ma, C.-S., Zhang, W., Peng, Y., et al. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 12: 5351. DOI: 10.1038/s41467-021-25505-7. |
[135] | Jansson, J.K., and Wu, R. (2022). Soil viral diversity, ecology and climate change. Nat. Rev. Microbiol. 21: 296−311. |
[136] | Nielsen, U.N., Wall, D.H., and Six, J. (2015). Soil biodiversity and the environment. Annu. Rev. Env. Resour. 40: 63−90. DOI: 10.1146/annurev-environ-102014-021257. |
[137] | Cavicchioli, R., Ripple, W.J., Timmis, K.N., et al. (2019). Scientists' warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17: 569−586. DOI: 10.1038/s41579-019-0222-5. |
[138] | Jansson, J.K., and Hofmockel, K.S. (2020). Soil microbiomes and climate change. Nat. Rev. Microbiol. 18: 35−46. DOI: 10.1038/s41579-019-0265-7. |
[139] | Spence, A.R., and Tingley, M.W. (2020). The challenge of novel abiotic conditions for species undergoing climate‐induced range shifts. Ecography 43: 1571−1590. DOI: 10.1111/ecog.05170. |
[140] | Kästner, M., Miltner, A., Thiele-Bruhn, S., and Liang, C. (2021). Microbial necromass in soils—linking microbes to soil processes and carbon turnover. Front. Environ. Sci. 9. |
[141] | Nations, U. (2020). UN world water development report 2020. |
[142] | WMO (2020). World meteorological day focus on climate change and water. WMO. |
[143] | Srivastava, S., Mehta, L., and Naess, L.O. (2022). Increased attention to water is key to adaptation. Nat. Clim. Change 12: 113−114. DOI: 10.1038/s41558-022-01277-w. |
[144] | Woolway, R.I., Kraemer, B.M., Lenters, J.D., et al. (2020). Global lake responses to climate change. Nat. Rev. Earth Environ. 1: 388−403. DOI: 10.1038/s43017-020-0067-5. |
[145] | Grossiord, C., Buckley, T.N., Cernusak, L.A., et al. (2020). Plant responses to rising vapor pressure deficit. New Phytol. 226: 1550−1566. DOI: 10.1111/nph.16485. |
[146] | Pokhrel, Y., Felfelani, F., Satoh, Y., et al. (2021). Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11: 226−233. DOI: 10.1038/s41558-020-00972-w. |
[147] | Piao, S., Ciais, P., Huang, Y., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature 467: 43−51. DOI: 10.1038/nature09364. |
[148] | Dai, A. (2013). Increasing drought under global warming in observations and models. Nat. Clim. Change 3: 52−58. DOI: 10.1038/nclimate1633. |
[149] | Trenberth, K.E. (2011). Changes in precipitation with climate change. Clim. Res. 47: 123−138. DOI: 10.3354/cr00953. |
[150] | HU, Y.L., JI, G.X., LI, J.H., et al. (2022). Interpretation of IPCC AR6: terrestrial and freshwater ecosystems and their services. Clim. Chang. Res. 18: 395−404. |
[151] | Nations, U. (2022). The Sustainable Development Goals Report 2022. United Nations Statistics Divisi. |
[152] | Orth, R., and Destouni, G. (2018). Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9: 3602. DOI: 10.1038/s41467-018-06013-7. |
[153] | Li, X., Long, D., Scanlon, B.R., et al. (2022). Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change 12: 801−807. DOI: 10.1038/s41558-022-01443-0. |
[154] | Mengistu, D., Bewket, W., Dosio, A., and Panitz, H.J. (2021). Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 592: 125614. DOI: 10.1016/j.jhydrol.2020.125614. |
[155] | Anurag, H., and Ng, G.H.C. (2022). Assessing future climate change impacts on groundwater recharge in Minnesota. J. Hydrol. 612: 128112. DOI: 10.1016/j.jhydrol.2022.128112. |
[156] | Øygarden, L., Deelstra, J., Lagzdins, A., et al. (2014). Climate change and the potential effects on runoff and nitrogen losses in the Nordic–Baltic region. Agric., Ecosyst. Environ. 198: 114−126. DOI: 10.1016/j.agee.2014.06.025. |
[157] | Kløve, B., Ala-Aho, P., Bertrand, G., et al. (2014). Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518: 250−266. DOI: 10.1016/j.jhydrol.2013.06.037. |
[158] | Wang, J.W., Huang, J.T., Fang, T., et al. (2021). Relationship of underground water level and climate in Northwest China’s inland basins under the global climate change: Taking the Golmud River Catchment as an example. China Geol. 4: 402−409. |
[159] | Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science 318: 1737−1742. DOI: 10.1126/science.1152509. |
[160] | Orton, J.H. (1920). Sea-temperature, breeding and distribution in marine animals. J. Mar. Biol. Assoc. U. K. 12: 339−366. DOI: 10.1017/S0025315400000102. |
[161] | Huisman, J., Codd, G.A., Paerl, H.W., et al. (2018). Cyanobacterial blooms. Nat.Rev. Microbiol. 16: 471−483. DOI: 10.1038/s41579-018-0040-1. |
[162] | Trainer, V.L., Moore, S.K., Hallegraeff, G., et al. (2020). Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 91: 101591. DOI: 10.1016/j.hal.2019.03.009. |
[163] | Woolway, R.I., Jennings, E., Shatwell, T., et al. (2021). Lake heatwaves under climate change. Nature 589: 402−407. DOI: 10.1038/s41586-020-03119-1. |
[164] | Ilarri, M., Souza, A.T., Dias, E., and Antunes, C. (2022). Influence of climate change and extreme weather events on an estuarine fish community. Sci. Total Environ. 827: 154190. DOI: 10.1016/j.scitotenv.2022.154190. |
[165] | Xi, Y., Peng, S., Ciais, P., and Chen, Y. (2021). Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11: 45−51. DOI: 10.1038/s41558-020-00942-2. |
[166] | Knapp, A.K., Ciais, P., and Smith, M.D. (2017). Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytol. 214: 41−47. DOI: 10.1111/nph.14381. |
[167] | Westerling, A.L., and Bryant, B.P. (2008). Climate change and wildfire in California. Clim. Change 87: 231−249. DOI: 10.1007/s10584-007-9363-z. |
[168] | Mimura, N. (2013). Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 89: 281−301. DOI: 10.2183/pjab.89.281. |
[169] | Mukherji, A. (2022). Climate change: put water at the heart of solutions. Nature 605: 195. DOI: 10.1038/d41586-022-01273-2. |
[170] | Vitasse, Y., Ursenbacher, S., Klein, G., et al. (2021). Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96: 1816−1835. DOI: 10.1111/brv.12727. |
[171] | Berner, L.T., and Goetz, S.J. (2022). Satellite observations document trends consistent with a boreal forest biome shift. Global Change Biol. 28: 3275−3292. DOI: 10.1111/gcb.16121. |
[172] | Piao, S., Liu, Q., Chen, A., et al. (2019). Plant phenology and global climate change: Current progresses and challenges. Global Change Biol. 25: 1922−1940. DOI: 10.1111/gcb.14619. |
[173] | Stöcklin, J., and Körner, C. (1999). Recruitment and mortality of pinus sylvestris near the nordic treeline: the role of climatic change and herbivory. Ecol. Bull. 168-177. |
[174] | Mamet, S.D., Brown, C.D., Trant, A.J., and Laroque, C.P. (2019). Shifting global Larix distributions: northern expansion and southern retraction as species respond to changing climate. J. Biogeogr. 46: 30−44. DOI: 10.1111/jbi.13465. |
[175] | Beck, P.S.A., Juday, G.P., Alix, C., et al. (2011). Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett 14: 373−379. DOI: 10.1111/j.1461-0248.2011.01598.x. |
[176] | Jezkova, T., and Wiens, J.J. (2016). Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. B 283: 20162104. DOI: 10.1098/rspb.2016.2104. |
[177] | Cleland, E.E., Chuine, I., Menzel, A., et al. (2007). Shifting plant phenology in response to global change. Trends Ecol. Evol. 22: 357−365. DOI: 10.1016/j.tree.2007.04.003. |
[178] | MENZEL, A., SPARKS, T.H., ESTRELLA, N., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biol. 12: 1969−1976. DOI: 10.1111/j.1365-2486.2006.01193.x. |
[179] | Gill, A.L., Gallinat, A.S., Sanders-DeMott, R., et al. (2015). Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116: 875−888. DOI: 10.1093/aob/mcv055. |
[180] | Fu, Y.H., Geng, X., Hao, F., et al. (2019). Shortened temperature-relevant period of spring leaf-out in temperate-zone trees. Global Change Biol. 25: 4282−4290. DOI: 10.1111/gcb.14782. |
[181] | Zhu, Z., Piao, S., Myneni, R.B., et al. (2016). Greening of the Earth and its drivers. Nat. Clim. Change 6: 791−795. DOI: 10.1038/nclimate3004. |
[182] | Piao, S., Liu, Z., Wang, T., et al. (2017). Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7: 359−363. DOI: 10.1038/nclimate3277. |
[183] | Baltzer, J.L., Day, N.J., Walker, X.J., et al. (2021). Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc. Natl. Acad. Sci. USA 118: e2024872118. DOI: 10.1073/pnas.2024872118. |
[184] | Barber, V.A., Juday, G.P., and Finney, B.P. (2000). Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668−673. DOI: 10.1038/35015049. |
[185] | Allen, C.D., Macalady, A.K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259: 660−684. DOI: 10.1016/j.foreco.2009.09.001. |
[186] | Aleixo, I., Norris, D., Hemerik, L., et al. (2019). Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9: 384−388. DOI: 10.1038/s41558-019-0458-0. |
[187] | Mitton, J.B., and Ferrenberg, S.M. (2012). Mountain Pine Beetle Develops an Unprecedented Summer Generation in Response to Climate Warming. Proc. Am. Soc. Zool. 179: E163−E171. |
[188] | Skendžić, S., Zovko, M., Živković, I.P., et al. (2021). The impact of climate change on agricultural insect pests. Insects 12: 440. DOI: 10.3390/insects12050440. |
[189] | Hock, R., Bliss, A., Marzeion, B.E.N., et al. (2019). GlacierMIP – a model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol. 65: 453−467. DOI: 10.1017/jog.2019.22. |
[190] | Fox-Kemper, B., Hewitt, H.T., Xiao, C., et al. (2021). Ocean, cryosphere and sea level change. In Masson-Delmotte, P.Z. V., A. Pirani, , S.L. Connors, et al., eds. In climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. CUP. |
[191] | Bamber, J.L., Westaway, R.M., Marzeion, B., and Wouters, B. (2018). The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13: 063008. DOI: 10.1088/1748-9326/aac2f0. |
[192] | The IMBIE Team (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219-222. |
[193] | Mudryk, L., Santolaria-Otín, M., Krinner, G., et al. (2020). Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. The Cryosphere 14: 2495−2514. DOI: 10.5194/tc-14-2495-2020. |
[194] | Yue, S., Che, T., Dai, L., et al. (2022). Characteristics of snow depth and snow phenology in the high latitudes and high altitudes of the northern hemisphere from 1988 to 2018. Remote Sens. 14: 5057. DOI: 10.3390/rs14195057. |
[195] | Biskaborn, B.K., Smith, S.L., Noetzli, J., et al. (2019). Permafrost is warming at a global scale. Nat. Commun. 10: 264. DOI: 10.1038/s41467-018-08240-4. |
[196] | Liu, Y., Cobb, K.M., Song, H., et al. (2017). Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat. Commun. 8: 15386. DOI: 10.1038/ncomms15386. |
[197] | Cao, B., Zhang, T., Peng, X., et al. (2018). Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China. J. Geophys. Res.: Atmos. 123: 7935−7949. |
[198] | Zhao, L., Zou, D., Hu, G., et al. (2020). Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau. Permafr. 31: 396−405. |
[199] | Noetzli J, Christiansen H., Deline P., et al. (2019). Permafrost thermal state [in "State of the climate in 2018"]. Bull. Am. Meteorol. Soc. 100: S21−S22. |
[200] | Streletskiy, D.A., Sherstiukov, A.B., Frauenfeld, O.W., and Nelson, F.E. (2015). Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environ. Res.Lett. 10: 125005. DOI: 10.1088/1748-9326/10/12/125005. |
[201] | Andersen J. K., Andreassen L.M., Baker E.H., et al. (2020). The Arctic: terrestrial ermafrost [in “state of the climate in 2019”]. Bull. Am. Meteorol. Soc. 101: S265−S269. |
[202] | Romanovsky, V.E. et al. (2020). The Arctic: Terrestrial Permafrost [in “State of the Climate in 2019”]. Bulletin of the American Meteorological Society 101: S265−S269. |
[203] | Stammerjohn, S.E., Martinson, D.G., Smith, R.C., et al. (2008). Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino–Southern Oscillation and Southern Annular Mode variability. J.Geophys.Res.: Oceans 113: C03S90. |
[204] | Turner, J., Lu, H., White, I., et al. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535: 411−415. DOI: 10.1038/nature18645. |
[205] | Evans, S.G., and Delaney, K.B. (2015). Chapter 16 - Catastrophic Mass Flows in the Mountain Glacial Environment. In Snow and Ice-Related Hazards, Risks, and Disasters, J.F. Shroder, W. Haeberli, and C. Whiteman, eds. (Academic Press), 563-606. |
[206] | Coe, J.A., Bessette-Kirton, E.K., and Geertsema, M. (2017). Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. Landslides 15: 393−407. |
[207] | Allen, S.K., Cox, S.C., and Owens, I.F. (2011). Rock avalanches and other landslides in the central southern alps of New Zealand: a regional study considering possible climate change impacts. Landslides 8: 33−48. DOI: 10.1007/s10346-010-0222-z. |
[208] | Ballesteros-Cánovas, J.A., Trappmann, D., Madrigal-González, J., et al. (2018). Climate warming enhances snow avalanche risk in the western himalayas. Proc. Natl. Acad. Sci. USA 115: 3410−3415. DOI: 10.1073/pnas.1716913115. |
[209] | Taylor, C., Robinson, T.R., Dunning, S., et al. (2023). Glacial lake outburst floods threaten millions globally. Nat. Commun. 14: 487. DOI: 10.1038/s41467-023-36033-x. |
[210] | Hock, R., G. Rasul, C. Adler, et al. (2019): High mountain areas. In: IPCC special report on the ocean and cryosphere in a Changing climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–202 |
[211] | Hodson, A.J. (2014). Understanding the dynamics of black carbon and associated contaminants in glacial systems. WIREs. Water 1: 141−149. DOI: 10.1002/wat2.1016. |
[212] | You, J., Qin, X., Ranjitkar, S., et al. (2018). Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 8: 5879. DOI: 10.1038/s41598-018-24360-9. |
[213] | Yang, Y., Hopping, K., Wang, G., et al. (2018). Permafrost and drought regulate vulnerability of Tibetan Plateau grasslands to warming. Ecosphere 9: e02233. |
[214] | Williams, C.M., Henry, H.A.L., and Sinclair, B.J. (2015). Cold truths: how winter drivesresponses of terrestrial organisms to climate change. Biol. Rev. 90: 214−235. |
[215] | He, X., Burgess, K.S., Gao, L.M., and Li, D.Z. (2019). Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. Plant Divers. 41: 26−32. DOI: 10.1016/j.pld.2019.01.004. |
[216] | Zimova, M., Mills, L.S., and Nowak, J.J. (2016). High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19: 299−307. DOI: 10.1111/ele.12568. |
[217] | Panetta, A.M., Stanton, M.L., and Harte, J. (2018). Climate warming drives local extinction: Evidence from observation and experimentation. Sci. Adv. 4: eaaq1819. DOI: 10.1126/sciadv.aaq1819. |
[218] | Gentili, R., Baroni, C., Caccianiga, M., et al. (2015). Potential warm-stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecol. Complex. 21: 87−99. DOI: 10.1016/j.ecocom.2014.11.006. |
[219] | Xiao, C.-D., Wang, S.-J., and Qin, D.-H. (2015). A preliminary study of cryosphere service function and value evaluation. Advances in climate change research 6: 181−187. DOI: 10.1016/j.accre.2015.11.004. |
[220] | Steiger, R., Scott, D., Abegg, B., et al. (2017). A critical review of climate change risk for ski tourism. Curr. Issues Tour. 22: 1343−1379. |
[221] | Hagenstad, M., E.A. Burakowski, and Hill, R. (2018). Economic contributions of winter sports in a changing climate. Protect Our Winters, Boulder, CO, USA. |
[222] | Tschakert, P., Ellis, N.R., Anderson, C., et al. (2019). One thousand ways to experience loss: a systematic analysis of climate-related intangible harm from around the world. Glob. Environ. Change. 55: 58−72. DOI: 10.1016/j.gloenvcha.2018.11.006. |
[223] | Konchar, K.M., Staver, B., Salick, J., et al. (2015). Adapting in the shadow of annapurna: a climate tipping point. J. Ethnobiol. 35: 449−471. DOI: 10.2993/0278-0771-35.3.449. |
[224] | Becken, S., Lama, A.K., and Espiner, S. (2013). The cultural context of climate change impacts: perceptions among community members in the Annapurna Conservation Area, Nepal. Environ. Dev. 8: 22−37. DOI: 10.1016/j.envdev.2013.05.007. |
[225] | Steinhäuser, K.G., Von Gleich, A., Große Ophoff, M., and Körner, W. (2022). The necessity of a global binding framework for sustainable management of chemicals and materials -Interactions with climate and biodiversity. Sustainable Chem. 3: 205−237. DOI: 10.3390/suschem3020014. |
[226] | Carlsson, P., Christensen, J., Borgå, K., et al. (2017). Influence of climate change on transport, levels, and effects of contaminants in northern areas – part 2. planning and coordination: Lars-Otto Reiersen, Janet Pawlak Production management: Janet Pawlak Technical production and layout. |
[227] | Li, M., Gazang, C., Ge, H., et al. (2021). The atmospheric travel distance of persistent organic pollutants-revisit and application in climate change impact on long-rang transport potential. Atmos. Res. 255: 105558. DOI: 10.1016/j.atmosres.2021.105558. |
[228] | Wang, X., Sun, D., and Yao, T. (2016). Climate change and global cycling of persistent organic pollutants: a critical review. Sci. China: Earth Sci. 59: 1899−1911. |
[229] | Zhang, Y., Granger, S.J., Semenov, M.A., et al. (2022). Diffuse water pollution during recent extreme wet-weather in the UK: environmental damage costs and insight into the future. J. Cleaner Prod. 338: 130633. DOI: 10.1016/j.jclepro.2022.130633. |
[230] | Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., et al. (2018). Increase in crop losses to insect pests in a warming climate. Sci. 361: 916−919. DOI: 10.1126/science.aat3466. |
[231] | Crawford, S.E., Brinkmann, M., Ouellet, J.D., et al. (2022). Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. J. Hazard. Mater. 421: 126691. DOI: 10.1016/j.jhazmat.2021.126691. |
[232] | Perera, F., and Nadeau, K. (2022). Climate Change, Fossil-Fuel Pollution, and Children's Health. N. Engl. J. Med. 386: 2303−2314. DOI: 10.1056/NEJMra2117706. |
[233] | Xu, R.B., Yu, P., Abramson, M.J., et al. (2020). Wildfires, global climate change, and human health. N. Engl. J. Med. 383: 2173−2181. DOI: 10.1056/NEJMsr2028985. |
[234] | Guo, Y., Gasparrini, A., Armstrong, B.G., et al. (2017). Heat wave and mortality: a multicountry, multicommunity study. Environ. Health Perspect. 125: 087006. DOI: 10.1289/EHP1026. |
[235] | McDermott-Levy, R., Scolio, M., Shakya, K.M., and Moore, C.H. (2021). Factors that influence climate change-related mortality in the United States: an integrative review. Int. J. Environ. Res. Public Health 18: 8220. DOI: 10.3390/ijerph18158220. |
[236] | Green, H., Bailey, J., Schwarz, L., et al. (2019). Impact of heat on mortality and morbidity in low and middle income countries: a review of the epidemiological evidence and considerations for future research. Environ. Res. 171: 80−91. DOI: 10.1016/j.envres.2019.01.010. |
[237] | Weilnhammer, V., Schmid, J., Mittermeier, I., et al. (2021). Extreme weather events in europe and their health consequences - a systematic review. Int. J. Hyg. Environ. Health 233: 113688. DOI: 10.1016/j.ijheh.2021.113688. |
[238] | Poursafa, P., Keikha, M., and Kelishadi, R. (2015). Systematic review on adverse birth outcomes of climate change. J. Res. Med. Sci. 20: 397−402. |
[239] | Bekkar, B., Pacheco, S., Basu, R., and DeNicola, N. (2020). Association of air pollution and heat exposure with preterm birth, low birth weight, and stillbirth in the US: a systematic review. JAMA Netw Open 3: e208243. DOI: 10.1001/jamanetworkopen.2020.8243. |
[240] | Liu, J., Varghese, B.M., Hansen, A., et al. (2021). Is there an association between hot weather and poor mental health outcomes. A systematic review and meta-analysis. Environ Int 153: 106533. |
[241] | Cianconi, P., Betro, S., and Janiri, L. (2020). The impact of climate change on mental health: a systematic descriptive review. Front. Psychiatry 11: 74. |
[242] | Yang, J., Yin, P., Sun, J., et al. (2019). Heatwave and mortality in 31 major Chinese cities: definition, vulnerability and implications. Sci. Total Environ. 649: 695−702. DOI: 10.1016/j.scitotenv.2018.08.332. |
[243] | Guo, Y.M., Zhang, Y.W., Yu, P., et al. (2023). Strategies to reduce the health impacts of heat exposure. In Heat Exposure and Human Health in the Context of Climate Change, 293-322. |
[244] | Liu, J., Varghese, B.M., Hansen, A., et al. (2022). Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet. Health 6: e484−e495. DOI: 10.1016/S2542-5196(22)00117-6. |
[245] | Cheng, J., Xu, Z., Bambrick, H., et al. (2019). Cardiorespiratory effects of heatwaves: a systematic review and meta-analysis of global epidemiological evidence. Environ. Res. 177: 108610. DOI: 10.1016/j.envres.2019.108610. |
[246] | Zhang, Y., Hajat, S., Zhao, L., et al. (2022). The burden of heatwave-related preterm births and associated human capital losses in China. Nat. Commun. 13: 7565. DOI: 10.1038/s41467-022-35008-8. |
[247] | Finlay, S.E., Moffat, A., Gazzard, R., et al. (2012). Health impacts of wildfires. PLoS Curr. 4, e4f959951cce959952c. |
[248] | Reid, C.E., Brauer, M., Johnston, F.H., et al. (2016). Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124: 1334−1343. DOI: 10.1289/ehp.1409277. |
[249] | Yang, F., Gao, Y., Zhao, H., et al. (2021). Revealing the distribution characteristics of antibiotic resistance genes and bacterial communities in animal-aerosol-human in a chicken farm: from One-Health perspective. Ecotoxicol. Environ. Saf. 224: 112687. DOI: 10.1016/j.ecoenv.2021.112687. |
[250] | Amjad, S., Chojecki, D., Osornio-Vargas, A., and Ospina, M.B. (2021). Wildfire exposure during pregnancy and the risk of adverse birth outcomes: a systematic review. Environ. Int. 156: 106644. DOI: 10.1016/j.envint.2021.106644. |
[251] | Belleville, G., Ouellet, M.C., and Morin, C.M. (2019). Post-Traumatic stress among evacuees from the 2016 Fort McMurray Wildfires: exploration of psychological and sleep symptoms three months after the evacuation. Int. J. Environ. Res. Public Health 16: 1604. DOI: 10.3390/ijerph16091604. |
[252] | Bryant, R.A., Gibbs, L., Gallagher, H.C., et al. (2018). Longitudinal study of changing psychological outcomes following the Victorian Black Saturday bushfires. Aust. N. Z. J. Psychiat 52: 542−551. DOI: 10.1177/0004867417714337. |
[253] | Dosa, D.M., Skarha, J., Peterson, L.J., et al. (2020). Association between exposure to hurricane irma and mortality and mospitalization in florida nursing home residents. Jama. Netw. Open 3: e2019460. DOI: 10.1001/jamanetworkopen.2020.19460. |
[254] | Watkins, D.J., Torres Zayas, H.R., Vélez Vega, C.M., et al. (2020). Investigating the impact of Hurricane Maria on an ongoing birth cohort in Puerto Rico. Popul. Environ. 42: 95−111. DOI: 10.1007/s11111-020-00345-7. |
[255] | Schwartz, R.M., Gillezeau, C.N., Liu, B., et al. (2017). Longitudinal impact of hurricane sandy exposure on Mental Health Symptoms. Int. J. Environ. Res. Public Health 14: 957. DOI: 10.3390/ijerph14090957. |
[256] | Lenane, Z., Peacock, E., Joyce, C., et al. (2019). Association of post-traumatic stress disorder symptoms following hurricane katrina with incident cardiovascular disease events among older adults with hypertension. Am. J. Geriatr. Psychiatry 27: 310−321. DOI: 10.1016/j.jagp.2018.11.006. |
[257] | Brown, M.R.G., Agyapong, V., Greenshaw, A.J., et al. (2019). After the Fort McMurray wildfire there are significant increases in mental health symptoms in grade 7-12 students compared to controls. BMC Psychiatry 19: 97. DOI: 10.1186/s12888-019-2074-y. |
[258] | Benmarhnia, T., Deguen, S., Kaufman, J.S., and Smargiassi, A. (2015). Vulnerability to heat-related mortality a systematic review,meta-analysis, and meta-regression analysis. Epidemiology 26: 781−793. DOI: 10.1097/EDE.0000000000000375. |
[259] | Romanello, M., McGushin, A., Di Napoli, C., et al. (2021). The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 398: 1619−1662. DOI: 10.1016/S0140-6736(21)01787-6. |
[260] | Xu, R., Zhao, Q., Coelho, M., et al. (2020). Socioeconomic inequality in vulnerability to all-cause and cause-specific hospitalisation associated with temperature variability: A time-series study in 1814 Brazilian cities. Lancet Planet. Health 4: e566−e576. DOI: 10.1016/S2542-5196(20)30251-5. |
[261] | Burrows, M.T., Bates, A.E., Costello, M.J., et al. (2019). Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9: 959−963. DOI: 10.1038/s41558-019-0631-5. |
[262] | Chaudhary, C., Richardson, A.J., Schoeman, D.S., and Costello, M.J. (2021). Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl. Acad. Sci. USA 118: e2015094118. DOI: 10.1073/pnas.2015094118. |
[263] | Gordó-Vilaseca, C., Stephenson, F., Coll, M., et al. (2023). Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean. Proc. Natl. Acad. Sci. 120: e2120869120. DOI: 10.1073/pnas.2120869120. |
[264] | Manes, S., Costello, M.J., Beckett, H., et al. (2021). Endemism increases species' climate change risk in areas of global biodiversity importance. Biol. Conserv 257: 109070. DOI: 10.1016/j.biocon.2021.109070. |
[265] | Costello, M.J. (2022). Biodiversity conservation through protected areas supports healthy ecosystems and resilience to climate change and other disturbances. In Imperiled: The Encyclopedia of Conservation, D.A. DellaSala, and M.I. Goldstein, eds. 423-429. |
[266] | Zhao, Q., Huang, H., Costello, M.J., and Chu, J. (2023). Climate change projections show shrinking deep-water ecosystems with implications for biodiversity and aquaculture in the Northwest Pacific. Sci. Total Environ. 861: 160505. DOI: 10.1016/j.scitotenv.2022.160505. |
[267] | Lavin, C.P., Gordó-Vilaseca, C., Costello, M.J., et al. (2022). Warm and cold temperatures limit the maximum body length of teleost fishes across a latitudinal gradient in Norwegian waters. Environ. Biol. Fishes 105: 1415−1429. DOI: 10.1007/s10641-022-01270-4. |
[268] | Lavin, C.P., Gordó-Vilaseca, C., Stephenson, F., et al. (2022). Warmer temperature decreases the maximum length of six species of marine fishes, crustacean, and squid in New Zealand. Environ. Biol. Fishes 105: 1431−1446. DOI: 10.1007/s10641-022-01251-7. |
[269] | Costello, M.J., M.M. Vale, W. Kiessling, et al. (2022). Cross-chapter paper 1: biodiversity hotspots. In climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, H.-O. Pörtner, D.C. Roberts, M. Tignor, et al., eds. 2123–2161. |
[270] | Mackintosh, A., Hill, G., Costello, M., et al. (2023). Modeling Aquaculture Suitability in a Climate Change Future. Oceanography, 36: 8−8. |
[271] | Lawrence, J., B. Mackey, F. Chiew, et al. (2022). Australasia. In: climate change 2022: Impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. In H.-O. Pörtner, D.C. Roberts, M. Tignor, et al., eds. |
[272] | Pörtner, H.-O., D.C. Roberts, H. Adams, et al. (2022). Technical summary. In: climate change 2022: impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. In H.-O. Pörtner, D.C. Roberts, M. Tignor, et al., eds. |
[273] | Costello, M.J. (2022). Threats to marine species and habitats, and how banning seabed trawling supports the global biodiversity framework. In Imperiled: the encyclopedia of conservation, D.A. DellaSala, and M.I. Goldstein, eds. 633-639. |
[274] | Costello, M.J. (2022). Restoring biodiversity and living with nature (Based Solutions). In imperiled: the encyclopedia of conservation, D.A. DellaSala, and M.I. Goldstein, eds. 7-14. |
[275] | Costello, M.J., Webb, J.T., Provoost, P., and Appeltans, W. (2022). New knowledge on and threats to marine biodiversity. In: state of the ocean report, pilot edition. IOC Technical Series IOC-UNESCO. |
[276] | Costello, Mark J. (2015). Biodiversity: The known, unknown, and rates of extinction. Curr. Biol. 25: R368−R371. DOI: 10.1016/j.cub.2015.03.051. |
[277] | Costello, M.J. (2022). Climate Change is not the biggest threat to freshwater biodiversity. In Imperiled: the encyclopedia of conservation, D.A. DellaSala, and M.I. Goldstein, eds. 623-632. |
[278] | Leadley, P., Obura, D., Archer, E., et al. (2022). Actions needed to achieve ambitious objectives of net gains in natural ecosystem area by 2030 and beyond. PLOS Sustainability and Transformation 1: e0000040. DOI: 10.1371/journal.pstr.0000040. |
[279] | Kocsis, Á.T., Zhao, Q., Costello, M.J., and Kiessling, W. (2021). Not all biodiversity rich spots are climate refugia. Biogeosciences 18: 6567−6578. DOI: 10.5194/bg-18-6567-2021. |
[280] | Amelung, W., Bossio, D., de Vries, W., et al. (2020). Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11: 5427. DOI: 10.1038/s41467-020-18887-7. |
[281] | Yu, Z., Loisel, J., Brosseau, D.P., et al. (2010). Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37. |
[282] | Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., and Kapos, V. (2014). Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5: 81−91. DOI: 10.4155/cmt.13.77. |
[283] | Schimmel, H., and Amelung, W. (2022). Organic soils. In Reference Module in Earth Systems and Environmental Sciences. |
[284] | Frolking, S., Talbot, J., Jones, M.C., et al. (2011). Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19: 371−396. DOI: 10.1139/a11-014. |
[285] | Leifeld, J., Wüst-Galley, C., and Page, S. (2019). Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9: 945−947. DOI: 10.1038/s41558-019-0615-5. |
[286] | Knox, S.H., Sturtevant, C., Matthes, J.H., et al. (2015). Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. G. C. Biology 21: 750−765. DOI: 10.1111/gcb.12745. |
[287] | Paustian, K., Lehmann, J., Ogle, S., et al. (2016). Climate-smart soils. Nature 532: 49−57. DOI: 10.1038/nature17174. |
[288] | Lu, N., Tian, H.Q., Fu, B.J., et al. (2022). Biophysical and economic constraints on China's natural climate solutions. Nat. Clim. Chang. 12: 847. DOI: 10.1038/s41558-022-01432-3. |
[289] | Fargione, J.E., Bassett, S., Boucher, T., et al. (2018). Natural climate solutions for the United States. Sci. Adv. 4: eaat1869. DOI: 10.1126/sciadv.aat1869. |
[290] | Pan, Y.D., Birdsey, R.A., Fang, J.Y., et al. (2011). A large and persistent carbon sink in the world's forests. Science 333: 988−993. DOI: 10.1126/science.1201609. |
[291] | Grassi, G., House, J., Dentener, F., et al. (2017). The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7: 220−+. DOI: 10.1038/nclimate3227. |
[292] | Ruseva, T.B. (2023). The governance of forest carbon in a subnational climate mitigation system: insights from a network of action situations approach. Sustain. Sci. 18: 59−78. DOI: 10.1007/s11625-022-01262-4. |
[293] | Morecroft, M.D., Duffield, S., Harley, M., et al. (2019). Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, 1329-+, eaaw9256. |
[294] | Anderegg, W.R.L., Trugman, A.T., Badgley, G., et al. (2020). Climate-driven risks to the climate mitigation potential of forests. Science 368: eaaz7005. DOI: 10.1126/science.aaz7005. |
[295] | Rana, P., and Varshney, L.R. (2023). Exploring limits to tree planting as a natural climate solution. J. Clean. Prod. 384: 135566. DOI: 10.1016/j.jclepro.2022.135566. |
[296] | Fleischman, F., Basant, S., Chhatre, A., et al. (2020). Pitfalls of tree planting show why we need people-centered natural climate solutions. Bioscience 70: 947−950. |
[297] | Strassburg, B.B.N., Iribarrem, A., Beyer, H.L., et al. (2020). Global priority areas for ecosystem restoration. Nature 586: 724−729. DOI: 10.1038/s41586-020-2784-9. |
[298] | Doelman, J.C., and Stehfest, E. (2022). The risks of overstating the climate benefits of ecosystem restoration. Nature 609: E1−E3. DOI: 10.1038/s41586-022-04881-0. |
[299] | Elias, M., Kandel, M., Mansourian, S., et al. (2022). Ten people-centered rules for socially sustainable ecosystem restoration. Restor. Ecol. 30: e13574. |
[300] | Wu, X., Lu, Y., Zhang, J., et al. (2023). Adapting ecosystem restoration for sustainable development in a changing world. The Innovation 4, 100375, 10.1016/j.xinn.2023.100375. |
[301] | IPCC (2019). Climate change 2019: Synthesis report contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. |
[302] | Tian, D., Zhang, Y., Mu, Y., et al. (2020). Effect of N fertilizer types on N2O and NO emissions under drip fertigation from an agricultural field in the North China Plain. Sci. Total Environ. 715: 136903. DOI: 10.1016/j.scitotenv.2020.136903. |
[303] | Saunois, M., Bousquet, P., Poulter, B., et al. (2016). The global methane budget 2000–2012. Earth Syst. Sci. Data 8: 697−751. DOI: 10.5194/essd-8-697-2016. |
[304] | Tao, F., Palosuo, T., Valkama, E., and Mäkipää, R. (2019). Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil and Tillage Res. 186: 70−78. DOI: 10.1016/j.still.2018.10.009. |
[305] | Hobley, E.U., Honermeier, B., Don, A., et al. (2018). Decoupling of subsoil carbon and nitrogen dynamics after long-term crop rotation and fertilization. Agr. Ecosyst. Environ. 265: 363−373. DOI: 10.1016/j.agee.2018.06.021. |
[306] | Liu, J., Jiang, B.S., Shen, J.L., et al. (2021). Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agr. Ecosyst. Environ. 311: 107286. DOI: 10.1016/j.agee.2020.107286. |
[307] | Bai, X., Huang, Y., Ren, W., et al. (2019). Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Global Change Biol. 25: 2591−2606. DOI: 10.1111/gcb.14658. |
[308] | Xia, L., Cao, L., Yang, Y., et al. (2023). Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food 4: 236−246. DOI: 10.1038/s43016-023-00694-0. |
[309] | Wang, H., Wang, S., Yu, Q., et al. (2020). No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. J. Environ. Manage 261: 110261. DOI: 10.1016/j.jenvman.2020.110261. |
[310] | Six, J., Feller, C., Denef, K., et al. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie 22: 755−775. DOI: 10.1051/agro:2002043. |
[311] | Cai, A., Han, T., Ren, T., et al. (2022). Declines in soil carbon storage under no tillage can be alleviated in the long run. Geoderma 425: 116028. DOI: 10.1016/j.geoderma.2022.116028. |
[312] | Yang, Y., Ti, J., Zou, J., et al. (2023). Optimizing crop rotation increases soil carbon and reduces GHG emissions without sacrificing yields. Agr. Ecosyst. Environ. 342. 108220 |
[313] | Shen, H., Shiratori, Y., Ohta, S., et al. (2021). Mitigating N2O emissions from agricultural soils with fungivorous mites. ISME J. 15: 2427−2439. DOI: 10.1038/s41396-021-00948-4. |
[314] | Cai, S., Zhao, X., Pittelkow, C.M., et al. (2023). Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615: 73−79. DOI: 10.1038/s41586-022-05678-x. |
[315] | Rees, R.M., Maire, J., Florence, A., et al. (2020). Mitigating nitrous oxide emissions from agricultural soils by precision management. Front Agric Sci Eng 7: 75−80. DOI: 10.15302/J-FASE-2019294. |
[316] | Cui, X.Q., Zhou, F., Ciais, P., et al. (2021). Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food 2: 886−+. DOI: 10.1038/s43016-021-00384-9. |
[317] | Recio, J., Alvarez, J.M., Rodriguez-Quijano, M., and Vallejo, A. (2019). Nitrification inhibitor DMPSA mitigated N2O emission and promoted NO sink in rainfed wheat. Environ. Pollut 245: 199−207. DOI: 10.1016/j.envpol.2018.10.135. |
[318] | Recio, J., Montoya, M., Ginés, C., et al. (2020). Joint mitigation of NH3 and N2O emissions by using two synthetic inhibitors in an irrigated cropping soil. Geoderma 373: 114423. . DOI: 10.1016/j.geoderma.2020.114423. |
[319] | Bakken, L.R., and Frostegård, Å. (2020). Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota. Curr. Opin. Environ. Sustain. 47: 89−94. DOI: 10.1016/j.cosust.2020.08.010. |
[320] | Shen, H., Shiratori, Y., Ohta, S., et al. (2021). Mitigating N2O emissions from agricultural soils with fungivorous mites. ISME J.l 15: 2427−2439. DOI: 10.1038/s41396-021-00948-4. |
[321] | Storer, K., Coggan, A., Ineson, P., and Hodge, A. (2018). Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol. 220: 1285−1295. DOI: 10.1111/nph.14931. |
[322] | Hiya, H.J., Ali, M.A., Baten, M.A., and Barman, S.C. (2020). Effect of water saving irrigation management practices on rice productivity and methane emission from paddy field. J. Geosci.Environ. Prot. 8: 182−196. |
[323] | Iqbal, M.F., Zhang, Y., Kong, P., et al. (2023). High-yielding nitrate transporter cultivars also mitigate methane and nitrous oxide emissions in paddy. Front. Plant Sci. 14. 1133643 |
[324] | Wang, C., Liu, J., Shen, J., et al. (2018). Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agric., Ecosyst. Environ. 262: 83−96. DOI: 10.1016/j.agee.2018.04.017. |
[325] | Yagi, K., Sriphirom, P., Cha-un, N., et al. (2020). Potential and promisingness of technical options for mitigating greenhouse gas emissions from rice cultivation in Southeast Asian countries. Soil Sci. Plant Nutr. 66: 37−49. DOI: 10.1080/00380768.2019.1683890. |
[326] | Scholz, V.V., Meckenstock, R.U., Nielsen, L.P., and Risgaard-Petersen, N. (2020). Cable bacteria reduce methane emissions from rice-vegetated soils. Nat. Commun. 11: 1878. DOI: 10.1038/s41467-020-15812-w. |
[327] | Rani, V., Bhatia, A., and Kaushik, R. (2021). Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Sci. Total Environ. 775: 145826. DOI: 10.1016/j.scitotenv.2021.145826. |
[328] | Davamani, V., Parameswari, E., and Arulmani, S. (2020). Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs. Sci. Total Environ. 726: 138570. DOI: 10.1016/j.scitotenv.2020.138570. |
[329] | Fan, L.C., Dippold, M.A., Ge, T.D., et al. (2020). Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes. Soil Biol. Biochem. 141: 107685. DOI: 10.1016/j.soilbio.2019.107685. |
[330] | Clark, M.A., Domingo, N.G.G., Colgan, K., et al. (2020). Global food system emissions could preclude achieving the 1.5 degrees and 2 degrees C climate change targets. Science 370, 705-+. |
[331] | Clark, S. (2020). Organic Farming and Climate Change: The Need for Innovation. Sustainability 12: 7012. DOI: 10.3390/su12177012. |
[332] | Reganold, J.P., and Wachter, J.M. (2016). Organic agriculture in the twenty-first century. Nat. Plants 2: 15221. DOI: 10.1038/nplants.2015.221. |
[333] | Renwick, L.L.R., Deen, W., Silva, L., et al. (2021). Long-term crop rotation diversification enhances maize drought resistance through soil organic matter. Environ. Res. Lett. 16: 084067. DOI: 10.1088/1748-9326/ac1468. |
[334] | Rollan, À., Hernández-Matías, A., and Real, J. (2019). Organic farming favours bird communities and their resilience to climate change in Mediterranean vineyards. Agric. Ecosyst. Environ. 269: 107−115. DOI: 10.1016/j.agee.2018.09.029. |
[335] | Małgorzata, H., Jolanta, K., and Magdalena, J. (2022). Reducing Carbon Footprint of Agriculture. Can Organic Farming Help to Mitigate Climate Change? Agriculture 12: 1383. |
[336] | Šarauskis, E., Romaneckas, K., Kumhála, F., and Kriaučiūnienė, Z. (2018). Energy use and carbon emission of conventional and organic sugar beet farming. J. Clean Prod. 201: 428−438. DOI: 10.1016/j.jclepro.2018.08.077. |
[337] | Cooper, J., Baranski, M., Stewart, G., et al. (2016). Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agron. Sustain. Dev. 36: 22. DOI: 10.1007/s13593-016-0354-1. |
[338] | Zani, C.F., Lopez-Capel, E., Abbott, G.D., et al. (2022). Effects of integrating grass-clover leys with livestock into arable crop rotations on soil carbon stocks and particulate and mineral-associated soil organic matter fractions in conventional and organic systems. Soil Use Manag. 38: 448−465. DOI: 10.1111/sum.12754. |
[339] | Skinner, C., Gattinger, A., Krauss, M., et al. (2019). The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 9: 1702. DOI: 10.1038/s41598-018-38207-w. |
[340] | Gangopadhyay, S., Banerjee, R., Batabyal, S., et al. (2022). Carbon sequestration and greenhouse gas emissions for different rice cultivation practices. Sustain. Prod. Consump. 34: 90−104. DOI: 10.1016/j.spc.2022.09.001. |
[341] | Skinner, C., Gattinger, A., Krauss, M., et al. (2019). The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 9: 1702. DOI: 10.1038/s41598-018-38207-w. |
[342] | Costa, C., Wollenberg, E., Benitez, M., et al. (2022). Roadmap for achieving net-zero emissions in global food systems by 2050. Sci. Rep. 12: 15064. DOI: 10.1038/s41598-022-18601-1. |
[343] | Miksa, O., Chen, X., Baležentienė, L., et al. (2020). Ecological challenges in life cycle assessment and carbon budget of organic and conventional agroecosystems: A case from Lithuania. Sci. Total Environ. 714: 136850. DOI: 10.1016/j.scitotenv.2020.136850. |
[344] | Longlong, X., Liang, C., Yi, Y., et al. (2023). Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food. 4: 236−246. DOI: 10.1038/s43016-023-00694-0. |
[345] | Chiriacò, M.V., Grossi, G., Castaldi, S., and Valentini, R. (2017). The contribution to climate change of the organic versus conventional wheat farming: A case study on the carbon footprint of wholemeal bread production in Italy. J. Clean. Prod. 153: 309−319. DOI: 10.1016/j.jclepro.2017.03.111. |
[346] | El Chami, D. (2020). Towards Sustainable Organic Farming Systems. Sustainability. 12: 9832. DOI: 10.3390/su12239832. |
[347] | Tutuncu, A.N. (2020). Fossil Fuels: A technical overview. In The Oxford Handbook of Energy Politics, K.J. Hancock, and J.E. Allison, eds. (Oxford University Press). 22-41. |
[348] | NRC. (2010). Hidden costs of energy: unpriced consequences of energy production and use (The National Academies Press). |
[349] | Bian, Z., Inyang, H.I., Daniels, J.L., et al. (2010). Environmental issues from coal mining and their solutions. Min. Sci. Technol. 20: 215−223. |
[350] | Clay, K., Jha, A., Muller, N., and Walsh, R. (2019). External costs of transporting petroleum products: Evidence from shipments of crude oil from North Dakota by pipelines and rail. The Energy J. 40: 55−72. |
[351] | Kaygusuz, K. (2007). Energy for sustainable development: Key issues and challenges. Energy Sources 2: 73−83. DOI: 10.1080/15567240500402560. |
[352] | Rubin, E.M. (2008). Genomics of cellulosic biofuels. Nature 454: 841−845. DOI: 10.1038/nature07190. |
[353] | Gibb, D., Ledanois, N., Ranalder, L., et al. (2022). Renewables 2022 global status report+ Renewable energy data in perspective+ Press releases+ Regional fact sheets+ Country fact sheets. |
[354] | Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., et al. (2011). Electrochemical Energy Storage for Green Grid. Chem. Rev. 111: 3577−3613. DOI: 10.1021/cr100290v. |
[355] | IEA (2022). Carbon capture, utilisation and storage - fuels & technologies. Int. J. Energy Res. |
[356] | IPCC (2018). Global warming of 1.5 °C: an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovernmental Panel on Climate Change. |
[357] | CAEP (2021). The annual report of CCUS in China-The Chinese CCUS pathway. Chinese Academy of Environmental planning. |
[358] | IEA (2020). Energy technology perspectives: special report on carbon capture utilisation and storage CCUS in clean energy transitions. International Energy Agency. |
[359] | Rogelj, J., Popp, A., Calvin, K.V., et al. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Chang. 8, 325-332. |
[360] | Shahbaz, M., AlNouss, A., Ghiat, I., et al. (2021). A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resour, Conserv. Recycl. 173: 105734. DOI: 10.1016/j.resconrec.2021.105734. |
[361] | Sagues, W.J., Jameel, H., Sanchez, D.L., and Park, S. (2020). Prospects for bioenergy with carbon capture & storage (BECCS) in the United States pulp and paper industry. Energy Environ. Sci. 13: 2243−2261. DOI: 10.1039/D0EE01107J. |
[362] | Xing, X., Wang, R., Bauer, N., et al. (2021). Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nat. Commun. 12: 3159. DOI: 10.1038/s41467-021-23282-x. |
[363] | Smith, P., Davis, S.J., Creutzig, F., et al. (2015). Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6: 42−50. |
[364] | Hanssen, S.V., Steinmann, Z.J.N., Daioglou, V., et al. (2022). Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity. Glob. Chang. Biol. Bioenergy. 14: 307−321. DOI: 10.1111/gcbb.12911. |
[365] | Fajardy, M., Morris, J., Gurgel, A., et al. (2021). The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5 °C or 2 °C world. Glob. Environ. Change. 68, 102262. |
[366] | Stenzel, F., Gerten, D., Werner, C., and Jägermeyr, J. (2019). Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001. |
[367] | Li, W., Ciais, P., Han, M., et al. (2021). Bioenergy crops for low warming targets require half of the present agricultural fertilizer use. Environ. Sci. Technol. 55: 10654−10661. DOI: 10.1021/acs.est.1c02238. |
[368] | Crippa, M., Solazzo, E., Guizzardi, D., et al. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2: 198−209. DOI: 10.1038/s43016-021-00225-9. |
[369] | Yang, J., Zhou, Q., and Zhang, J. (2017). Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. Crop. J. 5: 151−158. DOI: 10.1016/j.cj.2016.06.002. |
[370] | Wang, Z., Yin, Y., Wang, Y., et al. (2022). Integrating crop redistribution and improved management towards meeting China’s food demand with lower environmental costs. Nature Food 3: 1031−1039. DOI: 10.1038/s43016-022-00646-0. |
[371] | Vaughan, A. (2021). COP26: 105 countries pledge to cut methane emissions by 30 per cent. |
[372] | Clark, M., Springmann, M., Rayner, M., et al. (2022). Estimating the environmental impacts of 57,000 food products. Proc. Natl. Acad. Sci. U. S. A. 119: e2120584119. DOI: 10.1073/pnas.2120584119. |
[373] | Gerten, D., Heck, V., Jägermeyr, J., et al. (2020). Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3: 200−208. DOI: 10.1038/s41893-019-0465-1. |
[374] | Hickey, L.T., N. Hafeez, A., Robinson, H., et al. (2019). Breeding crops to feed 10 billion. Nat. Biotechnol. 37: 744−754. DOI: 10.1038/s41587-019-0152-9. |
[375] | Lam, S.K., Wille, U., Hu, H.-W., et al. (2022). Next-generation enhanced-efficiency fertilizers for sustained food security. Nature Food 3: 575−580. DOI: 10.1038/s43016-022-00542-7. |
[376] | Cheng, L., Zhang, X., Reis, S., et al. (2022). A 12% switch from monogastric to ruminant livestock production can reduce emissions and boost crop production for 525 million people. Nature Food 3: 1040−1051. DOI: 10.1038/s43016-022-00661-1. |
[377] | Bai, Z., Fan, X., Jin, X., et al. (2022). Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population. Nature Food 3: 152−160. DOI: 10.1038/s43016-021-00453-z. |
[378] | Xu, X., Sharma, P., Shu, S., et al. (2021). Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food 2: 724−732. DOI: 10.1038/s43016-021-00358-x. |
[379] | Clark, M.A., Domingo, N.G.G., Colgan, K., et al. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370, 705-708. |
[380] | van Huis, A., and Gasco, L. (2023). Insects as feed for livestock production. Science 379: 138−139. DOI: 10.1126/science.adc9165. |
[381] | Hazarika, A.K., and Kalita, U. (2023). Human consumption of insects. Science 379: 140−141. DOI: 10.1126/science.abp8819. |
[382] | Humpenoder, F., Bodirsky, B.L., Weindl, I., et al. (2022). Projected environmental benefits of replacing beef with microbial protein. Nature 605: 90−96. DOI: 10.1038/s41586-022-04629-w. |
[383] | Lynch, J., and Pierrehumbert, R. (2019). Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. 3: 5. DOI: 10.3389/fsufs.2019.00005. |
[384] | Li, T., Chen, Y.Z., Han, L.J., et al. (2021). Shortened duration and reduced area of frozen soil in the Northern Hemisphere. The Innovation 2, 100146, 10.1016/j.xinn.2021.100146. |
[385] | Malhi, Y., Franklin, J., Seddon, N., et al. (2020). Climate change and ecosystems: Threats, opportunities and solutions. Philos Trans. R. Soc. Lond B. Biol. Sci. 375: 20190104. DOI: 10.1098/rstb.2019.0104. |
[386] | Li, D., Wu, S., Liu, L., et al. (2018). Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. 24: 4095−4106. DOI: 10.1111/gcb.14327. |
[387] | Reside, A.E., Butt, N., and Adams, V.M. (2018). Adapting systematic conservation planning for climate change. Biodiversity Conserv. 27: 1−29. DOI: 10.1007/s10531-017-1442-5. |
[388] | Mills, A.J., Tan, D., Manji, A.K., et al. (2020). Ecosystem‐based adaptation to climate change: Lessons learned from a pioneering project spanning Mauritania, Nepal, the Seychelles, and China. Plants, People, Planet 2: 587−597. DOI: 10.1002/ppp3.10126. |
[389] | Chanza, N., and Musakwa, W. (2021). Indigenous practices of ecosystem management in a changing climate: Prospects for ecosystem-based adaptation. Environ. Sci. Policy 126: 142−151. DOI: 10.1016/j.envsci.2021.10.005. |
[390] | Manes, S., Vale, M.M., Malecha, A., and Pires, A.P.F. (2022). Nature-based solutions promote climate change adaptation safeguarding ecosystem services. Ecosyst. Serv. 55: 101439. DOI: 10.1016/j.ecoser.2022.101439. |
[391] | Scheiter, S., and Savadogo, P. (2016). Ecosystem management can mitigate vegetation shifts induced by climate change in West Africa. Ecol. Modell. 332: 19−27. DOI: 10.1016/j.ecolmodel.2016.03.022. |
[392] | Cameron, D.R., Marvin, D.C., Remucal, J.M., and Passero, M.C. (2017). Ecosystem management and land conservation can substantially contribute to California's climate mitigation goals. Proc. Natl. Acad. Sci. U. S. A. 114: 12833−12838. DOI: 10.1073/pnas.1707811114. |
[393] | Trivino, M., Moran-Ordonez, A., Eyvindson, K., et al. (2022). Future supply of boreal forest ecosystem services is driven by management rather than by climate change. Glob. Chang. Biol. 29: 1484−1500. |
[394] | IPCC (2022). Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change. |
[395] | Davidson, T.A., Audet, J., Jeppesen, E., et al. (2018). Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nat. Clim. Change 8: 156−160. DOI: 10.1038/s41558-017-0063-z. |
[396] | Zhu, Y., Wang, D., Smith, P., et al. (2022). What can the glasgow declaration on forests bring to global emission reduction? The Innovation 3, 100307, 10.1016/j.xinn.2022.100307. |
[397] | Jeppesen, E., Søndergaard, M., Lauridsen, T.L., et al. (2012). Chapter 6 - Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. In Adv. Ecol. Res., G. Woodward, U. Jacob, and E.J. O'Gorman, eds. AP, 411-488. |
[398] | Timilsina, G.R. (2021). Financing climate change adaptation: International initiatives. Sustainability 13: 6515. DOI: 10.3390/su13126515. |
[399] | Kopp, R.E., Horton, R.M., Little, C.M., et al. (2014). Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites. Earths Future 2: 383−406. DOI: 10.1002/2014EF000239. |
[400] | Church, J.A., Clark, P.U., Cazenave, A., et al. (2013). Sea level change. In climate change 2013 – the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change, C. Intergovernmental Panel on Climate, ed. (Cambridge University Press), 1137-1216. |
[401] | De Dominicis, M., Wolf, J., Jevrejeva, S., et al. (2020). Future interactions between sea level rise, tides, and storm surges in the world's largest urban area. Geophys. Res. Lett. 47. |
[402] | Valiela, I., Lloret, J., Bowyer, T., et al. (2018). Transient coastal landscapes: Rising sea level threatens salt marshes. Sci. Total Environ. 640-641, 1148-1156. |
[403] | Macreadie, P.I., Costa, M.D.P., Atwood, T.B., et al. (2021). Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2: 826−839. DOI: 10.1038/s43017-021-00224-1. |
[404] | Jankowska, E., Pelc, R., Alvarez, J., et al. (2022). Climate benefits from establishing marine protected areas targeted at blue carbon solutions. Proc. Natl. Acad. Sci. U. S. A. 119: e2121705119. DOI: 10.1073/pnas.2121705119. |
[405] | Miles, L., Agra, R., Sandeep, et al. (2021). Nature-based solutions for climate change mitigation. United Nations Environment Programme |
[406] | Griscom, B.W., Adams, J., Ellis, P.W., et al. (2017). Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A. 114: 11645−11650. DOI: 10.1073/pnas.1710465114. |
[407] | Schuerch, M., Spencer, T., Temmerman, S., et al. (2018). Future response of global coastal wetlands to sea-level rise. Nature 561: 231−234. DOI: 10.1038/s41586-018-0476-5. |
[408] | Kirwan, M.L., and Megonigal, J.P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53−60. DOI: 10.1038/nature12856. |
[409] | Wang, F., Lu, X., Sanders, C.J., and Tang, J. (2019). Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10: 5434. DOI: 10.1038/s41467-019-13294-z. |
[410] | Saintilan, N., Khan, N.S., Ashe, E., et al. (2020). Thresholds of mangrove survival under rapid sea level rise. Science 368: 1118−1121. DOI: 10.1126/science.aba2656. |
[411] | Saintilan, N., Kovalenko, K.E., Guntenspergen, G., et al. (2022). Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 377: 523−527. DOI: 10.1126/science.abo7872. |
[412] | Rogers, K., Kelleway, J.J., Saintilan, N., et al. (2019). Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567: 91−95. DOI: 10.1038/s41586-019-0951-7. |
[413] | Wang, F., Eagle, M., Kroeger, K.D., et al. (2021). Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes. Sci. Total Environ. 750: 141566. DOI: 10.1016/j.scitotenv.2020.141566. |
[414] | Wang, F., Sanders, C.J., Santos, I.R., et al. (2021). Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 8: nwaa296. DOI: 10.1093/nsr/nwaa296. |
[415] | Kumar, P., Debele, S.E., Sahani, J., et al. (2021). Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci. Total Environ. 784: 147058. DOI: 10.1016/j.scitotenv.2021.147058. |
[416] | Kumar, P., Debele, S.E., Sahani, J., et al. (2021). An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Sci. Rev. 217: 103603. DOI: 10.1016/j.earscirev.2021.103603. |
[417] | Atteridge, A., Bhatpuria, D., Macura, B., et al. (2022). Assessing finance for nature-based solutions to climate change. Stockholm Environment Institute. |
[418] | Kruse, J., Koch, M., Khoi, C.M., et al. (2020). Land use change from permanent rice to alternating rice-shrimp or permanent shrimp in the coastal Mekong Delta, Vietnam: Changes in the nutrient status and binding forms. Sci. Total Environ. 703: 134758. DOI: 10.1016/j.scitotenv.2019.134758. |
[419] | Renaud, F.G., Le, T.T.H., Lindener, C., et al. (2015). Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre Province, Mekong Delta. Clim. Change 133: 69−84. DOI: 10.1007/s10584-014-1113-4. |
[420] | Smajgl, A., Toan, T.Q., Nhan, D.K., et al. (2015). Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5: 167−174. DOI: 10.1038/nclimate2469. |
[421] | Hashimi, R., Kaneko, N., and Komatsuzaki, M. (2023). Impact of no-tillage on soil quality and crop yield in Asia: a meta-analysis. Land Degrad. Dev. 34: 1004−1018. DOI: 10.1002/ldr.4512. |
[422] | Crystal-Ornelas, R., Thapa, R., and Tully, K.L. (2021). Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: A meta-analysis. Agric., Ecosyst. Environ. 312: 107356. DOI: 10.1016/j.agee.2021.107356. |
[423] | Jordon, M.W., Willis, K.J., Bürkner, P.-C., et al. (2022). Temperate Regenerative Agriculture practices increase soil carbon but not crop yield—a meta-analysis. Environ. Res. Lett. 17: 093001. DOI: 10.1088/1748-9326/ac8609. |
[424] | Luo, Z., Wang, E., and Sun, O.J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils. A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 139: 224−231. DOI: 10.1016/j.agee.2010.08.006. |
[425] | Oldfield, E.E., Bradford, M.A., and Wood, S.A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5: 15−32. DOI: 10.5194/soil-5-15-2019. |
[426] | Pittelkow, C.M., Liang, X., Linquist, B.A., et al. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature 517: 365−368. DOI: 10.1038/nature13809. |
[427] | Lal, R. (2020). Soil organic matter content and crop yield. J. Soil Water Conserv. 75: 27A. DOI: 10.2489/jswc.75.2.27A. |
[428] | Mizuta, K., Grunwald, S., and Phillips, M.A. (2018). New Soil Index Development and Integration with Econometric Theory. Soil Sci. Soc. Am. J. 82: 1017−1032. DOI: 10.2136/sssaj2017.11.0378. |
[429] | Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 6: 33. DOI: 10.3390/soilsystems6020033. |
[430] | Ankenbauer, K.J., and Loheide II, S.P. (2017). The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrol. Processes 31: 891−901. DOI: 10.1002/hyp.11070. |
[431] | Emerson, W. (1995). Water-retention, organic-C and soil texture. Soil Res. 33: 241−251. DOI: 10.1071/SR9950241. |
[432] | IES. (2015). Soil threats in Europe (Joint Research Centre, Institute for Environment and Sustainability)L. |
[433] | Karlen, D.L., and Rice, C.W. (2015). Soil degradation: will humankind ever learn. Sustainability 7: 12490−12501. DOI: 10.3390/su70912490. |
[434] | Lorenz, K., Lal, R., and Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations' Sustainable Development Goals. Land Degrad. Dev. 30: 824−838. DOI: 10.1002/ldr.3270. |
[435] | Oelofse, M., Markussen, B., Knudsen, L., et al. (2015). Do soil organic carbon levels affect potential yields and nitrogen use efficiency. An analysis of winter wheat and spring barley field trials. Eur. J. Agron. 66: 62−73. |
[436] | Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food security. Science 341: 508−513. DOI: 10.1126/science.1239402. |
[437] | Fedoroff, N.V., Battisti, D.S., Beachy, R.N., et al. (2010). Radically rethinking agriculture for the 21st century. Science 327: 833−834. DOI: 10.1126/science.1186834. |
[438] | Asseng, S., Ewert, F., Martre, P., et al. (2015). Rising temperatures reduce global wheat production. Nat. Clim. Change 5: 143−147. DOI: 10.1038/nclimate2470. |
[439] | Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell 167: 313−324. DOI: 10.1016/j.cell.2016.08.029. |
[440] | Xiong, W., Reynolds, M., and Xu, Y. (2022). Climate change challenges plant breeding. Curr. Opin. Plant Biol. 70: 102308. DOI: 10.1016/j.pbi.2022.102308. |
[441] | Zhan, X., Lu, Y., Zhu, J.K., and Botella, J.R. (2021). Genome editing for plant research and crop improvement. J Integr Plant Biol 63: 3−33. DOI: 10.1111/jipb.13063. |
[442] | Zhang, H., Li, Y., and Zhu, J.-K. (2018). Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4: 989−996. DOI: 10.1038/s41477-018-0309-4. |
[443] | Galimova, T., Ram, M., and Breyer, C. (2022). Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050. Energy Rep. 8: 14124−14143. DOI: 10.1016/j.egyr.2022.10.343. |
[444] | Donatti, C.I., Andrade, A., Cohen-Shacham, E., et al. (2022). Ensuring that nature-based solutions for climate mitigation address multiple global challenges. One Earth 5: 493−504. DOI: 10.1016/j.oneear.2022.04.010. |
[445] | Shaheen, S.M., Antoniadis, V., Shahid, M., et al. (2022). Sustainable applications of rice feedstock in agro-environmental and construction sectors: a global perspective. Renewable Sustainable Energy Rev. 153: 111791. DOI: 10.1016/j.rser.2021.111791. |
[446] | Kumar, R., V. Nguyen, T., J.S., et al. (2023). Towards realizing the EU 2050 zero pollution vision for nitrogen export. EGU General Assembly |
[447] | Khreis, H., Sanchez, K.A., Foster, M., et al. (2023). Urban policy interventions to reduce traffic-related emissions and air pollution: A systematic evidence map. ENVIRON INT. 172: 107805. DOI: 10.1016/j.envint.2023.107805. |
[448] | Jiang, P., Khishgee, S., Alimujiang, A., and Dong, H. (2020). Cost-effective approaches for reducing carbon and air pollution emissions in the power industry in China. J. Environ. Manage. 264: 110452. DOI: 10.1016/j.jenvman.2020.110452. |
[449] | Breuer, J.L., Samsun, R.C., Stolten, D., and Peters, R. (2021). How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks. ENVIRON INT. 152: 106474. DOI: 10.1016/j.envint.2021.106474. |
[450] | Lal, R. (2020). Managing soils for resolving the conflict between agriculture and nature: the hard talk. Eur J Soil Sci. 71: 1−9. DOI: 10.1111/ejss.12857. |
[451] | Palansooriya, K.N., Shaheen, S.M., Chen, S.S., et al. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ. int. 134: 105046. DOI: 10.1016/j.envint.2019.105046. |
[452] | El-Naggar, A., El-Naggar, A.H., Shaheen, S.M., et al. (2019). Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review. J. Environ. Manage. 241: 458−467. DOI: 10.1016/j.jenvman.2019.02.044. |
[453] | Li, J., Pei, Y., Zhao, S., et al. (2020). A Review of Remote Sensing for Environmental Monitoring in China. Remote Sens. 12: 1130. DOI: 10.3390/rs12071130. |
[454] | Moiroux-Arvis, L., Royer, L., Sarramia, D., et al. (2023). ConnecSenS, a Versatile IoT Platform for Environment Monitoring: bring Water to Cloud. Sensors 23: 2896. DOI: 10.3390/s23062896. |
[455] | Manshur, T., Luiu, C., Avis, W.R., et al. (2023). A citizen science approach for air quality monitoring in a Kenyan informal development. City and Environment Interactions 19: 100105. DOI: 10.1016/j.cacint.2023.100105. |
[456] | Cui, P., Peng, J., Shi, P., et al. (2021). Scientific challenges of research on natural hazards and disaster risk. Geography and Sustainability 2: 216−223. DOI: 10.1016/j.geosus.2021.09.001. |
[457] | Wei, K., Ouyang, C., Duan, H., et al. (2020). Reflections on the Catastrophic 2020 Yangtze River basin flooding in Southern China. The Innovation 1, 100038, 10.1016/j.xinn.2020.100038. |
[458] | Jiang, W., Niu, Z., Wang, L., et al. (2022). Impacts of drought and climatic factors on vegetation dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sens. 14. |
[459] | Ma, M., Qu, Y., Lyu, J., et al. (2022). The 2022 extreme drought in the Yangtze River Basin: Characteristics, causes and response strategies. River 1: 162−171. DOI: 10.1002/rvr2.23. |
[460] | Kim, J., Lee, J., Hwang, S., and Kang, J. (2022). Urban flood adaptation and optimization for net-zero: Case study of Dongjak-gu, Seoul. J. hydrol. reg. stud. 41: 101110. DOI: 10.1016/j.ejrh.2022.101110. |
[461] | Zheng, Q., Shen, S.L., Zhou, A., and Lyu, H.M. (2022). Inundation risk assessment based on G-DEMATEL-AHP and its application to Zhengzhou flooding disaster. Sustain. cities. soc. 86: 104138. DOI: 10.1016/j.scs.2022.104138. |
[462] | Simpson, N.P., Mach, K.J., Constable, A., et al. (2021). A framework for complex climate change risk assessment. One Earth 4: 489−501. DOI: 10.1016/j.oneear.2021.03.005. |
[463] | IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change In C.B., V. Barros, T.F. Stocker, et al., eds. |
[464] | Poumadere, M., Mays, C., Le Mer, S., and Blong, R. (2005). The 2003 heat wave in France: dangerous climate change here and now. RISK ANAL. 25: 1483−1494. DOI: 10.1111/j.1539-6924.2005.00694.x. |
[465] | Luther, J., Hainsworth, A., Tang, X., et al. (2017). World Meteorological Organization (WMO)—concerted international efforts for advancing multi-hazard early warning systems. In K. Sassa, M. Mikoš, and Y. Yin, eds. Advancing culture of living with landslides. Springer International Publishing. |
[466] | Owusu, S., Wright, G., and Arthur, S. (2015). Public attitudes towards flooding and property-level flood protection measures. Nat. Hazards 77: 1963−1978. DOI: 10.1007/s11069-015-1686-x. |
[467] | Dwivedi, Y.K., Hughes, L., Kar, A.K., et al. (2022). Climate change and COP26: are digital technologies and information management part of the problem or the solution. An editorial reflection and call to action. Int. J. Inf. Manage. 63: 102456. |
[468] | Jiang, L.W., and O'Neill, B.C. (2017). Global urbanization projections for the Shared Socioeconomic Pathways. Global Environ. Change-Human Policy Dim. 42: 193−199. DOI: 10.1016/j.gloenvcha.2015.03.008. |
[469] | Barthel, S., Isendahl, C., Vis, B.N., et al. (2019). Global urbanization and food production in direct competition for land: Leverage places to mitigate impacts on SDG2 and on the Earth System. Anthr. Rev. 6: 71−97. |
[470] | Evans, D.L., Vis, B.N., Dunning, N.P., et al. (2021). Buried solutions: how Maya urban life substantiates soil connectivity. Geoderma 387: 114925. DOI: 10.1016/j.geoderma.2020.114925. |
[471] | O'Riordan, R., Davies, J., Stevens, C., et al. (2021). The ecosystem services of urban soils: a review. Geoderma 395: 115076. DOI: 10.1016/j.geoderma.2021.115076. |
[472] | De la Sota, C., Ruffato-Ferreira, V.J., Ruiz-Garcia, L., and Alvarez, S. (2019). Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Gree. 40: 145−151. |
[473] | Vasenev, V., and Kuzyakov, Y. (2018). Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degrad. Dev. 29: 1607−1622. DOI: 10.1002/ldr.2944. |
[474] | Wang, Y., Bakker, F., de Groot, R., et al. (2015). Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season. Environ. Monit. Assess 187: 732. DOI: 10.1007/s10661-015-4943-2. |
[475] | Marando, F., Heris, M.P., Zulian, G., et al. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 77: 103564. DOI: 10.1016/j.scs.2021.103564. |
[476] | Yao, Y.B., Wang, Y.F., Ni, Z.B., et al. (2022). Improving air quality in Guangzhou with urban green infrastructure planning: an i-Tree Eco model study. J. Clean. Prod. 369: 133372. DOI: 10.1016/j.jclepro.2022.133372. |
[477] | Molla, M. (2015). The Value of Urban Green Infrastructure and Its Environmental Response in Urban Ecosystem: a Literature Review. Int. J. Environ. Sci. 4: 4−183. |
[478] | Evans, D.L., Falagan, N., Hardman, C.A., et al. (2022). Ecosystem service delivery by urban agriculture and green infrastructure-a systematic review. Ecosyst. Serv 54: 101405. DOI: 10.1016/j.ecoser.2022.101405. |
[479] | Walsh, L.E., Mead, B.R., Hardman, C.A., et al. (2022). Potential of urban green spaces for supporting horticultural production: a national scale analysis. ENVIRON RES LETT 17: 014052. DOI: 10.1088/1748-9326/ac4730. |
[480] | Rawlins, B.G., Harris, J., Price, S., and Bartlett, M. (2013). A review of climate change impacts on urban soil functions with examples and policy insights from England, UK. Soil Use Manag 31: 46−61. |
[481] | Prokop, G., Jobstmann, H., and Schönbauer, A. (2011). Overview of best practices for limiting soil sealing or mitigating its effects in EU-27. European Communities. |
[482] | Ge, W., Deng, L., Wang, F., and Han, J. (2021). Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 773: 145648. DOI: 10.1016/j.scitotenv.2021.145648. |
[483] | UNEP (2021). Patricia Espinosa Outlines the Four Keys to Success at COP26. United Nations Framework Convention on Climate Change. https://unfccc.int/news/patricia-espinosa-outlines-the-four-keys-to-success-at-cop26. |
[484] | Rübbelke, D., and Vögele, S. (2011). Impacts of climate change on European critical infrastructures: The case of the power sector. Environ. Sci. Policy 14: 53−63. DOI: 10.1016/j.envsci.2010.10.007. |
[485] | Schweikert, A., Chinowsky, P., Espinet, X., and Tarbert, M. (2014). Climate Change and Infrastructure Impacts: Comparing the Impact on Roads in ten Countries through 2100. Procedia Eng. 78: 306−316. DOI: 10.1016/j.proeng.2014.07.072. |
[486] | Li, Q., Punzo, G., Robson, C., et al. (2022). A Novel Approach to Climate Resilience of Infrastructure Networks. ArXiv abs/2211.10132. |
[487] | Kumar, P., Debele, S.E., Sahani, J., et al. (2020). Towards an operationalisation of nature-based solutions for natural hazards. Sci.Total Environ. 731: 138855. DOI: 10.1016/j.scitotenv.2020.138855. |
[488] | Chen, H., and Sun, J. (2021). Significant Increase of the Global Population Exposure to Increased Precipitation Extremes in the Future. Earth's Future 9: e2020EF001941. |
[489] | Wang, T., Qu, Z., Yang, Z., et al. (2020). Impact analysis of climate change on rail systems for adaptation planning: A UK case. transport. res. d-tr. e. 83: 102324. DOI: 10.1016/j.trd.2020.102324. |
[490] | Palin, E.J., Thornton, H.E., Mathison, C.T., et al. (2013). Future projections of temperature-related climate change impacts on the railway network of Great Britain. Clim. Change 120: 71−93. DOI: 10.1007/s10584-013-0810-8. |
[491] | Jaroszweski, D., Wood, R., and Chapman, L. (2021). Infrastructure. In: The Third UK Climate Change Risk Assessment Technical Report. In R.A. Betts, A.B. Haward, and K.V. Pearson, eds. Prepared for the Climate Change Committee. |
[492] | Kumar, P., Debele, S.E., Sahani, J., et al. (2021). Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Sci.Total Environ. 784: 147058. DOI: 10.1016/j.scitotenv.2021.147058. |
[493] | Debele, S.E., Kumar, P., Sahani, J., et al. (2019). Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. ENVIRON RES 179: 108799. DOI: 10.1016/j.envres.2019.108799. |
[494] | Zeleňáková, M., Purcz, P., Hlavatá, H., and Blišťan, P. (2015). Climate Change in Urban Versus Rural Areas. Procedia Eng. 119: 1171−1180. DOI: 10.1016/j.proeng.2015.08.968. |
[495] | Chen, B., and Chu, L. (2022). Decoupling the double jeopardy of climate risk and fiscal risk: A perspective of infrastructure investment. Clim. Risk Manag. 37: 100448. DOI: 10.1016/j.crm.2022.100448. |
[496] | Zeppel, M.J.B., Wilks, J.V., and Lewis, J.D. (2014). Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11: 3083−3093. DOI: 10.5194/bg-11-3083-2014. |
[497] | Cai, H., Wang, Y., Zhao, T., and Zhang, H. (2023). A general unit hydrograph distribution and its application on the marginal distribution of global wind speed. Sustainable Horizons 6: 100056. DOI: 10.1016/j.horiz.2023.100056. |
[498] | Wada, C., Bremer, L., Burnett, K., et al. (2017). Estimating cost-effectiveness of Hawaiian dry forest restoration using spatial changes in water yield and landscape flammability under climate change. Pac. Sci. 71: 401−424. DOI: 10.2984/71.4.2. |
[499] | Krauss, K.W., Cormier, N., Osland, M.J., et al. (2017). Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Sci. Rep. 7: 1030. DOI: 10.1038/s41598-017-01224-2. |
[500] | Langridge, S.M., Hartge, E.H., Clark, R., et al. (2014). Key lessons for incorporating natural infrastructure into regional climate adaptation planning. Ocean Coast Manag. 95: 189−197. DOI: 10.1016/j.ocecoaman.2014.03.019. |
[501] | Vallejo, L., and Mullan, M. (2017). Climate-resilient infrastructure. http://portal.gms-eoc.org/uploads/resources/3383/attachment/Climate-resilient%20infrastructure%20-%20Getting%20the%20policies%20right.pdf |
[502] | Gurney, K.R., Romero-Lankao, P., Seto, K.C., et al. (2015). Climate change: Track urban emissions on a human scale. Nature 525: 179−181. DOI: 10.1038/525179a. |
[503] | IPCC (2023). AR6 synthesis report: climate change 2023. Summary for policymakers. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/. |
[504] | Sharifi, A. (2021). Co-benefits and synergies between urban climate change mitigation and adaptation measures: a literature review. Sci. Total Environ. 750: 141642. DOI: 10.1016/j.scitotenv.2020.141642. |
[505] | Daniel, R., Cortesão, J., Steeneveld, G.-J., et al. (2023). Performance of urban climate-responsive design interventions in combining climate adaptation and mitigation. Build. Environ. 236: 110227. DOI: 10.1016/j.buildenv.2023.110227. |
[506] | Schwaab, J., Meier, R., Mussetti, G., et al. (2021). The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 12: 6763. DOI: 10.1038/s41467-021-26768-w. |
[507] | Selbig, W.R., Loheide, S.P., Shuster, W., et al. (2022). Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Sci. Total Environ. 806: 151296. DOI: 10.1016/j.scitotenv.2021.151296. |
[508] | Shahzad, H., Myers, B., Boland, J., et al. (2022). Stormwater runoff reduction benefits of distributed curbside infiltration devices in an urban catchment. Water Res. 215: 118273. DOI: 10.1016/j.watres.2022.118273. |
[509] | Willis, K.J., and Petrokofsky, G. (2017). The natural capital of city trees. Science 356: 374−376. |
[510] | Liu, N., and Morawska, L. (2020). Modeling the urban heat island mitigation effect of cool coatings in realistic urban morphology. J. Clean. Prod. 264: 121560. DOI: 10.1016/j.jclepro.2020.121560. |
[511] | Santamouris, M., Ding, L., Fiorito, F., et al. (2017). Passive and active cooling for the outdoor built environment – Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 154: 14−33. DOI: 10.1016/j.solener.2016.12.006. |
[512] | Wardeh, Y., Kinab, E., Escadeillas, G., et al. (2022). Review of the optimization techniques for cool pavements solutions to mitigate Urban Heat Islands. Build. Environ. 223: 109482. DOI: 10.1016/j.buildenv.2022.109482. |
[513] | Kalkstein, L.S., Eisenman, D.P., de Guzman, E.B., and Sailor, D.J. (2022). Increasing trees and high-albedo surfaces decreases heat impacts and mortality in Los Angeles, CA. Int. J. Biometeorol. 66: 911−925. DOI: 10.1007/s00484-022-02248-8. |
[514] | Ossola, A., and Lin, B.B. (2021). Making nature-based solutions climate-ready for the 50 °C world. Environ. Sci. Policy 123: 151−159. DOI: 10.1016/j.envsci.2021.05.026. |
[515] | Axinte, L.F., Mehmood, A., Marsden, T., and Roep, D. (2019). Regenerative city-regions: a new conceptual framework. Reg. Stud. Reg. Sci. 6: 117−129. |
[516] | Thomson, G., and Newman, P. (2018). Urban fabrics and urban metabolism – from sustainable to regenerative cities. Resour. Conserv. Recycl. 132: 218−229. DOI: 10.1016/j.resconrec.2017.01.010. |
[517] | Park, S.K. (2021). Legal strategy disrupted: managing climate change and regulatory transformation. Am. Bus. Law. J. 58: 711−749. DOI: 10.1111/ablj.12194. |
[518] | Ronja, B., Emma, C., Andrea, B., et al. (2022). The value of incorporating nature in urban infrastructure planning. International Institute for Sustainable Development. https://www.iisd.org/publications/report/nature-in-urban-infrastructure-planning. |
[519] | Chausson, A., Turner, B., Seddon, D., et al. (2020). Mapping the effectiveness of nature-based solutions for climate change adaptation. Global Change Biol. 26: 6134−6155. DOI: 10.1111/gcb.15310. |
[520] | Kumar, P. (2021). Climate change and cities: challenges ahead. Front. Environ. Sci. 3: 645613. |
[521] | Gill, S.E., Handley, J., Ennos, A.R., and Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure. Built Environment 33: 115−133. DOI: 10.2148/benv.33.1.115. |
[522] | Kumar, P., Druckman, A., Gallagher, J., et al. (2019). The nexus between air pollution, green infrastructure and human health. Environ. Int. 133: 105181. DOI: 10.1016/j.envint.2019.105181. |
[523] | Sahani, J., Kumar, P., Debele, S., et al. (2019). Hydro-meteorological risk assessment methods and management by nature-based solutions. Sci. Total Environ. 696: 133936. DOI: 10.1016/j.scitotenv.2019.133936. |
[524] | Jing, R., Wang, X., Zhao, Y., et al. (2021). Planning urban energy systems adapting to extreme weather. Adv. Appl. Energy 3: 100053. DOI: 10.1016/j.adapen.2021.100053. |
[525] | Nik, V.M., Perera, A.T.D., and Chen, D. (2020). Towards climate resilient urban energy systems: a review. Natl. Sci. Rev. 8: nwaa134. |
[526] | MacArthur, J.L., Hoicka, C.E., Castleden, H., et al. (2020). Canada's green new deal: forging the socio-political foundations of climate resilient infrastructure. Energy Res. Soc. Sci. 65: 101442. DOI: 10.1016/j.erss.2020.101442. |
[527] | Meyer, P.B., and Schwarze, R. (2019). Financing climate-resilient infrastructure: Determining risk, reward, and return on investment. Front. Eng. Manage. 6: 117−127. DOI: 10.1007/s42524-019-0009-4. |
[528] | Walkley, A., and Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29−38. DOI: 10.1097/00010694-193401000-00003. |
[529] | Davies, B.E. (1974). Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38: 150−151. DOI: 10.2136/sssaj1974.03615995003800010046x. |
[530] | Tabatabai, M.A., and Bremner, J.M. (1970). Use of the Leco Automatic 70-Second Carbon Analyzer for total carbon analysis of soils. Soil Sci. Soc. Am. J. 34: 608−610. DOI: 10.2136/sssaj1970.03615995003400040020x. |
[531] | G. R. BLAKE, and HARTGE, K.H. (1986). Bulk density. In methods of soil analasis Part 1 physical and mineralogical methods, A. Klute, ed. (American Society of Agronomy, Soil Science Society of America.), 363–375. |
[532] | Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D. (2020). From Laboratory to proximal sensing spectroscopy for soil organic carbon estimation—a review. Sustainability 12: 443. DOI: 10.3390/su12020443. |
[533] | Tang, Y., Jones, E., and Minasny, B. (2020). Evaluating low-cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia. Geoderma Reg. 20: e00240. DOI: 10.1016/j.geodrs.2019.e00240. |
[534] | Li, S., Viscarra Rossel, R.A., and Webster, R. (2021). The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon. Eur. J. Soil Sci. 73: e13202. |
[535] | Clingensmith, C.M., and Grunwald, S. (2022). Predicting soil properties and interpreting Vis-NIR Models from acrosscontinental United States. Sensors 22: 3187. DOI: 10.3390/s22093187. |
[536] | Demattê, J.A.M., Dotto, A.C., Paiva, A.F.S., et al. (2019). The Brazilian soil spectral library (BSSL): a general view, application and challenges. Geoderma 354: 113793. DOI: 10.1016/j.geoderma.2019.05.043. |
[537] | Jia, X., Chen, S., Yang, Y., et al. (2017). Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape. Sci. Rep. 7: 2144. DOI: 10.1038/s41598-017-02061-z. |
[538] | Knox, N.M., Grunwald, S., McDowell, M.L., et al. (2015). Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma. 239-240: 229−239. |
[539] | Shi, Z., Wang, Q., Peng, J., et al. (2014). Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China: Earth Sci. 57: 1671−1680. DOI: 10.1007/s11430-013-4808-x. |
[540] | Stevens, A., Nocita, M., Tóth, G., et al. (2013). Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS One 8: e66409. DOI: 10.1371/journal.pone.0066409. |
[541] | Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., et al. (2016). A global spectral library to characterize the world's soil. Earth-Sci. Rev. 155: 198−230. DOI: 10.1016/j.earscirev.2016.01.012. |
[542] | Wijewardane, N.K., Ge, Y., Wills, S., and Loecke, T. (2016). Prediction of soil carbon in the conterminous United States: visible and near infrared reflectance spectroscopy Analysis of the rapid carbon assessment Project. Soil Sci. Soc. Am. J. 80: 973−982. DOI: 10.2136/sssaj2016.02.0052. |
[543] | Parducci, A., De Souza, D., Camargo, T., et al. (2019). Analyzing soil fertility by chemical and physical parameters using visible and near-infrared reflectance (VIS-NIR) spectroscopy, involves combining use of VIS-NIR spectrophotometer, SpecSoil-Scan with respective digital platform. SPECLAB HOLDING SA (SPEC-Non-standard) EMPRESA BRASIL PESQUISA AGROPECUARIA (EMPR-Non-standard). |
[544] | Safanelli, J.L., Hengl, T., Sanderman, J., and Parente, L. (2021). Open soil spectral library (training data and calibration models) (Zenodo)L. https://zenodo.org/record/5805138#.ZJAOg8j-elw. |
[545] | Laboratories, H. (2022). Anlysis of soils using near infrared spectroscopy. Hill Laboratories. https://www.hill-laboratories.com/assets/Documents/Technical-Notes/Agriculture/35398v4View.pdf. |
[546] | Reijneveld, J.A., van Oostrum, M.J., Brolsma, K.M., et al. (2022). Empower Innovations in Routine Soil Testing. Agronomy 12: 191. DOI: 10.3390/agronomy12010191. |
[547] | Semella, S., Hutengs, C., Seidel, M., et al. (2022). Accuracy and reproducibility of laboratory diffuse reflectance measurements with portable VNIR and MIR spectrometers for predictive soil organic carbon modeling. Sensors 22: 2749. DOI: 10.3390/s22072749. |
[548] | Cambou, A., Allory, V., Cardinael, R., et al. (2021). Comparison of soil organic carbon stocks predicted using visible and near infrared reflectance (VNIR) spectra acquired in situ vs. on sieved dried samples: Synthesis of different studies. Soil Sec. 5: 100024. |
[549] | Avand, M., Moradi, H., and lasboyee, M.R. (2021). Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. J. Hydrol. 595: 125663. DOI: 10.1016/j.jhydrol.2020.125663. |
[550] | West, H., Quinn, N., and Horswell, M. (2019). Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. Remote Sens. Environ. 232: 111291. DOI: 10.1016/j.rse.2019.111291. |
[551] | Feng, Y., Negrón-Juárez, R.I., and Chambers, J.Q. (2020). Remote sensing and statistical analysis of the effects of hurricane María on the forests of Puerto Rico. Remote Sens. Environ. 247: 111940. DOI: 10.1016/j.rse.2020.111940. |
[552] | Igun, E., Xu, X., Hu, Y., and Jia, G. (2022). Strong heatwaves with widespread urban-related hotspots over Africa in 2019. Atmos. Oceanic Sci. Lett. 15: 100195. DOI: 10.1016/j.aosl.2022.100195. |
[553] | Wei, M., Zhang, Z., Long, T., et al. (2021). Monitoring landsat based burned area as an indicator of sustainable development goals. Earth's Future 9: e2020EF001960. |
[554] | WMO (2022). State of the global climate 2021. World Meteorological Organization. https://library.wmo.int/doc_num.php?explnum_id=11178. |
[555] | Huang, N., Wang, L., Zhang, Y., et al. (2021). Estimating the net ecosystem exchange at global FLUXNET sites using a random forest model. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 14: 9826−9836. DOI: 10.1109/JSTARS.2021.3114190. |
[556] | Yao, T., Bolch, T., Chen, D., et al. (2022). The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3: 618−632. DOI: 10.1038/s43017-022-00299-4. |
[557] | Hugonnet, R., McNabb, R., Berthier, E., et al. (2021). Accelerated global glacier mass loss in the early twenty-first century. Nature 592: 726−731. DOI: 10.1038/s41586-021-03436-z. |
[558] | Su, H., Jiang, J., Wang, A., et al. (2022). Subsurface temperature reconstruction for the global ocean from 1993 to 2020 using satellite observations and deep learning. Remote Sens. 14: 3198. DOI: 10.3390/rs14133198. |
[559] | Su, H., Zhang, T., Lin, M., et al. (2021). Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks. Remote Sens. Environ. 260: 112465. DOI: 10.1016/j.rse.2021.112465. |
[560] | Ehret, T., De Truchis, A., Mazzolini, M., et al. (2022). Global tracking and quantification of oil and gas methane emissions from recurrent sentinel-2 imagery. Environ. Sci. Technol. 56: 10517−10529. DOI: 10.1021/acs.est.1c08575. |
[561] | Stark, H., Moeller, H., Courreges-Lacoste, G., et al. (2013). The Sentinel-4 mission and its implementation. https://www-cdn.eumetsat.int/files/2020-04/pdf_conf_p_s1_10_stark_v.pdf |
[562] | Quesada-Ruiz, S., Attié, J.L., Lahoz, W.A., et al. (2020). Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition. Atmos. Meas. Tech. 13: 131−152. DOI: 10.5194/amt-13-131-2020. |
[563] | Peng, Z., Lin, C., Di, X., and Zhe, X. (2018). Recent progress of Fengyun meteorology satellites. Chinese J. Space Sci. 38: 788−796. DOI: 10.11728/cjss2018.05.788. |
[564] | Zhu, L., Wang, M., Shao, J., et al. (2015). Remote sensing of global volcanic eruptions using Fengyun series satellites. IEEE Int. Geosci. Remote Sens. Symp. 4797-4800. |
[565] | Li, C., Cai, R., Tian, W., et al. (2023). Land cover classification by Gaofen satellite images based on CART algorithm in Yuli County, Xinjiang, China. Sustainability 15: 2535. DOI: 10.3390/su15032535. |
[566] | Zhang, W., and Dong, Y. (2022). Research on flood remote sensing monitoring based on multi-source remote sensing data. 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS). https://ieeexplore.ieee.org/document/9849315. |
[567] | Chen, J.M., Ju, W., Ciais, P., et al. (2019). Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10: 4259. DOI: 10.1038/s41467-019-12257-8. |
[568] | Huang, L., Li, Z., Zhou, J.M., and Zhang, P. (2021). An automatic method for clean glacier and nonseasonal snow area change estimation in High Mountain Asia from 1990 to 2018. Remote Sens. Environ. 258: 112376. DOI: 10.1016/j.rse.2021.112376. |
[569] | Myneni, R.B., Keeling, C.D., Tucker, C.J., et al. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386: 698−702. DOI: 10.1038/386698a0. |
[570] | Piao, S., Wang, X., Park, T., et al. (2020). Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1: 14−27. |
[571] | Fan, L., Wigneron, J.-P., Ciais, P., et al. (2023). Siberian carbon sink reduced by forest disturbances. Nat. Geosci. 16: 56−62. DOI: 10.1038/s41561-022-01087-x. |
[572] | WIGNERON, J.P., and CIAIS, P. (2022). Rôle des forêts dans le bilan de carbone de la planète. https://planet-vie.ens.fr/thematiques/ecologie/cycles-biogeochimiques/role-des-forets-dans-le-bilan-de-carbone-de-la-planete#:~:text=%C3%80%20l%27%C3%A9chelle%20de%20la%20plan%C3%A8te%2C%20les%20for%C3%AAts%20constituent,en%20effet%20de%20diff%C3%A9rents%20facteurs%20naturels%20et%20anthropiques. |
[573] | Bouvet, A., Mermoz, S., Le Toan, T., et al. (2018). An above-ground biomass map of African savannahs and woodlands at 25m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206: 156−173. DOI: 10.1016/j.rse.2017.12.030. |
[574] | Wigneron, J.P., Fan, L., Ciais, P., et al. (2020). Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6: eaay4603. DOI: 10.1126/sciadv.aay4603. |
[575] | Qin, Y., Xiao, X., Wigneron, J.-P., et al. (2022). Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sens. Environ. 278: 113087. DOI: 10.1016/j.rse.2022.113087. |
[576] | Dubayah, R., Armston, J., Healey, S.P., et al. (2022). GEDI launches a new era of biomass inference from space. Environ. Res. Lett. 17: 095001. DOI: 10.1088/1748-9326/ac8694. |
[577] | Tucker, C., Brandt, M., Hiernaux, P., et al. (2023). Sub-continental-scale carbon stocks of individual trees in African drylands. Nature 615: 80−86. DOI: 10.1038/s41586-022-05653-6. |
[578] | Mugabowindekwe, M., Brandt, M., Chave, J., et al. (2023). Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda. Nat. Clim. Change 13: 91−97. DOI: 10.1038/s41558-022-01544-w. |
[579] | Potapov, P., Li, X., Hernandez-Serna, A., et al. (2021). Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253: 112165. DOI: 10.1016/j.rse.2020.112165. |
[580] | Liu, S., Brandt, M., Nord-Larsen, T., et al. (2023). The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe. |
[581] | Schwartz, M., Ciais, P., Ottl'e, C., et al. (2022). High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach. ArXiv abs/2212.10265. |
[582] | Grunwald, S. (2021). Grand challenges in pedometrics-AI research. Front. in Soil Sci. 1: 714323. DOI: 10.3389/fsoil.2021.714323. |
[583] | S. Russell, and Norvig, P. (2020). Artificial intelligence: a modern approach (Pearson)L. https://www.pearson.com/en-us/subject-catalog/p/Russell-Artificial-Intelligence-A-Modern-Approach-4th-Edition/P200000003500/9780137505135. |
[584] | LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521: 436−444. DOI: 10.1038/nature14539. |
[585] | Mizuta, K., Grunwald, S., Phillips, M.A., et al. (2021). Sensitivity assessment of metafrontier data envelopment analysis for soil carbon sequestration efficiency. Ecol. Indic. 125: 107602. DOI: 10.1016/j.ecolind.2021.107602. |
[586] | Khaledian, Y., and Miller, B.A. (2020). Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 81: 401−418. DOI: 10.1016/j.apm.2019.12.016. |
[587] | Grunwald, S. (2022). Artificial intelligence and soil carbon modeling demystified: power, potentials, and perils. Carbon Footprints 1: 6. DOI: 10.20517/cf.2022.03. |
[588] | Lu, H., Li, S., Ma, M., et al. (2021). Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models. Environ. Res. Lett. 16: 054048. DOI: 10.1088/1748-9326/abf526. |
[589] | Grunwald, S., Thompson, J.A., and Boettinger, J.L. (2011). Digital soil mapping and modeling at continental scales: finding solutions for global issues. Soil Sci. Soc. Am. J. 75: 1201−1213. DOI: 10.2136/sssaj2011.0025. |
[590] | McBratney, A.B., Mendonça Santos, M.L., and Minasny, B. (2003). On digital soil mapping. Geoderma 117: 3−52. DOI: 10.1016/S0016-7061(03)00223-4. |
[591] | Ainsworth, E.A., and Long, S.P. (2021). 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation. Global Change Biol. 27: 27−49. DOI: 10.1111/gcb.15375. |
[592] | Okada, M., Lieffering, M., Nakamura, H., et al. (2001). Free-air CO2 enrichment (FACE) using pure CO2 injection: System description. New Phytol. 150: 251−260. DOI: 10.1046/j.1469-8137.2001.00097.x. |
[593] | Kimball, B.A. (2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31: 36−43. DOI: 10.1016/j.pbi.2016.03.006. |
[594] | Long, S.P., Ainsworth, E.A., Leakey, A.D.B., et al. (2006). Food for thought: Lower-than-expected crop yield simulation with rising CO2 concentrations. Science 312: 1918−1921. DOI: 10.1126/science.1114722. |
[595] | Ainsworth, E.A., and Long, S.P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165: 351−372. |
[596] | Allen, L.H., Kimball, B.A., Bunce, J.A., et al. (2020). Fluctuations of CO2 in free-air CO2 enrichment (FACE) depress plant photosynthesis, growth, and yield. Agric. For. Meteorol. 284: 107899. DOI: 10.1016/j.agrformet.2020.107899. |
[597] | Drag, D.W., Slattery, R., Siebers, M., et al. (2020). Soybean photosynthetic and biomass responses to carbon dioxide concentrations ranging from pre-industrial to the distant future. J. Exp. Bot. 71: 3690−3700. DOI: 10.1093/jxb/eraa133. |
[598] | Rich, R.L., Stefanski, A., Montgomery, R.A., et al. (2015). Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biol. 21: 2334−2348. DOI: 10.1111/gcb.12855. |
[599] | Noyce, G.L., Kirwan, M.L., Rich, R.L., and Megonigal, J.P. (2019). Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl. Acad. Sci. USA 116: 21623−21628. DOI: 10.1073/pnas.1904990116. |
[600] | Cai, C., Yin, X., He, S., et al. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biol. 22: 856−874. DOI: 10.1111/gcb.13065. |
[601] | Kimball, B.A., Conley, M.M., Wang, S., et al. (2008). Infrared heater arrays for warming ecosystem field plots. Global Change Biol. 14: 309−320. DOI: 10.1111/j.1365-2486.2007.01486.x. |
[602] | Peng, B., Guan, K., Tang, J., et al. (2020). Towards a multiscale crop modelling framework for climate change adaptation assessment. Nat. Plants 6: 338−348. DOI: 10.1038/s41477-020-0625-3. |
[603] | Yahdjian, L., and Sala, O.E. (2002). A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133: 95−101. DOI: 10.1007/s00442-002-1024-3. |
[604] | Martinez-Meza, E., and Whitford, W.G. (1996). Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs. J. Arid Environ. 32: 271−287. DOI: 10.1006/jare.1996.0023. |
[605] | Gomez-Gomez, J.-d.-D., Pulido-Velazquez, D., Collados-Lara, A.-J., and Fernandez-Chacon, F. (2022). The impact of climate change scenarios on droughts and their propagation in an arid Mediterranean basin. A useful approach for planning adaptation strategies. Sci. Total Environ. 820: 153128. |
[606] | Calel, R. (2013). Carbon markets: a historical overview. WIREs Clim. Change 4: 107−119. DOI: 10.1002/wcc.208. |
[607] | UN (1998). Kyoto protocol to the United Nations Framework Convention on climate change. United Nations. https://unfccc.int/resource/docs/convkp/kpeng.pdf. |
[608] | Lovell, H.C. (2010). Governing the carbon offset market. WIREs Clim. Change 1: 353−362. DOI: 10.1002/wcc.43. |
[609] | Michaelowa, A., Shishlov, I., and Brescia, D. (2019). Evolution of international carbon markets: lessons for the Paris Agreement. WIREs Clim. Change 10: e613. |
[610] | Fuss, S., Lamb, W.F., Callaghan, M.W., et al. (2018). Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13: 063002. DOI: 10.1088/1748-9326/aabf9f. |
[611] | Ruseva, T., Hedrick, J., Marland, G., et al. (2020). Rethinking standards of permanence for terrestrial and coastal carbon: implications for governance and sustainability. Curr. Opin. Environ. Sustain. 45: 69−77. DOI: 10.1016/j.cosust.2020.09.009. |
[612] | Linsenmeier, M., Mohommad, A., and Schwerhoff, G. (2022). Policy sequencing towards carbon pricing among the world’s largest emitters. Nat. Clim. Change 12: 1107−1110. DOI: 10.1038/s41558-022-01538-8. |
[613] | UNCC (2022). About carbon pricing. United Nations Climate Change. https://unfccc.int/about-us/regional-collaboration-centres/the-ciaca/about-carbon-pricing. |
[614] | Bechtel, M.M., Scheve, K.F., and van Lieshout, E. (2020). Constant carbon pricing increases support for climate action compared to ramping up costs over time. Nat. Clim. Change 10: 1004−1009. DOI: 10.1038/s41558-020-00914-6. |
[615] | Bank, W. (2022). State and Trends of Carbon Pricing 2022. In state and trends of carbon pricing, (World Bank). https://openknowledge.worldbank.org/handle/10986/37455. |
[616] | Wei, Y.M., Mi, Z.F., and Huang, Z. (2015). Climate policy modeling: an online SCI-E and SSCI based literature review. Omega 57: 70−84. DOI: 10.1016/j.omega.2014.10.011. |
[617] | Mildenberger, M., Lachapelle, E., Harrison, K., and Stadelmann-Steffen, I. (2022). Limited impacts of carbon tax rebate programmes on public support for carbon pricing. Nat. Clim. Change 12: 141−147. DOI: 10.1038/s41558-021-01268-3. |
[618] | Cong, R.G., and Wei, Y.M. (2010). Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options. Energy 35: 3921−3931. DOI: 10.1016/j.energy.2010.06.013. |
[619] | Cong, R.G., and Wei, Y.M. (2012). Experimental comparison of impact of auction format on carbon allowance market. Renew. Sust. Energ. Rev. 16: 4148−4156. DOI: 10.1016/j.rser.2012.03.049. |
[620] | Hepburn, C. (2017). Make carbon pricing a priority. Nat. Clim. Change 7: 389−390. DOI: 10.1038/nclimate3302. |
[621] | Weitzman, M.L. (1974). Prices vs. quantities. Rev. Econ. Stud. 41: 477−491. DOI: 10.2307/2296698. |
[622] | Bertram, C., Luderer, G., Pietzcker, R.C., et al. (2015). Complementing carbon prices with technology policies to keep climate targets within reach. Nat. Clim. Change 5: 235−239. DOI: 10.1038/nclimate2514. |
[623] | Nordhaus, W.D. (2006). After Kyoto: alternative mechanisms to control global warming. Am. Econ. Rev. 96: 31−34. DOI: 10.1257/000282806777211964. |
[624] | EPA. EU emissions trading system. https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en. |
[625] | IEA (2020). China’s emissions trading scheme. https://www.iea.org/reports/chinas-emissions-trading-scheme. |
[626] | Zhang, Z. (2022). China’s carbon market: development, evaluation, coordination of local and national carbon markets, and common prosperity. J. Clim. Fin. 1: 100001. |
[627] | Pizer, W.A. (2002). Combining price and quantity controls to mitigate global climate change. J. Public. Econ. 85: 409−434. DOI: 10.1016/S0047-2727(01)00118-9. |
[628] | Liu, Y., Li, H., Wang, H., et al. (2023). Integrated life cycle analysis of cost and CO2 emissions from vehicles and construction work activities in highway pavement service life. Atmosphere 14: 194. DOI: 10.3390/atmos14020194. |
[629] | Paustian, K., Collier, S., Baldock, J., et al. (2019). Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manag. 10: 567−587. DOI: 10.1080/17583004.2019.1633231. |
[630] | UN (1992). United Nations Framework Convention on climate change. United Nations. https://unfccc.int/resource/docs/convkp/conveng.pdf. |
[631] | UNESCO (2009). Report by the director-general on the UNESCO World Conference on education for sustainable development and the bonn declaration. Education for sustainable development – moving into the second half of the United Nations decade. https://unesdoc.unesco.org/ark:/48223/pf0000181881. |
[632] | UNESCO (2010). UNESCO strategy for the second half of the United Nations decade of education for sustainable development. United Nations decade of education for sustainable development. https://unesdoc.unesco.org/ark:/48223/pf0000215466. |
[633] | Carrico, A.R., Vandenbergh, M.P., Stern, P.C., and Dietz, T. (2015). US climate policy needs behavioural science. Nat. Clim. Change 5: 177−179. DOI: 10.1038/nclimate2518. |
[634] | Mochizuki, Y., and Bryan, A. (2015). Climate change education in the context of education for sustainable development: rationale and principles. J. Educ. Sustain. Dev. 9: 4−26. DOI: 10.1177/0973408215569109. |
[635] | Anderson, A.H. (2012). Climate change education for mitigation and adaptation. J. Edu. Sustain. Dev. 6: 191−206. DOI: 10.1177/0973408212475199. |
[636] | Wouterse, F., Andrijevic, M., and Schaeffer, M. (2022). The microeconomics of adaptation: Evidence from smallholders in Ethiopia and Niger. World Dev. 154: 105884. DOI: 10.1016/j.worlddev.2022.105884. |
[637] | Hudson, S.J. (2001). Challenges for environmental education: issues and ideas for the 21st century: environmental education, a vital component of efforts to solve environmental problems, must stay relevant to the needs and interests of the community and yet constantly adapt to the rapidly changing social and technological landscape. Bioscience 51: 283−288. DOI: 10.1641/0006-3568(2001)051[0283:CFEEIA]2.0.CO;2. |
[638] | Allcott, H., and Mullainathan, S. (2010). Behavior and energy policy. Science 327: 1204−1205. DOI: 10.1126/science.1180775. |
[639] | Kollmuss, A., and Agyeman, J. (2002). Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior. Environ. Educ. Res. 8: 239−260. DOI: 10.1080/13504620220145401. |
[640] | Brownlee, M.T.J., Powell, R.B., and Hallo, J.C. (2013). A review of the foundational processes that influence beliefs in climate change: opportunities for environmental education research. Environ. Educ. Res. 19: 1−20. DOI: 10.1080/13504622.2012.683389. |
[641] | Trott, C.D. (2022). Climate change education for transformation: exploring the affective and attitudinal dimensions of children’s learning and action. Environ. Educ. Res. 28: 1023−1042. DOI: 10.1080/13504622.2021.2007223. |
[642] | Thaler, R.H. (2018). From cashews to nudges: the evolution of behavioral economics. Am. Econ. Rev. 108: 1265−1287. DOI: 10.1257/aer.108.6.1265. |
[643] | Ivanova, D., Stadler, K., Steen-Olsen, K., et al. (2015). Environmental impact assessment of household consumption. J. Ind. Ecol. 20: 12371. |
[644] | UNEP (2020). Emissions gap report 2020. United Nations Environment Programme Copenhagen Climate Centre (UNEP-CCC). https://www.unep.org/emissions-gap-report-2020. |
[645] | IPCC (2022). Climate change 2022: mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg3/. |
[646] | UNEP (2021). Emissions gap report 2021. United Nations Environment Programme Copenhagen Climate Centre (UNEP-CCC). https://unepccc.org/. |
[647] | Brizga, J., Feng, K.S., and Hubacek, K. (2017). Household carbon footprints in the Baltic States: A global multi-regional input-output analysis from 1995 to 2011. Appl. Energy 189: 780−788. DOI: 10.1016/j.apenergy.2016.01.102. |
[648] | Creutzig, F., Roy, J., Lamb, W.F., et al. (2018). Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8: 268−271. |
[649] | van den Berg, N.J., Hof, A.F., Akenji, L., et al. (2019). Improved modelling of lifestyle changes in integrated assessment models: cross-disciplinary insights from methodologies and theories. Energy Strateg. Rev. 26: 100420. DOI: 10.1016/j.esr.2019.100420. |
[650] | Saujot, M., Le Gallic, T., and Waisman, H. (2021). Lifestyle changes in mitigation pathways: policy and scientific insights. Environ. Res. Lett. 16: 015005. |
[651] | Vita, G., Lundstrom, J.R., Hertwich, E.G., et al. (2019). The environmental impact of green consumption and sufficiency lifestyles scenarios in Europe: connecting local sustainability visions to global consequences. Ecol. Econ. 164: 106322. DOI: 10.1016/j.ecolecon.2019.05.002. |
[652] | Ivanova, D., Barrett, J., Wiedenhofer, D., et al. (2020). Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15: 093001. DOI: 10.1088/1748-9326/ab8589. |
[653] | Akenji, L., Bengtsson, M., Toivio, V., et al. (2022). 1.5–degree lifestyles: towards a fair consumption space for all (Hot or Cool Institute)L. https://hotorcool.org/1-5-degree-lifestyles-report/. |
[654] | van Vuuren, D.P., Stehfest, E., Gernaat, D., et al. (2018). Alternative pathways to the 1.5 degrees C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391-397. |
[655] | van Sluisveld, M.A.E., Martinez, S.H., Daioglou, V., and van Vuuren, D.P. (2016). Exploring the implications of lifestyle change in 2 degrees C mitigation scenarios using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change. 102: 309−319. DOI: 10.1016/j.techfore.2015.08.013. |
[656] | Dalkmann, H., and Brannigan, C. (2007). Transport and climate change. Module 5e: sustainable transport: a sourcebook for policy-makers in developing cities (Deutsche Gesellschaft Fuer Technische Zusammenarbeit )L. |
[657] | Enriquez, A., PhD, B., Dalkmann, H., and Brannigan, C. (2014). GIZ sourcebook 5e transport and climate change. |
[658] | Kanyama, A.C., Nassen, J., and Benders, R. (2021). Shifting expenditure on food, holidays, and furnishings could lower greenhouse gas emissions by almost 40%. J. Ind. Ecol. 25: 1602−1616. DOI: 10.1111/jiec.13176. |
[659] | Chaudhary, A., and Krishna, V. (2021). Region-specific nutritious, environmentally friendly, and affordable diets in India. One Earth 4: 531−544. DOI: 10.1016/j.oneear.2021.03.006. |
[660] | Hong, C.P., Burney, J.A., Pongratz, J., et al. (2021). Global and regional drivers of land-use emissions in 1961-2017. Nature 589: 554−561. DOI: 10.1038/s41586-020-03138-y. |
[661] | Edelenbosch, O.Y., McCollum, D.L., Pettifor, H., et al. (2018). Interactions between social learning and technological learning in electric vehicle futures. Environ. Res. Lett. 13: 124004. DOI: 10.1088/1748-9326/aae948. |
[662] | Falchetta, G., and Noussan, M. (2021). Electric vehicle charging network in Europe: an accessibility and deployment trends analysis. Transp. Res. D Transp. Environ. 94: 102813. DOI: 10.1016/j.trd.2021.102813. |
[663] | Girod, B., van Vuuren, D.P., and de Vries, B. (2013). Influence of travel behavior on global CO2 emissions. Transp. Res. A Policy. Pract. 50: 183−197. DOI: 10.1016/j.tra.2013.01.046. |
[664] | Kaufmann, V., and Ravalet, E. (2016). From weak signals to mobility scenarios: a prospective study of France in 2050. International Scientific Conference on Mobility and Transport Transforming Urban Mobility (TUM). |
[665] | Ding, Q., Cai, W.J., Wang, C., and Sanwal, M. (2017). The relationships between household consumption activities and energy consumption in china- an input-output analysis from the lifestyle perspective. Appl. Energy 207: 520−532. DOI: 10.1016/j.apenergy.2017.06.003. |
[666] | Guneralp, B., Zhou, Y.Y., Urge-Vorsatz, D., et al. (2017). Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl. Acad. Sci. USA 114: 8945−8950. DOI: 10.1073/pnas.1606035114. |
[667] | Meng, W., Zhong, Q., Chen, Y., et al. (2019). Energy and air pollution benefits of household fuel policies in northern China. Proc. Natl. Acad. Sci. USA 116: 16773−16780. DOI: 10.1073/pnas.1904182116. |
[668] | Pachauri, S., Poblete-Cazenave, M., Aktas, A., and Gidden, M.J. (2021). Access to clean cooking services in energy and emission scenarios after COVID-19. Nat. Energy 6: 1067−1076. DOI: 10.1038/s41560-021-00911-9. |
[669] | Beylot, A., Vaxelaire, S., and Villeneuve, J. (2016). Reducing gaseous emissions and resource consumption embodied in french final demand: how much can waste policies contribute. J. Ind. Ecol. 20: 905−916. DOI: 10.1111/jiec.12318. |
[670] | Grubler, A., Wilson, C., Bento, N., et al. (2018). A low energy demand scenario for meeting the 1.5 degrees C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515-527. |
[671] | Koide, R., Kojima, S., Nansai, K., et al. (2021). Exploring carbon footprint reduction pathways through urban lifestyle changes: a practical approach applied to Japanese cities. Environ. Res. Lett. 16: 084001. DOI: 10.1088/1748-9326/ac0e64. |
[672] | Moran, D., Wood, R., Hertwich, E., et al. (2020). Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions. Clim. Policy 20: S28−S38. DOI: 10.1080/14693062.2018.1551186. |
[673] | Bishop, G., Styles, D., and Lens, P.N.L. (2021). Environmental performance comparison of bioplastics and petrochemical plastics: a review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 168: 105451. DOI: 10.1016/j.resconrec.2021.105451. |
[674] | Wood, R., Moran, D., Stadler, K., et al. (2018). Prioritizing consumption-based carbon policy based on the evaluation of mitigation potential using input-output methods. J. Ind. Ecol. 22: 540−552. DOI: 10.1111/jiec.12702. |
[675] | BUDIMAN, A. (2022). Locomotion: Modelling for just and net-zero Europe. European Environmental Bureau. https://meta.eeb.org/2022/05/30/modelling-for-just-and-net-zero-europe/. |
[676] | Van de Ven, D.J., Gonzalez-Eguino, M., and Arto, I. (2018). The potential of behavioural change for climate change mitigation: a case study for the European Union. Mitig. Adapt. Strateg. Glob. Chang. 23: 853−886. DOI: 10.1007/s11027-017-9763-y. |
[677] | Keppo, I., Butnar, I., Bauer, N., et al. (2021). Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models. Environ. Res. Lett. 16: 053006. DOI: 10.1088/1748-9326/abe5d8. |
Wang F., Harindintwali J.-D., Wei K., et al., (2023). Climate change: Strategies for mitigation and adaptation. The Innovation Geoscience 1(1), 100015. https://doi.org/10.59717/j.xinn-geo.2023.100015 |
Schematic representation of the global mean energy balance process associated with the natural (left) and human-enhanced (right) greenhouse effect, with bright yellow indicating incoming solar shortwave radiation and red representing outgoing terrestrial longwave radiation.
Evolution of atmospheric CO2 over the past 800,000 years (800 kyr), major climate change drivers, and greenhouse effect
Evidence of global climate change and its effects on the environment.
The consequences of protecting and not protecting biodiversity from human impacts with and without mitigation of anthropogenic climate change
Nature- and technology-based solutions for climate change mitigation.
Ecosystem-based management options for the adaptation to climate change in global systems.
The status of carbon pricing initiatives worldwide