A Cell Press partner journal
See the unseen. Change the unchanged.
The Innovation í¬ published by Cell Press in partnership with members of the Youth
Innovation Promotion Association (YIPA),a part of the Chinese Academy of
Sciencesí¬is a new broad-scope, open access journal publishing basic and applied
research that has impact for the benefit of society.
On the cover: On the cover: Nourished by the gigantic data and empowered by increasing computing facilities, Artificial Intelligence (AI) is setting us free from many burdensome routines. With AI muscles, we have become faster and smarter than ever. AI is reshaping the future of industries and our lives, enabling paradigm shifts in many disciplines of science and even paving the road to the metaverse. But scientists are still facing endless choices to navigate their innovation processes as previously. Meanwhile, collaborations are urgently needed amongst researchers from multidisciplinary studies. So we do hope the shared values of truth, righteousness, and peace can be cherished deeply to make our blue planet a better place for the whole ecosystem.
  Related comments
Add comment (English only)
Name*:  
E-mail:  
Telephone:  
Code:    
Comments*:
Position: Home > issue > November 28, 2021 Volume 2, Issue 4
Energy constrains to increasing complexity in the biosphere
Category:   Report   Download:  PDF  Figure  Endnote
Author: Gengyuan Liu, Zhifeng Yang, Biagio F. Giannetti, Marco Casazza, Feni Agostinho, Jiamin Pan, Ningyu Yan, Yan Hao, Lixiao Zhang, Cecilia M.V.B. Almeida, Francesco Gonella, Sergio Ulgiati, Mark T. Brown

22.jpg

Graphical abstract

Thirty years ago, the systems ecologist Howard T. Odum introduced the concept of transformity, which is a thermodynamic measure of quality within the trial and error evolutionary dynamics of ecosystems, namely an indicator of rank in the hierarchical system structure of the biosphere. Based on a global database of individual processes and whole economies, this paper extends, refines, and updates Odum's idea, demonstrating the strength of the postulated relation. In particular, an inverse linear logarithmic relationship is shown to hold between resource quantity (exergy) and quality (emergy), which is the result of an overall energetic efficiency characteristic of energy transformation processes of the biosphere.


DOI:
https://doi.org/10.1016/j.xinn.2021.100169

Citation:
Liu G., Yang Z., Giannetti B., et al. (2021). Energy constrains to increasing complexity in the biosphere. The Innovation. 2(4),100169.





Host
Publishing partner
Journal links
Academic co-partner
  SHANGHAI INSTITUTE OF APPLIED PHYSICS, CAS
  INSTITUTE OF MICROBIOLOGY, CAS
  XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS, CAS
Stay connected

  office@the-innovation.org
  the.innovation.journal
  the.innovation.journal
  The_InnovationJ
  TheInnovation┤┤đ┬
  TheInnovation┤┤đ┬
  The Innovation
  The_Innovation

  Copyright © 2019-2021 Youth Innovation All Rights Reserved