|
 |
On the cover: In recent years, driven by the new round of scientific and technological revolution coupled with carbon neutrality, the energy structure is undergoing unprecedented changes. Biomass energy can be obtained from abundant resources by a number of application ways, which is zero-carbon and has unique effect of carbon negative emission. Meanwhile, advanced conversion technologies, such as BECCS, pyrolysis, and biohydrogen, are also joining the way to make a better bioenergy. Clean products of biomass have been promoted to a prospective future. Combination of biomass energy development and advanced technology will realize a more flexible and imaginative use of biomass, contributing to a green, low-carbon and sustainable development. For a bright and recyclable future, we should improve the use of biomass energy and unlock its huge potential for energy conservation and carbon reduction. |
|
|
Add comment (English only) |
|
|
|
|
|
Position: Home > issue > May 15, 2023 Volume 4, Issue 3 |
|
|
|
Cynomolgus-rhesus hybrid macaques serve as a platform for imprinting studies |
Category: Report Download: PDF Figure Endnote |
Author: Zongyang Lu, Jie Li, Yong Lu, Ling Li, Wei Wang, Chenchen Zhang, Libing Xu, Yanhong Nie, Changshan Gao, Xinyan Bian, Zhen Liu, Guang-Zhong Wang, Qiang Sun |
|
|

GRAPHICAL ABSTRACT
Genomic imprinting can lead to allele-specific expression (ASE), where one allele is preferentially expressed more than the other. Perturbations in genomic imprinting or ASE genes have been widely observed across various neurological disorders, notably autism spectrum disorder (ASD). In this study, we crossed rhesus cynomolgus monkeys to produce hybrid monkeys and established a framework to evaluate their allele-specific gene expression patterns using the parental genomes as a reference. Our proof-of-concept analysis of the hybrid monkeys identified 353 genes with allele-biased expression in the brain, enabling us to determine the chromosomal locations of ASE clusters.

|
|
|
|