[1] | Cheng, M., Jiang, Y., Xu, J., et al. (2023). Spatially resolved transcriptomics: A comprehensive review of their technological advances, applications, and challenges. J. Genet. Genomics 50: 625-640. DOI: 10.1016/j.jgg.2023.03.011. |
[2] | Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discov. 12: 31−46. DOI: 10.1158/2159-8290.CD-21-1059. |
[3] | Moses, L., and Pachter, L. (2022). Museum of spatial transcriptomics. Nat. Methods 19: 534−546. DOI: 10.1038/s41592-022-01409-2. |
[4] | Li, B., Zhang, W., Guo, C., et al. (2022). Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19: 662−670. DOI: 10.1038/s41592-022-01480-9. |
[5] | Vandereyken, K., Sifrim, A., Thienpont, B., and Voet, T. (2023). Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24: 494-515. DOI: 10.1038/s41576-023-00580-2. |
Ou Z., Yin J., Wu L., et al., (2023). Spatial transcriptomics in cancer research: Opportunities and challenges. The Innovation Life 1(1), 100006. https://doi.org/10.59717/j.xinn-life.2023.100006 |
Challenges of ST application in cancer research