Current tools for morphology and cytotaxonomy measurements face challenges in providing consistent results and compatibility with statistical analysis.
MATO (Measurement and Analysis Tools), an upgraded version of our previous KaryoType software, is introduced to address these shortcomings.
MATO improves chromosome measurements and karyotype analysis through the incorporation of size-based Karyotyping and a novel grouping algorithm.
This tool accommodates a wide variety of morphometric characters such as length, size, angle, count, and color, which are often employed in morphological studies.
[1] | Buzgo, M., Soltis, D.E., Soltis, P.S., et al. (2004). Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci. 9 : 164-173, 10.1016/j.tplants.2004.02.003. |
[2] | Wortley, A.H. and Scotland, R.W. (2006). The effect of combining molecular and morphological data in published phylogenetic analyses. Syst. Biol. 55: 677−685. DOI: 10.1080/10635150600899798. |
[3] | Faraut, T. (2008). Addressing chromosome evolution in the whole-genome sequence era. Chromosome Research 16: 5−16. DOI: 10.1007/s10577-007-1208-0. |
[4] | Gokhman, V.E. (2022). Comparative karyotype analysis of parasitoid hymenoptera (insecta): Major approaches, techniques, and results. Genes (Basel) 13: 751. DOI: 10.3390/genes13050751. |
[5] | Endress, P.K., Baas, P., and Gregory, M. (2000). Systematic plant morphology and anatomy - 50 years of progress. Taxon 49: 401−434. DOI: 10.2307/1224342. |
[6] | Henderson, A. (2006). Traditional morphometrics in plant systematics and its role in palm systematics. Bot. J. Linn. Soc. 15: 103−111. DOI: 10.1111/j.1095-8339.2006.00526.x. |
[7] | Vimala, Y., Lavania, S., and Lavania, U.C. (2021). Chromosome change and karyotype differentiation–implications in speciation and plant systematics. The Nucleus 64: 33−54. DOI: 10.1007/s13237-020-00343-y. |
[8] | Qiang, W., Zi-Hui, T., Zi-Wei, L., et al. (2019). Karyotypes of seven Chinese species of Fritillaria ( Liliaceae). Plant Sci. J. 37: 434−440. DOI: 10.11913/PSJ.2095-0837.2019.40434. |
[9] | Singh, H., Kumar, P., and Singh, S.K. (2022). Cytological studies in endangered phlomoides superba (Royle ex Benth. ) Kamelin & Makhm. Cytologia 87: 195−200. DOI: 10.1508/cytologia.87.195. |
[10] | Friesen, N., Grutzmacher, L., Skaptsov, M., et al. (2022). Allium pallasii and A. caricifolium-surprisingly diverse old steppe species, showing a clear geographical barrier in the area of lake Zaysan. Plants-Basel 11: 1465. DOI: 10.3390/plants11111465. |
[11] | Giaco, A., De Giorgi, P., Astuti, G., et al. (2022). Diploids and polyploids in the Santolina chamaecyparissus complex (Asteraceae) show different karyotype asymmetry. Plant Biosyst. 156: 1237−1246. DOI: 10.1080/11263504.2022.2029971. |
[12] | Rueden, C.T., Schindelin, J., Hiner, M.C., et al. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18: 529. DOI: 10.1186/s12859-017-1934-z. |
[13] | Schindelin, J., Rueden, C.T., Hiner, M.C., et al. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82: 518−529. DOI: 10.1002/mrd.22489. |
[14] | Schroeder, A.B., Dobson, E.T.A., Rueden, C.T., et al. (2021). The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis. Protein Sci. 30: 234−249. DOI: 10.1002/pro.3993. |
[15] | Kankaanpaa, P., Paavolainen, L., Tiitta, S., et al. (2012). BioImageXD: An open, general-purpose and high-throughput image-processing platform. Nat. Methods 9: 683−689. DOI: 10.1038/nmeth.2047. |
[16] | Kirov, I., Khrustaleva, L., Laere, K.V., et al. (2017). DRAWID: User-friendly java software for chromosome measurements and idiogram drawing. Comp. Cytogenet. 11: 747−757. DOI: 10.3897/CompCytogen.v11i4.20830. |
[17] | Mirzaghaderi, G. and Marzangi, K. (2015). IdeoKar: An ideogram constructing and karyotype analyzing software. Caryologia 68: 31−35. DOI: 10.1080/00087114.2014.998526. |
[18] | Altınordu, F., Peruzzi, L., Yu, Y., et al. (2016). A tool for the analysis of chromosomes: KaryoType. Taxon 65: 586−592. DOI: 10.12705/653.9. |
[19] | Liao, C.Y., Gao, Q., Katz-Downie, D.S., et al. (2022). A systematic study of North American Angelica species (Apiaceae) based on nrDNA ITS and cpDNA sequences and fruit morphology. J. Syst. Evol. 60: 789−808. DOI: 10.1111/jse.12702. |
[20] | Zhou, Y.Y., Si, Y.H., Zhang, Z., et al. (2021). Codonopsis atriplicifolia (Campanulaceae), a new species from western Sichuan, China. Phytotaxa 512: 197−204. DOI: 10.11646/phytotaxa.512.3.7. |
[21] | Xie, D.-F., Xie, F.-M., Jia, S.-B., et al. (2020). Allium xinlongense (Amaryllidaceae, Allioideae), a new species from western Sichuan. Phytotaxa 432: 274−282. DOI: 10.11646/phytotaxa.432.3.4. |
[22] | Astuti, G., Roma-Marzio, F., and Peruzzi, L. (2015). The genus Picris (Asteraceae) in southern Italy: Contribution to its systematic knowledge. Phytotaxa 207: 106−114. DOI: 10.11646/phytotaxa.207.1.5. |
[23] | Moore, L.S., Wei, W., Stolovicki, E., et al. (2014). Induced mutations in yeast cell populations adapting to an unforeseen challenge. PLoS One 9: e111133. DOI: 10.1371/journal.pone.0111133. |
[24] | Panzer, S., Piombino-Mascali, D., and Zink, A.R. (2012). Herniation pits in human mummies: A CT investigation in the Capuchin Catacombs of Palermo, Sicily. PLoS One 7: e36537. DOI: 10.1371/journal.pone.0036537. |
[25] | Hermawan, H.O. (2021). The underlying data of transdifferentiation of human peripheral blood CD34+ cells into mature cardiomyocyte-like cells using micro RNA-1 research. Figshare. |
[26] | Li, J., Zhou, S.-D., Yang, M.E.I., et al. (2020). Notholirion campanulatum is co-specific with N. bulbuliferum (Liliaceae) based on morphology and molecular data. Phytotaxa 471: 234−246. DOI: 10.11646/phytotaxa.471.3.5. |
[27] | Qin, G., Zong, Y., Chen, Q., et al. (2010). Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Int. J. Food Microbiol. 138: 145−150. DOI: 10.1016/j.ijfoodmicro.2009.12.018. |
[28] | Wang, J., Xia, X.M., Wang, H.Y., et al. (2013). Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action. Int. J. Food Microbiol. 161: 151−157. DOI: 10.1016/j.ijfoodmicro.2012.11.025. |
[29] | Levan, A., Fredga, K., and Sandberg, A.A. (1964). Nomenclature for Centromeric Position on Chromosomes. Hereditas 52: 201−220. DOI: 10.1111/j.1601-5223.1964.tb01953.x. |
[30] | Stebbins, G.L. (1971). Chromosomal evolution in higher plants. Q. Rev. Biol. 48: 30. |
[31] | Peruzzi, L. and Eroglu, H.E. (2013). Karyotype asymmetry: Again, how to measure and what to measure. Comp. Cytogenet. 7: 1−9. DOI: 10.3897/CompCytogen.v7i1.4431. |
[32] | Paszko, B. (2006). A critical review and a new proposal of karyotype asymmetry indices. Plant Syst. Evol. 258: 39−48. DOI: 10.1007/s00606-005-0389-2. |
[33] | Astuti, G., Roma-Marzio, F., and Peruzzi, L. (2016). Traditional cytotaxonomic studies: Can they still provide a solid basis in plant systematics? XV OPTIMA Meeting DOI: 10.13140/RG.2.1.4959.3845. |
[34] | Kaplan, D.R. (2001). The science of plant morphology: Definition, history, and role in modern biology. Am. J. Bot. 88: 1711−1741. DOI: 10.2307/3558347. |
[35] | Bentzer, B., Bothmer, R.v., Engstrand, L., et al. (1971). Some sources of error in the determination of arm ratios of chromosomes. Bot. Notiser 124: 65−74. |
[36] | Hsu, P., Zhang, Z., Chen, J., and Hong, D. (1996). Advances in chromosome studies and plant taxonomy. J. Wuhan Bot. Res. 14: 261−268. |
Liu L., Wang Q., Zhang Z., et al., (2023). MATO: An updated tool for capturing and analyzing cytotaxonomic and morphological data. The Innovation Life 1(1), 100010. https://doi.org/10.59717/j.xinn-life.2023.100010 |
Core Capabilities of MATO
Process of morphological measurements in 'Standard' mode in MATO