A whole-cell bacterial H2O2 biosensor was constructed.
The luminescence signal of the biosensor responsed well to different concentration of H2O2.
With this biosensor, the H2O2 in solid food or milk can be detected.
[1] | Henry, M.C., Wheeler, J., Mofenson, H.C., et al. (1996). Hydrogen peroxide 3% exposures. J. Toxicol. Clin. Toxicol. 34: 323−327. DOI: 10.3109/15563659609013797. |
[2] | Mlochowski, J. and Said, S.B. (1997). Catalyzed hydrogen peroxide oxidation of organic compounds. Pol. J. Chem. 71: 149−169. |
[3] | Asad, N.R., Asad, L., de Almeida, C.E.B., et al. (2004). Several pathways of hydrogen peroxide action that damage the E.coli genome. Genet. Mol. Biol. 27: 291−303. DOI: 10.1590/S1415-47572004000200026. |
[4] | Perathoner, S. and Centi, G. (2005). Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Top. Catal. 33: 207−224. DOI: 10.1007/s11244-005-2529-x. |
[5] | Collins, E.B. (1971). Preservatives in dairy foods. J. Dairy Sci. 54: 148−152. DOI: 10.3168/jds.S0022-0302(71)85798-3. |
[6] | Seeram, N.P., Zhang, Y., Henning, S.M., et al. (2006). Pistachio skin phenolics are destroyed by bleaching resulting in reduced antioxidative capacities. J. Agric. Food Chem. 54: 7036−7040. DOI: 10.1021/jf0614948. |
[7] | Qi, L., Wu, X.-C., and Zheng, D.-Q. (2019). Hydrogen peroxide, a potent inducer of global genomic instability. Curr. Genet. 65: 913-917. DOI: 10.1007/s00294-019-00969-9. |
[8] | Martin, N.H., Friedlander, A., Mok, A., et al. (2014). Peroxide test strips detect added hydrogen peroxide in raw milk at levels affecting bacterial load. J. Food Prot. 77: 1809−1813. DOI: 10.4315/0362-028X.JFP-14-074. |
[9] | China, M.o.H.o.t.P.s.R.o. Health standard for the use of food additives. http://www.nhc.gov.cn/cmsresources/mohwsjdj/cmsrsdocument/doc9338.pdf |
[10] | Kumar, J.S., Murmu, N.C., and Kuila, T. (2018). Recent trends in the graphene-based sensors for the detection of hydrogen peroxide. Aims Mater. Sci. 5: 422−466. DOI: 10.3934/matersci.2018.3.422. |
[11] | Klassen, N.V., Marchington, D., and McGowan, H.C.E. (1994). H2O2 Determination by the I3-Method and by KMnO4. Anal. Chem. 66: 2921−2925. DOI: 10.1021/ac00090a020. |
[12] | Matsubara, C., Kudo, K., Kawashita, T., et al. (1985). Spectrophotometric determination of hydrogen peroxide with titanium 2-((5-bromopyridyl)azo)-5-(N-propyl-N-sulfopropylamino)phenol reagent and its application to the determination of serum glucose using glucose oxidase. Anal. Chem. 57: 1107−1109. DOI: 10.1021/ac00283a032. |
[13] | Zhang, L.-S. and Wong, G.T.F. (1994). Spectrophotometric determination of H2O2 in marine waters with leuco crystal violet. Talanta 41: 2137−2145. DOI: 10.1016/0039-9140(94)00199-5. |
[14] | Eisenberg, G. (1943). Colorimetric determination of hydrogen peroxide. Industrial & Engineering Chemistry Analytical Edition 15: 327−328. DOI: 10.1021/I560117A011. |
[15] | Wada, M., Inoue, K., Ihara, A., et al. (2003). Determination of organic peroxides by liquid chromatography with on-line post-column ultraviolet irradiation and peroxyoxalate chemiluminescence detection. J. Chromatogr. A 987: 189−195. DOI: 10.1016/S0021-9673(02)01473-5. |
[16] | Pérez, F.J. and Rubio, S. (2006). An improved chemiluminescence method for hydrogen peroxide determination in plant tissues. Plant Growth Regul. 48: 89−95. DOI: 10.1007/s10725-005-5089-y. |
[17] | Paital, B. (2014). A modified fluorimetric method for determination of hydrogen peroxide using homovanillic acid oxidation principle. BioMed research international 2014: 342958. |
[18] | Lee, D., Khaja, S., Velasquez-Castano, J.C., et al. (2007). In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 6: 765−769. DOI: 10.1038/nmat1983. |
[19] | Jin, H., Heller, D.A., Kalbacova, M., et al. (2010). Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 5: 302−309. DOI: 10.1038/nnano.2010.24. |
[20] | Chen, X.M., Wu, G.H., Cai, Z.X., et al. (2014). Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 181: 689−705. DOI: 10.1007/s00604-013-1098-0. |
[21] | Pundir, C.S., Deswal, R., and Narwal, V. (2018). Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioproc. Biosyst. Eng. 41: 313−329. DOI: 10.1007/s00449-017-1878-8. |
[22] | Belkin, S., Smulski, D.R., Vollmer, A.C., et al. (1996). Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion. Appl. Environ. Microbiol. 62: 2252−2256. DOI: 10.1128/aem.62.7.2252-2256.1996. |
[23] | Lee, H.J. and Gu, M.B. (2003). Construction of a sodA::luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses. Appl. Microbiol. Biotechnol. 60: 577−580. DOI: 10.1007/s00253-002-1168-4. |
[24] | Kampers, L.F.C., Volkers, R.J.M., and Martins dos Santos, V.A.P. (2019). Pseudomonas putida KT2440 is HV1 certified, not GRAS. Microb. Biotechnol. 12: 845−848. DOI: 10.1111/1751-7915.13443. |
[25] | Nelson, K.E., Weinel, C., Paulsen, I.T., et al. (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799−808. DOI: 10.1046/j.1462-2920.2002.00366.x. |
[26] | Belda, E., van Heck, R.G., Jose Lopez-Sanchez, M., et al. (2016). The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ. Microbiol. 18: 3403−3424. DOI: 10.1111/1462-2920.13230. |
[27] | Salvachua, D., Rydzak, T., Auwae, R., et al. (2019). Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin. Microb. Biotechnol. 13: 290-298. DOI: 10.1111/1751-7915.13481. |
[28] | Jha, R.K., Narayanan, N., Pandey, N., et al. (2019). Sensor-enabled alleviation of product inhibition in chorismate pyruvate-lyase. ACS Synth. Biol. 8: 775−786. DOI: 10.1021/acssynbio.8b00465. |
[29] | Huang, W.E., Wang, H., Zheng, H., et al. (2010). Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environ. Microbiol. 7: 1339-1348. DOI: 10.1111/j.1462-5822.2005.00821.x. |
[30] | Song, Y., Li, G., Thornton, S.F., et al. (2009). Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples. Environ. Sci. Technol. 43: 7931−7938. DOI: 10.1021/es901349r. |
[31] | Ron, E.Z. (2007). Biosensing environmental pollution. Curr. Opin. Biotechnol. 18: 252−256. DOI: 10.1016/j.copbio.2007.05.005. |
[32] | Woodcock, D.M., Crowther, P.J., Doherty, J., et al. (1989). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17: 3469−3478. DOI: 10.1093/nar/17.9.3469. |
[33] | Ramos-Gonzalez, M.I., and Molin, S. (1998). Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J. Bacteriol. 180: 3421−3431. DOI: 10.1128/JB.180.13.3421-3431.1998. |
[34] | Zhang, W.M., Zhang, J.J., Jiang, X., et al. (2015). Transcriptional activation of multiple operons involved in para-nitrophenol degradation by Pseudomonas sp strain WBC-3. Appl. Environ. Microbiol. 81: 220−230. DOI: 10.1128/AEM.02720-14. |
[35] | Gao, Y.Z., Liu, H., Chao, H.J., et al. (2016). Constitutive expression of a nag-like dioxygenase gene through an internal promoter in the 2-chloronitrobenzene catabolism gene cluster of Pseudomonas stutzeri ZWLR2-1. Appl. Environ. Microbiol. 82: 3461−3470. DOI: 10.1128/AEM.00197-16. |
[36] | Haygood, M.G. and Nealson, K.H. (1985). Mechanisms of iron regulation of luminescence in Vibrio fischeri. J Bacteriol 162: 209−216. DOI: 10.1128/jb.162.1.209-216.1985. |
[37] | Cui, Z., Luan, X., Jiang, H., et al. (2018). Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere 200: 322−329. DOI: 10.1016/j.chemosphere.2018.02.097. |
[38] | Song, Y., Hahn, T., Thompson, I.P., et al. (2007). Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res. 35: e129. DOI: 10.1093/nar/gkm710. |
[39] | Gao, Y.Z., Liu, X.Y., Liu, H., et al. (2020). A Bph-like nitroarene dioxygenase catalyzes the conversion of 3-nitrotoluene to 3-methylcatechol by Rhodococcus sp. strain ZWL3NT. Appl. Environ. Microbiol. 86: e02517-19. DOI: 10.1128/aem.02517-02519. |
[40] | Akkaya, O., Perez-Pantoja, D.R., Calles, B., et al. (2018). The metabolic redox regime of Pseudomonas putida tunes its evolvability toward novel xenobiotic substrates. mBio 9: e01512−01518. |
[41] | Krayl, M., Benndorf, D., Loffhagen, N., et al. (2003). Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3: 1544−1552. DOI: 10.1002/pmic.200300477. |
[42] | Huang, W.E., Wang, H., Zheng, H., et al. (2005). Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environ. Microbiol. 7: 1339-1348. DOI: 10.1111/j.1462-5822.2005.00821.x. |
[43] | Tang, C., Ouyang, W., Jiang, Z., et al. (2017). Study on novel processing technology of pickled chicken's feet without irradiation and hydrogen peroxide. Sci. Technol. Food Ind. 38: 205-209, 1002-0306(2017)38:16<205:Wfzwsy>2.0.Tx;2-l. |
[44] | Svenningsen, N.B., Pérez-Pantoja, D., Nikel, P.I., et al. (2015). Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiol. 15: 202. DOI: 10.1186/s12866-015-0542-1. |
[45] | Nikel, P.I., Perez-Pantoja, D., and de Lorenzo, V. (2016). Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ. Microbiol. 18: 3565−3582. DOI: 10.1111/1462-2920.13434. |
[46] | Fukumori, F. and Kishii, M. (2001). Molecular cloning and transcriptional analysis of the alkyl hydroperoxide reductase genes from Pseudomonas putida KT2442. The Journal of general and applied microbiology 47: 269−277. DOI: 10.2323/jgam.47.269. |
[47] | Kim, Y.C., Miller, C.D., and Anderson, A.J. (1997). Identification of adjacent genes encoding the major catalase and a bacterioferritin from the plant-beneficial bacterium Pseudomonas putida. Gene 199: 219−224. DOI: 10.1016/S0378-1119(97)00370-3. |
[48] | Zhang, L., Alfano, J.R., and Becker, D.F. (2015). Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. J. Bacteriol. 197: 431−440. DOI: 10.1128/JB.02282-14. |
[49] | Santos, P.M., Benndorf, D., and Sa-Correia, I. (2004). Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4: 2640−2652. DOI: 10.1002/pmic.200300793. |
[50] | Martineau, R.L., Stout, V., and Towe, B.C. (2010). Optical tracking of a stress-responsive gene amplifier applied to cell-based biosensing and the study of synthetic architectures. Biosens. Bioelectron. 25: 1881−1888. DOI: 10.1016/j.bios.2009.12.036. |
[51] | Chen, B., Shao, J., Liu, K., et al. (2018). Does eating chicken feet with pickled peppers cause avian influenza? Observational case study on Chinese social media during the avian influenza A (H7N9) outbreak. JMIR Public Health Surveill. 4: e32. DOI: 10.2196/publichealth.8198. |
Gao Y.-Z., Wang Y., Ji M., et al., (2023). A whole-cell hydrogen peroxide biosensor and its application in visual food analysis. The Innovation Life 1(1), 100011. https://doi.org/10.59717/j.xinn-life.2023.100011 |
The schematic diagram of construction and application of biosensors in this study
The responses of the KT2440 [pPkatG], KT2440 [pPkatA], and KT2440 [pPahpC] biosensors to H2O2
The correlation curve between the H2O2 concentration and the bioluminescence intensity after 2 hours of incubation.
The qualitative detection of residual H2O2 in Chicken feet with pickled peppers
The responses of KT2440 [pPahpC] to H2O2 in water, milk, yogurt, and Coca-cola