Retinoic X receptors (RXRs) are important nuclear receptors mediating genetic transcriptions.
Review the comprehensive role of RXR between RXR signaling and oncogenesis.
Summarize the undervalued rexinoid-related cancer therapy.
Discuss and propose its great potential in future clinics.
[1] | Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A. (2022). Cancer statistics, 2022. CA Cancer J. Clin. 72: 7−33. DOI: 10.3322/caac.21708. |
[2] | Ni, X., Hu, G. and Cai, X. (2019). The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit. Rev. Food Sci. Nutr. 59: S71−S80. DOI: 10.1080/10408398.2018.1509201. |
[3] | Gniadecki, R., Assaf, C., Bagot, M., et al. (2007). The optimal use of bexarotene in cutaneous T-cell lymphoma. Br. J. Dermatol. 157: 433−440. DOI: 10.1111/j.1365-2133.2007.07975.x. |
[4] | de Almeida, N.R., and Conda-Sheridan, M. (2019). A review of the molecular design and biological activities of RXR agonists. Med. Res. Rev. 39: 1372−1397. DOI: 10.1002/med.21578. |
[5] | Altucci, L., Leibowitz, M.D., Ogilvie, K.M., et al. (2007). RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 6: 793−810. DOI: 10.1038/nrd2397. |
[6] | Evans, R.M. and Mangelsdorf, D.J. (2014). Nuclear receptors, RXR, and the big bang. Cell 157: 255−266. DOI: 10.1016/j.cell.2014.03.012. |
[7] | Watanabe, M. and Kakuta, H. (2018). Retinoid X receptor antagonists. Int. J. Mol. Sci. 19: 2354. DOI: 10.3390/ijms19082354. |
[8] | Germain, P., Chambon, P., Eichele, G., et al. (2006). International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev. 58: 760−772. DOI: 10.1124/pr.58.4.7. |
[9] | Mangelsdorf, D.J., Thummel, C., Beato, M., et al. (1995). The nuclear receptor superfamily: The second decade. Cell 83: 835−839. DOI: 10.1016/0092-8674(95)90199-X. |
[10] | Tanaka, T. and De Luca, L.M. (2009). Therapeutic potential of "rexinoids" in cancer prevention and treatment. Cancer Res. 69: 4945−4947. DOI: 10.1158/0008-5472.CAN-08-4407. |
[11] | Chen, L., Wu, L., Zhu, L., and Zhao, Y. (2018). Overview of the structure-based non-genomic effects of the nuclear receptor RXRalpha. Cell Mol. Biol. Lett. 23: 36. DOI: 10.1186/s11658-018-0103-3. |
[12] | De Bosscher, K., Desmet, S.J., Clarisse, D., et al. (2020). Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat. Rev. Endocrinol. 16: 363−377. DOI: 10.1038/s41574-020-0349-5. |
[13] | Bushue, N. and Wan, Y.J. (2010). Retinoid pathway and cancer therapeutics. Adv. Drug Deliv. Rev. 62: 1285−1298. DOI: 10.1016/j.addr.2010.07.003. |
[14] | di Masi, A., Leboffe, L., De Marinis, E., et al. (2015). Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol. Aspects Med. 41: 1−115. DOI: 10.1016/j.mam.2014.12.003. |
[15] | Song, S., Lippman, S.M., Zou, Y., et al. (2005). Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-beta 2 expression. Oncogene 24: 8268−8276. DOI: 10.1038/sj.onc.1208992. |
[16] | Xu, X.C. (2007). Tumor-suppressive activity of retinoic acid receptor-beta in cancer. Cancer Lett. 253: 14−24. DOI: 10.1016/j.canlet.2006.11.019. |
[17] | Brown, G. and Petrie, K. (2021). The RARγ oncogene: An achilles heel for some cancers. Int. J. Mol. Sci. 22: 3632. DOI: 10.3390/ijms22073632. |
[18] | Altucci, L., and Gronemeyer, H. (2001). The promise of retinoids to fight against cancer. Nat. Rev. Cancer 1: 181−193. DOI: 10.1038/35106036. |
[19] | Dahiya, R., Park, H.D., Cusick, J., et al. (1994). Inhibition of tumorigenic potential and prostate-specific antigen expression in LNCaP human prostate cancer cell line by 13-cis-retinoic acid. Int. J. Cancer 59: 126−132. DOI: 10.1002/ijc.2910590122. |
[20] | Joseph, C., Al-Izzi, S., Alsaleem, M., et al. (2019). Retinoid X receptor gamma (RXRG) is an independent prognostic biomarker in ER-positive invasive breast cancer. Br. J. Cancer 121: 776−785. DOI: 10.1038/s41416-019-0589-0. |
[21] | Zhu, J., Nasr, R., Pérès, L., et al. (2007). RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 12: 23−35. DOI: 10.1016/j.ccr.2007.06.004. |
[22] | Han, J., Won, M., Kim, J.H., et al. (2020). Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem. Soc. Rev. 49: 7856−7878. DOI: 10.1039/D0CS00379D. |
[23] | Chaffer, C.L., and Weinberg, R.A. (2011). A perspective on cancer cell metastasis. Science 331: 1559−1564. DOI: 10.1126/science.1203543. |
[24] | Lawson, D.A., Bhakta, N.R., Kessenbrock, K., et al. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526: 131−135. DOI: 10.1038/nature15260. |
[25] | Steinbichler, T.B., Dudás, J., Skvortsov, S., et al. (2018). Therapy resistance mediated by cancer stem cells. Semin. Cancer Biol. 53: 156−167. DOI: 10.1016/j.semcancer.2018.11.006. |
[26] | Zheng, H., Pomyen, Y., Hernandez, M.O., et al. (2018). Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68: 127−140. DOI: 10.1002/hep.29778. |
[27] | Ahmed, N., Escalona, R., Leung, D., et al. (2018). Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin. Cancer Biol. 53: 265−281. DOI: 10.1016/j.semcancer.2018.10.002. |
[28] | Chen, J., Cao, X., An, Q., et al. (2018). Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat. Commun. 9: 1406. DOI: 10.1038/s41467-018-03877-7. |
[29] | Qi, F., Qin, W., Zhang, Y., et al. (2021). Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway. J. Exp. Clin. Cancer Res. 40: 280. DOI: 10.1186/s13046-021-02085-4. |
[30] | Brown, G. (2023). Targeting the retinoic acid pathway to eradicate cancer stem cells. Int. J. Mol. Sci. 24: 2373. DOI: 10.3390/ijms24032373. |
[31] | Zhang, R., Li, H., Zhang, S., et al. (2018). RXRα provokes tumor suppression through p53/p21/p16 and PI3K-AKT signaling pathways during stem cell differentiation and in cancer cells. Cell Death Dis. 9: 532. DOI: 10.1038/s41419-018-0610-1. |
[32] | Williams, A.P., Garner, E.F., Stafman, L.L., et al. (2019). UAB30, A novel rexinoid agonist, decreases stemness in group 3 medulloblastoma human cell line xenografts. Transl. Oncol. 12: 1364−1374. DOI: 10.1016/j.tranon.2019.07.003. |
[33] | Moerland, J.A., Zhang, D., Reich, L.A., et al. (2020). The novel rexinoid MSU-42011 is effective for the treatment of preclinical Kras-driven lung cancer. Sci. Rep. 10: 22244. DOI: 10.1038/s41598-020-79260-8. |
[34] | Gonzalez, H., Hagerling, C., and Werb, Z. (2018). Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32: 1267−1284. DOI: 10.1101/gad.314617.118. |
[35] | Lin, H.H., Peng, Y.J., Tsai, M.J., et al. (2020). Upregulation of amphiregulin by retinoic acid and Wnt signalling promotes liver cancer cell proliferation. J. Cell Physiol. 235: 1689−1699. DOI: 10.1002/jcp.29088. |
[36] | Viragova, S., Aparicio, L., Palmerini, P., et al. (2023). Inverse agonists of RAR/RXR signaling as lineage-specific anti-tumor agents against human Adenoid Cystic Carcinoma. J. Natl. Cancer Inst. 115: 838–852. DOI: 10.1093/jnci/djad062. |
[37] | Xie, G., Zhou, Y., Tu, X., et al. (2020). Centrosomal localization of RXRalpha promotes PLK1 activation and mitotic progression and constitutes a tumor vulnerability. Dev. Cell 55: 707-722 e709. DOI: 10.1016/j.devcel.2020.11.012. |
[38] | Singh, P., Pesenti, M.E., Maffini, S., et al. (2021). BUB1 and CENP-U, primed by CDK1, are the main PLK1 kinetochore receptors in mitosis. Mol. Cell 81: 67-87.e69. DOI: 10.1016/j.molcel.2020.10.040. |
[39] | Xu, J., Shen, C., Wang, T., and Quan, J. (2013). Structural basis for the inhibition of Polo-like kinase 1. Nat. Struct. Mol. Biol. 20: 1047−1053. DOI: 10.1038/nsmb.2623. |
[40] | Joukov, V., Walter, J.C., and De Nicolo, A. (2014). The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell 55: 578−591. DOI: 10.1016/j.molcel.2014.06.016. |
[41] | Deng, D. and Shah, K. (2020). TRAIL of hope Meeting resistance in cancer. Trends Cancer 6: 989−1001. DOI: 10.1016/j.trecan.2020.06.006. |
[42] | Chen, L., Aleshin, A.E., Alitongbieke, G., et al. (2017). Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRalpha. Nat. Commun. 8: 16066. DOI: 10.1038/ncomms16066. |
[43] | Plevin, M.J., Mills, M.M., and Ikura, M. (2005). The LxxLL motif: A multifunctional binding sequence in transcriptional regulation. Trends Biochem. Sci. 30: 66−69. DOI: 10.1016/j.tibs.2004.12.001. |
[44] | Zhou, H., Liu, W., Su, Y., et al. (2010). NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell 17: 560−573. DOI: 10.1016/j.ccr.2010.04.023. |
[45] | Ye, X., Wu, H., Sheng, L., et al. (2019). Oncogenic potential of truncated RXRα during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat. Commun. 10: 1463. DOI: 10.1038/s41467-019-09375-8. |
[46] | Chen, Z.J. (2012). Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246: 95−106. DOI: 10.1111/j.1600-065X.2012.01108.x. |
[47] | Grivennikov, S., Karin, E., Terzic, J., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15: 103−113. DOI: 10.1016/j.ccr.2009.01.001. |
[48] | Zhu, M., Li, S., Cao, X., et al. (2022). The STAT family: Key transcription factors mediating crosstalk between cancer stem cells and tumor immune microenvironment. Semin. Cancer Biol. 88: 18-31. DOI: 10.1016/j.semcancer.2022.11.011. |
[49] | Crowe, D.L. and Chandraratna, R.A. (2004). A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res. 6: R546−555. DOI: 10.1186/bcr913. |
[50] | Yamazaki, K., Shimizu, M., Okuno, M., et al. (2007). Synergistic effects of RXR alpha and PPAR gamma ligands to inhibit growth in human colon cancer cells-phosphorylated RXR alpha is a critical target for colon cancer management. Gut 56: 1557−1563. DOI: 10.1136/gut.2007.129858. |
[51] | Peng, Y., Wang, Y., Tang, N., et al. (2018). Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J. Exp. Clin. Cancer Res. 37: 248. DOI: 10.1186/s13046-018-0926-9. |
[52] | Wang, W., Zhao, M., Cui, L., et al. (2020). Characterization of a novel HDAC/RXR/HtrA1 signaling axis as a novel target to overcome cisplatin resistance in human non-small cell lung cancer. Mol. Cancer 19: 134. DOI: 10.1186/s12943-020-01256-9. |
[53] | Xu, Y., Jiang, Z., Zhang, Z., et al. (2014). HtrA1 downregulation induces cisplatin resistance in lung adenocarcinoma by promoting cancer stem cell-like properties. J. Cell Biochem. 115: 1112−1121. DOI: 10.1002/jcb.24751. |
[54] | Wang, P., Wang, Z., and Liu, J. (2020). Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer 19: 5. DOI: 10.1186/s12943-019-1127-7. |
[55] | Yamauchi, T., Waki, H., Kamon, J., et al. (2001). Inhibition of RXR and PPARgamma ameliorates diet-induced obesity and type 2 diabetes. J. Clin. Invest. 108: 1001−1013. DOI: 10.1172/JCI12864. |
[56] | Marin-Bejar, O., Rogiers, A., Dewaele, M., et al. (2021). Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 39: 1135−1149.e1138. DOI: 10.1016/j.ccell.2021.05.015. |
[57] | Rambow, F., Rogiers, A., Marin-Bejar, O., et al. (2018). Toward minimal residual disease-directed therapy in melanoma. Cell 174: 843-855.e819. DOI: 10.1016/j.cell.2018.06.025. |
[58] | Viola, A., Munari, F., Sánchez-Rodríguez, R., et al. (2019). The metabolic signature of macrophage responses. Front. Immunol. 10: 1462. DOI: 10.3389/fimmu.2019.01462. |
[59] | Babaev, V.R., Yancey, P.G., Ryzhov, S.V., et al. (2005). Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb. Vasc. Biol. 25: 1647−1653. DOI: 10.1161/01.ATV.0000173413.31789.1a. |
[60] | Oyarce, C., Vizcaino-Castro, A., Chen, S., et al. (2021). Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic drugs. Oncoimmunology 10: 1898753. DOI: 10.1080/2162402X.2021.1898753. |
[61] | Wang, Q., Tu, X., Wang, X., et al. (2022). Design, synthesis and biological evaluation of acyl hydrazones-based derivatives as RXRα-targeted anti-mitotic agents. Bioorg. Chem. 128: 106069. DOI: 10.1016/j.bioorg.2022.106069. |
[62] | le Maire, A., Teyssier, C., Balaguer, P., et al. (2019). Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations. Cells 8: 1392. DOI: 10.3390/cells8111392. |
[63] | Wang, G.H., Jiang, F.Q., Duan, Y.H., et al. (2013). Targeting truncated retinoid X receptor-α by CF31 induces TNF-α-dependent apoptosis. Cancer Res. 73: 307−318. |
[64] | Wilson, A.J., Liu, A.Y., Roland, J., et al. (2013). TR3 modulates platinum resistance in ovarian cancer. Cancer Res. 73: 4758−4769. DOI: 10.1158/0008-5472.CAN-12-4560. |
[65] | Tran, T.T. and Lee, K. (2022). TR3 enhances AR variant production and transactivation, promoting androgen independence of prostate cancer cells. Cancers (Basel) 14:1911. DOI: 10.3390/cancers14081911. |
[66] | Chen, F., Chen, J., Lin, J., et al. (2015). NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. Protein Cell 6: 654−666. DOI: 10.1007/s13238-015-0178-9. |
[67] | Noel, P., Von Hoff, D.D., Saluja, A.K., et al. (2019). Triptolide and its derivatives as cancer therapies. Trends Pharmacol. Sci. 40: 327−341. DOI: 10.1016/j.tips.2019.03.002. |
[68] | Wang, P.Y., Zeng, W.J., Liu, J., et al. (2017). TRC4, an improved triptolide derivative, specifically targets to truncated form of retinoid X receptor-alpha in cancer cells. Biochem. Pharmacol. 124: 19−28. DOI: 10.1016/j.bcp.2016.10.014. |
[69] | Zhu, X., Li, J., Ning, H., et al. (2021). α-mangostin induces apoptosis and inhibits metastasis of breast cancer cells via regulating RXRα-AKT signaling pathway. Front. Pharmacol. 12: 739658. DOI: 10.3389/fphar.2021.739658. |
[70] | Kolluri, S.K., Corr, M., James, S.Y., et al. (2005). The R-enantiomer of the nonsteroidal antiinflammatory drug etodolac binds retinoid X receptor and induces tumor-selective apoptosis. Proc. Natl. Acad. Sci. USA 102: 2525−2530. DOI: 10.1073/pnas.0409721102. |
[71] | Lala, D.S., Mukherjee, R., Schulman, I.G., et al. (1996). Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383: 450−453. DOI: 10.1038/383450a0. |
[72] | Hedvat, M., Jain, A., Carson, D.A., et al. (2004). Inhibition of HER-kinase activation prevents ERK-mediated degradation of PPARgamma. Cancer Cell 5: 565−574. DOI: 10.1016/j.ccr.2004.05.014. |
[73] | Miller, A.L., Garcia, P.L., Fehling, S.C., et al. (2021). The BET inhibitor JQ1 augments the antitumor efficacy of gemcitabine in preclinical models of pancreatic cancer. Cancers (Basel) 13: 347. DOI: 10.3390/cancers13143470. |
[74] | Calkin, A.C., and Tontonoz, P. (2012). Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13: 213−224. DOI: 10.1038/nrm3312. |
[75] | Lo Sasso, G., Bovenga, F., Murzilli, S., et al. (2013). Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology 144: 1497-1507, 1507.e1491-1413. DOI: 10.1053/j.gastro.2013.02.005. |
[76] | Wan, W., Hou, Y., Wang, K., et al. (2019). The LXR-623-induced long non-coding RNA LINC01125 suppresses the proliferation of breast cancer cells via PTEN/AKT/p53 signaling pathway. Cell Death Dis. 10: 248. DOI: 10.1038/s41419-019-1440-5. |
[77] | Pencheva, N., Buss, C.G., Posada, J., et al. (2014). Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation. Cell 156: 986-1001. DOI: 10.1016/j.cell.2014.01.038. |
[78] | Hutchinson, S.A., Websdale, A., Cioccoloni, G., et al. (2021). Liver x receptor alpha drives chemoresistance in response to side-chain hydroxycholesterols in triple negative breast cancer. Oncogene 40: 2872−2883. DOI: 10.1038/s41388-021-01720-w. |
[79] | Shimizu, M., Takai, K., and Moriwaki, H. (2009). Strategy and mechanism for the prevention of hepatocellular carcinoma: phosphorylated retinoid X receptor alpha is a critical target for hepatocellular carcinoma chemoprevention. Cancer Sci. 100: 369−374. DOI: 10.1111/j.1349-7006.2008.01045.x. |
[80] | Chandra, V., Huang, P., Hamuro, Y., et al. (2008). Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456: 350−356. DOI: 10.1038/nature07413. |
Zhao W., Li S., Chen R., et al., (2023). RXR signaling targeted cancer therapy. The Innovation Life 1(1), 100014. https://doi.org/10.59717/j.xinn-life.2023.100014 |
The distribution of different RXR subtypes.
Structure diagram of RXR
Retinoid signaling pathway in cancer stemness.
RXR in tumor progression
RXR heterodimers in tumor progression
RXR antagonist, HX531, in cancer therapies
Crystal structure and binding model of RXRα-LBD tetramer in complex with K-
Other RXR inhibitors in cancer therapies