[1] | Huang, X., Wang, L., Liu, K., et al. (2023). Tracking cubic ice at molecular resolution. Nature. 617: 86−91. DOI: 10.1038/s41586-023-05864-5. |
[2] | Wang, L., Chen, J., Cox, S.J., et al. (2021). Microscopic kinetics pathway of salt crystallization in graphene nanocapillaries. Phys. Rev. Lett. 126: 136001. DOI: 10.1103/PhysRevLett.126.136001. |
[3] | Guo, J., Meng, X., Chen, J., et al. (2014). Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13: 184−189. DOI: 10.1038/nmat3848. |
[4] | Ma, R., Cao, D., Zhu, C., et al. (2020). Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature. 577: 60−63. DOI: 10.1038/s41586-019-1853-4. |
[5] | Salzmann, C.G. and Murray, B.J. (2020). Ice goes fully cubic. Nat. Mater. 19: 586−587. DOI: 10.1038/s41563-020-0696-6. |
Gao P. (2023). Watching cubic ice grow with molecular resolution. The Innovation Materials 1(1), 100003. https://doi.org/10.59717/j.xinn-mater.2023.100003 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Microscopic growth process of cubic ice crystallite visualized by in situ transmission electron microscopy, adapted from Huang et al.1