[1] | Huang, X., Wang, L., Liu, K., et al. (2023). Tracking cubic ice at molecular resolution. Nature. 617: 86−91. DOI: 10.1038/s41586-023-05864-5. |
[2] | Wang, L., Chen, J., Cox, S.J., et al. (2021). Microscopic kinetics pathway of salt crystallization in graphene nanocapillaries. Phys. Rev. Lett. 126: 136001. DOI: 10.1103/PhysRevLett.126.136001. |
[3] | Guo, J., Meng, X., Chen, J., et al. (2014). Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 13: 184−189. DOI: 10.1038/nmat3848. |
[4] | Ma, R., Cao, D., Zhu, C., et al. (2020). Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature. 577: 60−63. DOI: 10.1038/s41586-019-1853-4. |
[5] | Salzmann, C.G. and Murray, B.J. (2020). Ice goes fully cubic. Nat. Mater. 19: 586−587. DOI: 10.1038/s41563-020-0696-6. |
Gao P. (2023). Watching cubic ice grow with molecular resolution. The Innovation Materials 1(1), 100003. https://doi.org/10.59717/j.xinn-mater.2023.100003 |
Microscopic growth process of cubic ice crystallite visualized by in situ transmission electron microscopy, adapted from Huang et al.1