REPORT   Open Access    

Large negative magnetoresistance beyond chiral anomaly in topological insulator candidate CeCuAs2 with spin-glass-like behavior

    Show all affliationsShow less
More Information
  • Corresponding authors: jphu@iphy.ac.cn (J. H.);  gangwang@iphy.ac.cn (G. W.)
    1. Negative magnetoresistance (NMR) has unique performance in spintronics.

      CeCuAs2 is classified as a strong topological insulator in its paramagnetic state.

      CeCuAs2 exhibits large NMR beyond chiral anomaly, reaching -15% under 9 T at 2 K.

      A spin-glass-like state with Tf ~ 4.5 K hints possible spin-charge interaction.

      Tuning based on RE-Cu-As structural motif may provide new insights to explore NMR.

  • Large negative magnetoresistance (NMR), an important property for spintronics, requires experimental realization owing to the lack of suitable structural motifs. Herein, a remarkable NMR of up to -15% under 9 T at 2 K is demonstrated in a 112-type topological insulator candidate CeCuAs2 single crystal containing an As square net. Due to the presence of Dirac points coming from both the As square net and Ce–Cu–As layer in the paramagnetic state of CeCuAs2, the possibility of chiral anomaly is examined and eliminated by investigating magnetoresistance (MR) with different magnetic field configurations and angle-dependant MR, which show no specific restriction on the configurations under the applied magnetic fields. Upon investigation of the anisotropic magnetism, a spin-glass-like behavior with Tf ~ 4.5 K is observed in CeCuAs2, indicating that the large NMR could be attributed to the spin-dependent scattering induced by the possible spin-glass state. Hall resistivity exhibits a multiband feature and hole-dominated transport properties, corresponding well with the calculated band structure. This study not only offers a new building block for large NMR but also serves as a guide for the investigating the interplay among transport properties, topology, and magnetism, and it is expected to broaden the research on spintronics.
  • 加载中
  • [1] Felser, C., Fecher, G. H., Balke, B. (2007). Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668−699.

    View in Article CrossRef Google Scholar

    [2] Prinz, G. A. (1998). Magnetoelectronics. Science 282, 1660−1663.

    View in Article CrossRef Google Scholar

    [3] Binasch, G., Grünberg, P., Saurenbach, F., et al. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828−4830.

    View in Article Google Scholar

    [4] Baibich, M. N., Broto, J. M., Fert, A., et al. (1988). Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472−2475.

    View in Article CrossRef Google Scholar

    [5] Jin, S., Tiefel, T. H., McCormack, M., et al. (1994). Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413−415.

    View in Article CrossRef Google Scholar

    [6] Ramirez, A. P. (1997). Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171.

    View in Article CrossRef Google Scholar

    [7] Julliere, M. (1975). Tunneling between ferromagnetic films. Phys. Lett. A 54, 225−226.

    View in Article CrossRef Google Scholar

    [8] Wang, Z., Gutiérrez-Lezama, I., Ubrig, N., et al. (2018). Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat.Commun. 9, 2516.

    View in Article CrossRef Google Scholar

    [9] Song, T., Cai, X., Tu, M. W. Y., et al. (2018). Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214−1218.

    View in Article CrossRef Google Scholar

    [10] Li, F., Yang, B., Zhu, Y., et al. (2020). Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. 117, 022412.

    View in Article Google Scholar

    [11] Alekseev, P.S. (2016). Negative magnetoresistance in viscous flow of two-dimensional electrons. Phys. Rev. Lett. 117, 166601.

    View in Article CrossRef Google Scholar

    [12] Block, T., Felser, C., Jakob, G., et al. (2003). Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al. J. Solid State Chem. 176, 646-651.

    View in Article Google Scholar

    [13] Reshi, H. A., Singh, A. P., Pillai, S., et al. (2015). Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C 3, 820-827.

    View in Article Google Scholar

    [14] Hirohata, A., Yamada, K., Nakatani, Y., et al. (2020). Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 509, 166711.

    View in Article CrossRef Google Scholar

    [15] Kondo, J. (1964). Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 32, 37−49.

    View in Article CrossRef Google Scholar

    [16] Bergmann, G. (1984). Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1−58.

    View in Article CrossRef Google Scholar

    [17] Ohno, H., Munekata, H., Penney, T., et al. (1992). Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664−2667.

    View in Article CrossRef Google Scholar

    [18] Son, D. T., Spivak, B. Z. (2013). Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412.

    View in Article CrossRef Google Scholar

    [19] Ong, N. P., Liang, S. (2021). Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals. Nat. Rev. Phys. 3, 394−404.

    View in Article CrossRef Google Scholar

    [20] Negishi, H.,Yamada, H., Yuri, K., et al. (1997). Negative magnetoresistance in crystals of the paramagnetic intercalation compound MnxTiS2. Phys. Rev. B 56, 11144−11148.

    View in Article CrossRef Google Scholar

    [21] Ge, J., Luo, T., Lin, Z., et al. (2021). Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater. 33, 2005465.

    View in Article CrossRef Google Scholar

    [22] Breunig, O., Wang, Z., Taskin, A. A., et al. (2017). Gigantic negative magnetoresistance in the bulk of a disordered topological insulator. Nat. Commun. 8, 15545.

    View in Article CrossRef Google Scholar

    [23] Telford, E. J., Dismukes, A. H., Lee, K., et al. (2020). Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240.

    View in Article CrossRef Google Scholar

    [24] Fang, Y., Yang, K., Zhang, E., et al. (2022). Quasi-1D van der Waals antiferromagnetic CrZr4Te14 with large in-plane anisotropic negative magnetoresistance. Adv. Mater. 34, 2200145.

    View in Article CrossRef Google Scholar

    [25] Bai, W., Hu, Z., Wang, S., et al. (2019). Intrinsic Negative Magnetoresistance in Van Der Waals FeNbTe2 Single Crystals. Adv. Mater. 31, 1900246.

    View in Article CrossRef Google Scholar

    [26] Kang, B., Liu, Z., Zhao, D., et al. (2022). Giant negative magnetoresistance beyond Chiral anomaly in topological material YCuAs2. Adv. Mater. 34, 2201597.

    View in Article CrossRef Google Scholar

    [27] Tremel, W., Hoffmann, R. (1987). Square nets of main group elements in solid-state materials. J. Am. Chem. Soc. 109, 124−140.

    View in Article CrossRef Google Scholar

    [28] Sengupta, K., Sampathkumaran, E. V., Nakano, T., et al. (2004). Magnetic, electrical resistivity, heat-capacity, and thermopower anomalies in CeCuAs2. Phys. Rev. B 70, 064406.

    View in Article CrossRef Google Scholar

    [29] Schoop, L. M., Ali, M. N., Strasser, C., et al. (2016). Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696.

    View in Article CrossRef Google Scholar

    [30] Chen, H. X., Gao, J. C., Chen, L., et al. (2022). Topological crystalline insulator candidate ErAsS with hourglass Fermion and magnetic-tuned topological phase transition. Adv. Mater. 10, 2110664.

    View in Article Google Scholar

    [31] Chen, L., Zhou, L. Q., Zhou, Y., et al. (2023). Multiple Dirac points including potential spin-orbit Dirac points in nonsymmorphic HfGe0.92Te. Sci. Chin. Phys. Mech. Astron. 66, 217011.

    View in Article Google Scholar

    [32] Park, J., Lee, G., Wolff-Fabris, F., et al. (2011). Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2. Phys. Rev. Lett. 107, 126402.

    View in Article CrossRef Google Scholar

    [33] Liu, J., Hu, J., Cao, H., et al. (2016). Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2. Sci. Rep. 6, 30525.

    View in Article CrossRef Google Scholar

    [34] Sengupta, K., Rayaprol, S., Sampathkumaran, E.V., et al. (2004). Magnetic and transport anomalies in the compounds, RCuAs2 (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er). Physca B Condens. Matter 348, 465−474.

    View in Article CrossRef Google Scholar

    [35] Li, Q., Kharzeev, D. E., Zhang, C., et al. (2016). Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550−554.

    View in Article CrossRef Google Scholar

    [36] Xiong, J., Kushwaha, S.K., Liang, T., et al. (2015). Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413−416.

    View in Article CrossRef Google Scholar

    [37] Li, C. Z., Wang, L. X., Liu, H., et al. (2015). Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun. 6, 10137.

    View in Article CrossRef Google Scholar

    [38] H. Fritzsche, (1955). Electrical properties of Germanium semiconductors at low temperatures, Phys. Rev. 99, 406-419.

    View in Article Google Scholar

    [39] A. R. Zanatta, I. Chambouleyron, (1992). Transport properties of nitrogen-doped hydrogenated amorphous germanium films, Phys. Rev. B 46, 2119-2125.

    View in Article Google Scholar

    [40] N. F. Mott, (1968). Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1, 1-17.

    View in Article Google Scholar

    [41] A. L. Efros, B. I. Shklovskii, (1975). Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C: Solid State Phys. 8, L49.

    View in Article Google Scholar

    [42] Chen, B., Deng, Z., Li, W., et al. (2016). Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites. AIP Adv. 6, 115014.

    View in Article CrossRef Google Scholar

    [43] Sinova, J., Jungwirth, T., Černe, J. (2004). Magneto-transport and magneto-optical properties of ferromagnetic (III, Mn)V semiconductors: A review. Int. J. Mod. Phys. B 18, 1083−1118.

    View in Article CrossRef Google Scholar

    [44] Gijs, M. A. M., Okada, M. (1992). Magnetoresistance study of Fe/Cr magnetic multilayers: Interpretation with the quantum model of giant magnetoresistance. Phys. Rev. B 46, 2908−2911.

    View in Article CrossRef Google Scholar

    [45] Morosan, E., Zandbergen, H. W., Li, L., et al. (2007). Sharp switching of the magnetization in Fe1∕4TaS2. Phys. Rev. B 75, 104401.

    View in Article CrossRef Google Scholar

    [46] Colino, J., Andrés, J. P., Riveiro, J. M., et al. (1999). Spin-flop magnetoresistance in Gd/Co multilayers. Phys. Rev. B 60, 6678−6684.

    View in Article CrossRef Google Scholar

    [47] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, (2013). Engineering Weyl nodes in Dirac semimetals by a magnetic field, Phys. Rev. B 88, 165105.

    View in Article Google Scholar

    [48] Goldman, A. I., Kong, T., Kreyssig, A., et al. (2013). A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. Nat. Mater. 12, 714−718.

    View in Article CrossRef Google Scholar

    [49] Kong, T., Bud'ko, S. L., Jesche, A., et al. (2014). Magnetic and transport properties of i-R-Cd icosahedral quasicrystals (R=Y, Gd-Tm). Phys. Rev. B 90, 014424.

    View in Article CrossRef Google Scholar

    [50] Almeida, J.R.L.d., Thouless, D. J. (1978). Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A Math. Gen. 11, 983.

    View in Article CrossRef Google Scholar

    [51] Gabay, M., Toulouse, G., (1981). Coexistence of Spin-Glass and Ferromagnetic Orderings. Phys. Rev. Lett. 47, 201-204.

    View in Article Google Scholar

    [52] Fisher, I. R., Cheon, K. O., Panchula, A. F., et al. (1999). Magnetic and transport properties of single-grain R-MgZn icosahedral quasicrystals [R=Y, Y1-xGdx,Y1-xTbx, b, Dy, Ho, and Er]. Phys. Rev. B 59, 308−321.

    View in Article CrossRef Google Scholar

    [53] Johnston, D. C. (2010). The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv.Phys. 59, 803−1061.

    View in Article CrossRef Google Scholar

    [54] Greedan, J. E. (2001). Geometrically frustrated magnetic materials. J. Mater. Chem. 11, 37−53.

    View in Article CrossRef Google Scholar

    [55] O. Prakash, A. Thamizhavel, S. Ramakrishnan, (2016). Ferromagnetic ordering of minority Ce3+ spins in a quasi-skutterudite Ce3Os4Ge13 single crystal, Phys. Rev. B 93, 064427.

    View in Article Google Scholar

    [56] Luo, Y., McDonald, R. D., Rosa, P. F. S., et al. (2016). Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep. 6, 27294.

    View in Article CrossRef Google Scholar

    [57] Sampathkumaran, E. V., Ekino, T., Ribeiro, R. A., et al. (2005). Electrical resistivity and tunneling anomalies in CeCuAs2. Physica B Condens. Matter 359, 108−110.

    View in Article Google Scholar

    [58] Dzero, M., Sun, K., Galitski, V., et al. (2010). Topological Kondo Insulators. Phys. Rev. Lett. 104, 106408.

    View in Article CrossRef Google Scholar

    [59] Wang, K. F., Graf, D., Wang, L. M., et al. (2012). Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2. Phys. Rev. B 85, 041101.

    View in Article Google Scholar

    [60] Li, L. J., Wang, K. F., Graf, D., et al. (2016). Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2. Phys. Rev. B 93, 115141.

    View in Article CrossRef Google Scholar

    [61] He, J. B., Wang, D. M. Chen, G. F. (2012). Giant magnetoresistance in layered manganese pnictide CaMnBi2. Appl. Phys. Lett. 100, 112405.

    View in Article CrossRef Google Scholar

    [62] Farhan, M. A., Lee, G., Shim, J. H. (2014). AEMnSb2 (AE = Sr, Ba): a new class of Dirac materials. J. Phys. Condens. Matter 26, 042201.

    View in Article CrossRef Google Scholar

    [63] Lee, G., Farhan, M. A., Kim, J. S., et al. (2013). Anisotropic Dirac electronic structures of AMnBi2 (A = Sr,Ca). Phys. Rev. B 87. 245104.

    View in Article Google Scholar

    [64] Borisenko, S., Evtushinsky, D., Gibson, Q., et al. (2019). Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat. Commun. 10, 3424.

    View in Article CrossRef Google Scholar

    [65] Masuda, H., Sakai, H., Tokunaga, M., et al. (2016). Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2, e1501117.

    View in Article CrossRef Google Scholar

    [66] Guo, Y. F., Princep, A. J., Zhang, X., et al. (2014). Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 90, 075120.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Chen L., Gu Y., Wang Y., et al., (2023). Large negative magnetoresistance beyond chiral anomaly in topological insulator candidate CeCuAs2 with spin-glass-like behavior. The Innovation Materials 1(1), 100011. https://doi.org/10.59717/j.xinn-mater.2023.100011
    Chen L., Gu Y., Wang Y., et al., (2023). Large negative magnetoresistance beyond chiral anomaly in topological insulator candidate CeCuAs2 with spin-glass-like behavior. The Innovation Materials 1(1), 100011. https://doi.org/10.59717/j.xinn-mater.2023.100011

Figures(5)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(4056) PDF downloads(1079) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint