Negative magnetoresistance (NMR) has unique performance in spintronics.
CeCuAs2 is classified as a strong topological insulator in its paramagnetic state.
CeCuAs2 exhibits large NMR beyond chiral anomaly, reaching -15% under 9 T at 2 K.
A spin-glass-like state with Tf ~ 4.5 K hints possible spin-charge interaction.
Tuning based on RE-Cu-As structural motif may provide new insights to explore NMR.
[1] | Felser, C., Fecher, G. H., Balke, B. (2007). Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668−699. |
[2] | Prinz, G. A. (1998). Magnetoelectronics. Science 282, 1660−1663. |
[3] | Binasch, G., Grünberg, P., Saurenbach, F., et al. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828−4830. |
[4] | Baibich, M. N., Broto, J. M., Fert, A., et al. (1988). Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472−2475. |
[5] | Jin, S., Tiefel, T. H., McCormack, M., et al. (1994). Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413−415. |
[6] | Ramirez, A. P. (1997). Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171. |
[7] | Julliere, M. (1975). Tunneling between ferromagnetic films. Phys. Lett. A 54, 225−226. |
[8] | Wang, Z., Gutiérrez-Lezama, I., Ubrig, N., et al. (2018). Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat.Commun. 9, 2516. |
[9] | Song, T., Cai, X., Tu, M. W. Y., et al. (2018). Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214−1218. |
[10] | Li, F., Yang, B., Zhu, Y., et al. (2020). Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. 117, 022412. |
[11] | Alekseev, P.S. (2016). Negative magnetoresistance in viscous flow of two-dimensional electrons. Phys. Rev. Lett. 117, 166601. |
[12] | Block, T., Felser, C., Jakob, G., et al. (2003). Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al. J. Solid State Chem. 176, 646-651. |
[13] | Reshi, H. A., Singh, A. P., Pillai, S., et al. (2015). Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C 3, 820-827. |
[14] | Hirohata, A., Yamada, K., Nakatani, Y., et al. (2020). Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 509, 166711. |
[15] | Kondo, J. (1964). Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 32, 37−49. |
[16] | Bergmann, G. (1984). Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1−58. |
[17] | Ohno, H., Munekata, H., Penney, T., et al. (1992). Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664−2667. |
[18] | Son, D. T., Spivak, B. Z. (2013). Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412. |
[19] | Ong, N. P., Liang, S. (2021). Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals. Nat. Rev. Phys. 3, 394−404. |
[20] | Negishi, H.,Yamada, H., Yuri, K., et al. (1997). Negative magnetoresistance in crystals of the paramagnetic intercalation compound MnxTiS2. Phys. Rev. B 56, 11144−11148. |
[21] | Ge, J., Luo, T., Lin, Z., et al. (2021). Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater. 33, 2005465. |
[22] | Breunig, O., Wang, Z., Taskin, A. A., et al. (2017). Gigantic negative magnetoresistance in the bulk of a disordered topological insulator. Nat. Commun. 8, 15545. |
[23] | Telford, E. J., Dismukes, A. H., Lee, K., et al. (2020). Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240. |
[24] | Fang, Y., Yang, K., Zhang, E., et al. (2022). Quasi-1D van der Waals antiferromagnetic CrZr4Te14 with large in-plane anisotropic negative magnetoresistance. Adv. Mater. 34, 2200145. |
[25] | Bai, W., Hu, Z., Wang, S., et al. (2019). Intrinsic Negative Magnetoresistance in Van Der Waals FeNbTe2 Single Crystals. Adv. Mater. 31, 1900246. |
[26] | Kang, B., Liu, Z., Zhao, D., et al. (2022). Giant negative magnetoresistance beyond Chiral anomaly in topological material YCuAs2. Adv. Mater. 34, 2201597. |
[27] | Tremel, W., Hoffmann, R. (1987). Square nets of main group elements in solid-state materials. J. Am. Chem. Soc. 109, 124−140. |
[28] | Sengupta, K., Sampathkumaran, E. V., Nakano, T., et al. (2004). Magnetic, electrical resistivity, heat-capacity, and thermopower anomalies in CeCuAs2. Phys. Rev. B 70, 064406. |
[29] | Schoop, L. M., Ali, M. N., Strasser, C., et al. (2016). Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696. |
[30] | Chen, H. X., Gao, J. C., Chen, L., et al. (2022). Topological crystalline insulator candidate ErAsS with hourglass Fermion and magnetic-tuned topological phase transition. Adv. Mater. 10, 2110664. |
[31] | Chen, L., Zhou, L. Q., Zhou, Y., et al. (2023). Multiple Dirac points including potential spin-orbit Dirac points in nonsymmorphic HfGe0.92Te. Sci. Chin. Phys. Mech. Astron. 66, 217011. |
[32] | Park, J., Lee, G., Wolff-Fabris, F., et al. (2011). Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2. Phys. Rev. Lett. 107, 126402. |
[33] | Liu, J., Hu, J., Cao, H., et al. (2016). Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2. Sci. Rep. 6, 30525. |
[34] | Sengupta, K., Rayaprol, S., Sampathkumaran, E.V., et al. (2004). Magnetic and transport anomalies in the compounds, RCuAs2 (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er). Physca B Condens. Matter 348, 465−474. |
[35] | Li, Q., Kharzeev, D. E., Zhang, C., et al. (2016). Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550−554. |
[36] | Xiong, J., Kushwaha, S.K., Liang, T., et al. (2015). Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413−416. |
[37] | Li, C. Z., Wang, L. X., Liu, H., et al. (2015). Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun. 6, 10137. |
[38] | H. Fritzsche, (1955). Electrical properties of Germanium semiconductors at low temperatures, Phys. Rev. 99, 406-419. |
[39] | A. R. Zanatta, I. Chambouleyron, (1992). Transport properties of nitrogen-doped hydrogenated amorphous germanium films, Phys. Rev. B 46, 2119-2125. |
[40] | N. F. Mott, (1968). Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1, 1-17. |
[41] | A. L. Efros, B. I. Shklovskii, (1975). Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C: Solid State Phys. 8, L49. |
[42] | Chen, B., Deng, Z., Li, W., et al. (2016). Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites. AIP Adv. 6, 115014. |
[43] | Sinova, J., Jungwirth, T., Černe, J. (2004). Magneto-transport and magneto-optical properties of ferromagnetic (III, Mn)V semiconductors: A review. Int. J. Mod. Phys. B 18, 1083−1118. |
[44] | Gijs, M. A. M., Okada, M. (1992). Magnetoresistance study of Fe/Cr magnetic multilayers: Interpretation with the quantum model of giant magnetoresistance. Phys. Rev. B 46, 2908−2911. |
[45] | Morosan, E., Zandbergen, H. W., Li, L., et al. (2007). Sharp switching of the magnetization in Fe1∕4TaS2. Phys. Rev. B 75, 104401. |
[46] | Colino, J., Andrés, J. P., Riveiro, J. M., et al. (1999). Spin-flop magnetoresistance in Gd/Co multilayers. Phys. Rev. B 60, 6678−6684. |
[47] | E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, (2013). Engineering Weyl nodes in Dirac semimetals by a magnetic field, Phys. Rev. B 88, 165105. |
[48] | Goldman, A. I., Kong, T., Kreyssig, A., et al. (2013). A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium. Nat. Mater. 12, 714−718. |
[49] | Kong, T., Bud'ko, S. L., Jesche, A., et al. (2014). Magnetic and transport properties of i-R-Cd icosahedral quasicrystals (R=Y, Gd-Tm). Phys. Rev. B 90, 014424. |
[50] | Almeida, J.R.L.d., Thouless, D. J. (1978). Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A Math. Gen. 11, 983. |
[51] | Gabay, M., Toulouse, G., (1981). Coexistence of Spin-Glass and Ferromagnetic Orderings. Phys. Rev. Lett. 47, 201-204. |
[52] | Fisher, I. R., Cheon, K. O., Panchula, A. F., et al. (1999). Magnetic and transport properties of single-grain R-MgZn icosahedral quasicrystals [R=Y, Y1-xGdx,Y1-xTbx, b, Dy, Ho, and Er]. Phys. Rev. B 59, 308−321. |
[53] | Johnston, D. C. (2010). The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv.Phys. 59, 803−1061. |
[54] | Greedan, J. E. (2001). Geometrically frustrated magnetic materials. J. Mater. Chem. 11, 37−53. |
[55] | O. Prakash, A. Thamizhavel, S. Ramakrishnan, (2016). Ferromagnetic ordering of minority Ce3+ spins in a quasi-skutterudite Ce3Os4Ge13 single crystal, Phys. Rev. B 93, 064427. |
[56] | Luo, Y., McDonald, R. D., Rosa, P. F. S., et al. (2016). Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep. 6, 27294. |
[57] | Sampathkumaran, E. V., Ekino, T., Ribeiro, R. A., et al. (2005). Electrical resistivity and tunneling anomalies in CeCuAs2. Physica B Condens. Matter 359, 108−110. |
[58] | Dzero, M., Sun, K., Galitski, V., et al. (2010). Topological Kondo Insulators. Phys. Rev. Lett. 104, 106408. |
[59] | Wang, K. F., Graf, D., Wang, L. M., et al. (2012). Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2. Phys. Rev. B 85, 041101. |
[60] | Li, L. J., Wang, K. F., Graf, D., et al. (2016). Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2. Phys. Rev. B 93, 115141. |
[61] | He, J. B., Wang, D. M. Chen, G. F. (2012). Giant magnetoresistance in layered manganese pnictide CaMnBi2. Appl. Phys. Lett. 100, 112405. |
[62] | Farhan, M. A., Lee, G., Shim, J. H. (2014). AEMnSb2 (AE = Sr, Ba): a new class of Dirac materials. J. Phys. Condens. Matter 26, 042201. |
[63] | Lee, G., Farhan, M. A., Kim, J. S., et al. (2013). Anisotropic Dirac electronic structures of AMnBi2 (A = Sr,Ca). Phys. Rev. B 87. 245104. |
[64] | Borisenko, S., Evtushinsky, D., Gibson, Q., et al. (2019). Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat. Commun. 10, 3424. |
[65] | Masuda, H., Sakai, H., Tokunaga, M., et al. (2016). Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2, e1501117. |
[66] | Guo, Y. F., Princep, A. J., Zhang, X., et al. (2014). Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 90, 075120. |
Chen L., Gu Y., Wang Y., et al., (2023). Large negative magnetoresistance beyond chiral anomaly in topological insulator candidate CeCuAs2 with spin-glass-like behavior. The Innovation Materials 1(1), 100011. https://doi.org/10.59717/j.xinn-mater.2023.100011 |
Crystal structure and electronic structure
Semiconductor-like in-plane resistivity
Large NMR beyond chiral anomaly.
Anisotropic magnetism and spin-glass-like behavior
Hall resistivity with multiband behavior and possible spin-charge interactio