Avenues to boost CO2 electroreduction to C2+ products are summarized.
How the catalyst structure can be designed to enhance performance is discussed.
Opportunities in the electroreduction of CO2 into multi-carbon fuels are presented.
[1] | https://gml.noaa.gov/ccgg/trends/global.html. |
[2] | Liu, Y., Ye, H.-Z., Diederichsen, K.M., et al. (2020). Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11: 2278. DOI: 10.1038/s41467-020-16150-7. |
[3] | Dietzenbacher, E., Cazcarro, I., and Arto, I. (2020). Towards a more effective climate policy on international trade. Nat. Commun. 11: 1130. DOI: 10.1038/s41467-020-14837-5. |
[4] | Tao, H., Fan, Q., Ma, T., et al. (2020). Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 111: 100637. DOI: 10.1016/j.pmatsci.2020.100637. |
[5] | Fan, Q., Hou, P., Choi, C., et al. (2020). Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 10: 1903068. DOI: 10.1002/aenm.201903068. |
[6] | Shen, H., Peppel, T., Stunk, J., and Sun, Z. (2020). Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective. Sol. RRL 4: 1900546. DOI: 10.1002/solr.201900546. |
[7] | García de Arquer, F.P., Dinh, C.-T., Ozden, A., et al. (2020). CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367: 661−666. DOI: 10.1126/science.aay4217. |
[8] | Jia, M., Choi, C., Wu, T.-S., et al. (2018). Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem. Sci. 9: 8775−8780. DOI: 10.1039/C8SC03732A. |
[9] | Li, L., Li, X., Sun, Y., and Xie, Y. (2022). Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 51: 1234−1252. DOI: 10.1039/D1CS00893E. |
[10] | Teeter, T., and Rysselberghe, P.V. (1954). Reduction of carbon dioxide on mercury cathodes. J. Chem. Phys. 22: 759−760. |
[11] | Hori, Y., Kikuchi, K., and Suzuki, S. (1985). Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14: 1695−1698. DOI: 10.1246/cl.1985.1695. |
[12] | Tao, M., Fan, Q., Hengcong, T., et al. (2017). Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology 28: 472001. DOI: 10.1088/1361-6528/aa8f6f. |
[13] | Weng, Z., Wu, Y., Wang, M., et al. (2018). Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9: 415. DOI: 10.1038/s41467-018-02819-7. |
[14] | Zhang, H., Chang, X., Chen, J.G., et al. (2019). Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 10: 3340. DOI: 10.1038/s41467-019-11292-9. |
[15] | Larrazábal, G.O., Shinagawa, T., Martín, A.J., and Pérez-Ramírez, J. (2018). Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nat. Commun. 9: 1477. DOI: 10.1038/s41467-018-03980-9. |
[16] | Zhang, B., Zhang, J., Shi, J., et al. (2019). Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10: 2980. DOI: 10.1038/s41467-019-10854-1. |
[17] | Chu, S., Hong, S., Masa, J., et al. (2019). Synergistic catalysis of CuO/In2O3 composites for highly selective electrochemical CO2 reduction to CO. Chem. Commun. 55: 12380−12383. DOI: 10.1039/C9CC05435A. |
[18] | Han, Z., Changhyeok, C., Tao, H., et al. (2018). Tuning Pd-catalyzed electroreduction of CO2 to CO with reduced overpotential. Catal. Sci. Technol. 8: 3894−3900. DOI: 10.1039/C8CY01037D. |
[19] | Gao, S., Lin, Y., Jiao, X., et al. (2016). Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529: 68−71. DOI: 10.1038/nature16455. |
[20] | Xia, C., Zhu, P., Jiang, Q., et al. (2019). Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4: 776−785. DOI: 10.1038/s41560-019-0451-x. |
[21] | Han, N., Wang, Y., Yang, H., et al. (2018). Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9: 1320. DOI: 10.1038/s41467-018-03712-z. |
[22] | Bushuyev, O.S., De Luna, P., Dinh, C.T., et al. (2018). What should we make with CO2 and how can we make it. Joule 2: 825−832. DOI: 10.1016/j.joule.2017.09.003. |
[23] | Gao, J., Zhang, H., Guo, X., et al. (2019). Selective C−C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141: 18704−18714. DOI: 10.1021/jacs.9b07415. |
[24] | Luo, M., Wang, Z., Li, Y.C., et al. (2019). Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10: 5814. DOI: 10.1038/s41467-019-13833-8. |
[25] | Fu, J., Zhu, W., Chen, Y., et al. (2019). Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem. Int. Ed. 58: 14100−14103. DOI: 10.1002/anie.201905318. |
[26] | Kuhl, K.P., Hatsukade, T., Cave, E.R., et al. (2014). Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136: 14107−14113. DOI: 10.1021/ja505791r. |
[27] | Stephanie, N., Erlend, B., Soren, B.S., et al. (2019). Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119: 7610−7672. DOI: 10.1021/acs.chemrev.8b00705. |
[28] | Kuhl, K.P., Cave, E.R., Abram, D.N., and Jaramillo, T.F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5: 7050−7059. DOI: 10.1039/c2ee21234j. |
[29] | Zhong, M., Tran, K., Min, Y., et al. (2020). Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581: 178−183. DOI: 10.1038/s41586-020-2242-8. |
[30] | Zhuang, T.-T., Liang, Z.-Q., Seifitokaldani, A., et al. (2018). Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1: 421−428. DOI: 10.1038/s41929-018-0084-7. |
[31] | Wang, X., Wang, Z., García de Arquer, F.P., et al. (2020). Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5: 478−486. DOI: 10.1038/s41560-020-0607-8. |
[32] | Pokharel, U.R., Fronczek, F.R., and Maverick, A.W. (2014). Reduction of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 5: 5883. DOI: 10.1038/ncomms6883. |
[33] | Wang, H., Tzeng, Y.K., Ji, Y., et al. (2020). Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15: 131−137. DOI: 10.1038/s41565-019-0603-y. |
[34] | De, R., Gonglach, S., Paul, S., et al. (2020). Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex. Angew. Chem. Int. Ed. 59: 10527−10534. DOI: 10.1002/anie.202000601. |
[35] | Zhao, K., Nie, X., Wang, H., et al. (2020). Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11: 2455. DOI: 10.1038/s41467-020-16381-8. |
[36] | Daiyan, R., Saputera, W.H., Masood, H., et al. (2020). A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value added chemicals and fuel. Adv. Energy Mater. 10: 1902106. DOI: 10.1002/aenm.201902106. |
[37] | Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al. (2019). Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4: 732−745. DOI: 10.1038/s41560-019-0450-y. |
[38] | Sun, L., Reddu, V., Fisher, A.C., and Xin, W. (2020). Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 13: 374−403. DOI: 10.1039/C9EE03660A. |
[39] | Francke, R., Schille, B., and Roemelt, M. (2018). Homogeneously catalyzed electroreduction of carbon dioxide—Methods, mechanisms, and catalysts. Chem. Rev. 118: 4631−4701. DOI: 10.1021/acs.chemrev.7b00459. |
[40] | Li, M., Wang, H., Luo, W., et al. (2020). Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 32: e2001848. DOI: 10.1002/adma.202001848. |
[41] | Yang, J., Li, W., Wang, D., and Li, Y. (2020). Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32: e2003300. DOI: 10.1002/adma.202003300. |
[42] | Qu, Q., Ji, S., Chen, Y., et al. (2021). The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 12: 4201−4215. DOI: 10.1039/D0SC07040H. |
[43] | Fan, Q., Zhang, M., Jia, M., et al. (2018). Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10: 280−301. DOI: 10.1016/j.mtener.2018.10.003. |
[44] | Ma, T., Fan, Q., Li, X., et al. (2019). Graphene-based materials for electrochemical CO2 reduction. J. CO2 Util. 30, 168–182. |
[45] | Wang, Y., Han, P., Lv, X., et al. (2018). Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2: 2551−2582. DOI: 10.1016/j.joule.2018.09.021. |
[46] | Zhu, D.D., Liu, J.L., and Qiao, S.Z. (2016). Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28: 3423−3452. DOI: 10.1002/adma.201504766. |
[47] | Zhang, L., Zhao, Z., and Gong, J. (2017). Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56: 11326−11353. DOI: 10.1002/anie.201612214. |
[48] | Sun, Z., Ma, T., Tao, H., et al. (2017). Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3: 560−587. DOI: 10.1016/j.chempr.2017.09.009. |
[49] | Pegis, M.L., Roberts, J.A.S., Wasylenko, D.J., et al. (2015). Standard reduction potentials for oxygen and carbon dioxide couples in acetonitrile and N,N-dimethylformamide. Inorg. Chem. 54: 11883−11888. DOI: 10.1021/acs.inorgchem.5b02136. |
[50] | Costentin, C., Drouet, S., Robert, M., and Saveant, J.M. (2012). A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338: 90−94. DOI: 10.1126/science.1224581. |
[51] | Centi, G., Perathoner, S., Win, G., and Gangeri, M. (2007). Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons. Green Chem. 9: 671−678. DOI: 10.1039/b615275a. |
[52] | Lopes, P.P., Strmcnik, D., Tripkovic, D., et al. (2016). Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 6: 2536−2544. DOI: 10.1021/acscatal.5b02920. |
[53] | Zheng, Y., Vasileff, A., Zhou, X., et al. (2019). Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141: 7646−7659. DOI: 10.1021/jacs.9b02124. |
[54] | Hori, Y., Takahashi, R., Yoshinami, Y., and Murata, A. (1997). Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101: 7075−7081. DOI: 10.1021/jp970284i. |
[55] | Montoya, J.H., Shi, C., Chan, K., and Nørskov, J.K. (2015). Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6: 2032−2037. DOI: 10.1021/acs.jpclett.5b00722. |
[56] | Calle-Vallejo, F., and Koper, M.T.M. (2013). Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52: 7282−7285. DOI: 10.1002/anie.201301470. |
[57] | Gao, D., Arán-Ais, R.M., Jeon, H.S., and Cuenya, B.R. (2019). Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2: 198−210. DOI: 10.1038/s41929-019-0235-5. |
[58] | Garza, A., Bell, A.T., and Head-Gordon, M. (2018). On the mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8: 1490−1499. DOI: 10.1021/acscatal.7b03477. |
[59] | Zhang, H., Li, J., Cheng, M.-J., et al. (2018). CO electroreduction: Current development and understanding of Cu-based catalyst. ACS Catal. 9: 49−65. |
[60] | Nie, X., Esopi, M.R., Janik, M.J., and Asthagiri, A. (2013). Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 125: 2519−2522. DOI: 10.1002/ange.201208320. |
[61] | Schouten, K.J.P., Kwon, Y., and van der Ham, C.J.M. (2011). A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2: 1902−1909. DOI: 10.1039/c1sc00277e. |
[62] | Cheng, T., Xiao, H., and Goddard, W.A. (2017). Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. U. S. A. 114: 1795−1800. DOI: 10.1073/pnas.1612106114. |
[63] | Garza, A.J., Bell, A.T., and Head-Gordon, M. (2018). Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8: 1490−1499. DOI: 10.1021/acscatal.7b03477. |
[64] | Kas, R., Kortlever, R., Milbrat, A., et al. (2014). Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16: 12194−12201. DOI: 10.1039/C4CP01520G. |
[65] | Genovese, C., Ampelli, C., Perathoner, S., and Centi, G. (2017). Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 19: 2406−2415. |
[66] | Sun, X., Zhu, Q., Kang, X., et al. (2017). Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. Green Chem. 19: 2086−2091. DOI: 10.1039/C7GC00503B. |
[67] | Chen, C.S., Wan, J.H., and Yeo, B.S. (2015). Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. J. Phys. Chem. C 119: 26875−26882. DOI: 10.1021/acs.jpcc.5b09144. |
[68] | Li, C.W., and Kanan, M.W. (2012). CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134: 7231−7234. DOI: 10.1021/ja3010978. |
[69] | Sen, S., Dan, L., and Palmore, G.T.R. (2014). Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4: 3091−3095. DOI: 10.1021/cs500522g. |
[70] | Handoko, A.D., Chan, K.W., and Yeo, B.S. (2017). –CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Lett. 2: 2103−2109. DOI: 10.1021/acsenergylett.7b00514. |
[71] | Zhuang, T.-T., Pang, Y., Liang, Z.-Q., et al. (2018). Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1: 946−951. DOI: 10.1038/s41929-018-0168-4. |
[72] | Clark, E.L., and Bell, A.T. (2018). Direct observation of the local reaction environment during the electrochemical reduction of CO2. J. Am. Chem. Soc. 140: 7012−7020. DOI: 10.1021/jacs.8b04058. |
[73] | Gao, J., Bahmanpour, A., Krocher, O., et al. (2023). Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nat. Chem. 15: 705−713. DOI: 10.1038/s41557-023-01163-8. |
[74] | Zheng, X., Ji, Y., Tang, J., et al. (2018). Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2: 55−61. DOI: 10.1038/s41929-018-0200-8. |
[75] | Yang, F., Elnabawy, A.O., Schimmenti, R., et al. (2020). Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 11: 1088. DOI: 10.1038/s41467-020-14914-9. |
[76] | Wang, Y.-R., Huang, Q., He, C.-T., et al. (2018). Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 9: 4466. DOI: 10.1038/s41467-018-06938-z. |
[77] | Li, J., Kuang, Y., Meng, Y., et al. (2020). Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 142: 7276−7282. DOI: 10.1021/jacs.0c00122. |
[78] | Wang, X., Xu, A., Li, F., et al. (2020). Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 142: 3525−3531. DOI: 10.1021/jacs.9b12445. |
[79] | Wang, Y., Liu, X., Han, X., et al. (2020). Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat. Commun. 11: 2531. DOI: 10.1038/s41467-020-16227-3. |
[80] | Wu, Y., Jiang, Z., Lu, X., et al. (2019). Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575: 639−642. DOI: 10.1038/s41586-019-1760-8. |
[81] | Wang, Y., Wang, Z., Dinh, C.-T., et al. (2019). Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3: 98−106. DOI: 10.1038/s41929-019-0397-1. |
[82] | Li, F., Thevenon, A., Rosas-Hernandez, A., et al. (2020). Molecular tuning of CO2-to-ethylene conversion. Nature 577: 509−513. DOI: 10.1038/s41586-019-1782-2. |
[83] | Vasileff, A., Zhu, Y., Zhi, X., et al. (2020). Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate. Angew. Chem. Int. Ed. 132: 19817−196821. DOI: 10.1002/ange.202004846. |
[84] | Pan, F., and Yang, Y. (2020). Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13: 2275−2309. DOI: 10.1039/D0EE00900H. |
[85] | Shi, Y., Lyu, Z., Zhao, M., et al. (2021). Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121: 649−735. DOI: 10.1021/acs.chemrev.0c00454. |
[86] | Yin, J., Wang, J., Ma, Y., et al. (2020). Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater. Lett. 3: 121−133. |
[87] | Wang, Y., Liu, H., Yu, J., et al. (2019). Copper oxide derived nanostructured self-supporting Cu electrodes for electrochemical reduction of carbon dioxide. Electrochim. Acta 328: 135083. DOI: 10.1016/j.electacta.2019.135083. |
[88] | Li, Q., Zhu, W., Fu, J., et al. (2016). Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24: 1−9. DOI: 10.1016/j.nanoen.2016.03.024. |
[89] | Lei, F., Liu, W., Sun, Y., et al. (2016). Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7: 12697. DOI: 10.1038/ncomms12697. |
[90] | An, B., Zhang, J., Cheng, K., et al. (2017). Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 139: 3834−3840. DOI: 10.1021/jacs.7b00058. |
[91] | Shifa, T.A., and Vomiero, A. (2019). Confined catalysis: Progress and prospects in energy conversion. Adv. Energy Mater. 9: 1902307. DOI: 10.1002/aenm.201902307. |
[92] | Petrosko, S.H., Johnson, R., White, H., and Mirkin, C.A. (2016). Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc. 138: 7443−7445. DOI: 10.1021/jacs.6b05393. |
[93] | Knossalla, J., Paciok, P., Gohl, D., et al. (2018). Shape-controlled nanoparticles in pore-confined space. J. Am. Chem. Soc. 140: 15684−15689. DOI: 10.1021/jacs.8b07868. |
[94] | O'Mara, P.B., Wilde, P., Benedetti, T.M., et al. (2019). Cascade reactions in nanozymes: Spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 141: 14093−14097. DOI: 10.1021/jacs.9b07310. |
[95] | Yun, H., Handoko, A.D., Hirunsit, P., and Yeo, B.S. (2017). Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7: 1749−1756. DOI: 10.1021/acscatal.6b03147. |
[96] | Gao, Y., Wu, Q., Liang, X., et al. (2020). Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. Adv. Sci. 7: 1902820. DOI: 10.1002/advs.201902820. |
[97] | Chu, S., Yan, X., Choi, C., et al. (2020). Stabilization of Cu+ by tuning a CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 22: 6540−6546. DOI: 10.1039/D0GC02279A. |
[98] | Li, X., Li, L., Xia, Q., et al. (2022). Selective electroreduction of CO2 and CO to C2H4 by synergistically tuning nanocavities and the surface charge of copper oxide. ACS Sustainable Chem. Eng. 10: 6466−6475. DOI: 10.1021/acssuschemeng.2c01600. |
[99] | Wang, D., Li, L., Xia, Q., et al. (2022). Boosting CO2 electroreduction to multicarbon products via tuning of the copper surface charge. ACS Sustainable Chem. Eng. 10: 11451−11458. DOI: 10.1021/acssuschemeng.2c03963. |
[100] | Ren, D., Deng, Y., Handoko, A.D., et al. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5: 2814−2821. DOI: 10.1021/cs502128q. |
[101] | Peterson, A.A., Abild-Pedersen, F., Studt, F., and Nørskov, J.K. (2010). How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3: 1311−1315. DOI: 10.1039/c0ee00071j. |
[102] | Garza, A.J., Bell, A.T., and Head-Gordon, M. (2018). Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper. J. Phys. Chem. Lett. 9: 601−606. DOI: 10.1021/acs.jpclett.7b03180. |
[103] | Shah, A.H., Wang, Y., Hussain, S., et al. (2020). New aspects of C2 selectivity in electrochemical CO2 reduction over oxide-derived copper. Phys. Chem. Chem. Phys. 22: 2046−2053. DOI: 10.1039/C9CP06009J. |
[104] | Favaro, M., Xiao, H., Cheng, T., et al. (2017). Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. U. S. A. 114: 6706−6711. DOI: 10.1073/pnas.1701405114. |
[105] | Mistry, H., Varela, A.S., Bonifacio, C.S., et al. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7: 12123. DOI: 10.1038/ncomms12123. |
[106] | Han, Z., Choi, C., Hong, S., et al. (2019). Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal., B 257: 117896. DOI: 10.1016/j.apcatb.2019.117896. |
[107] | Wang, G., Ling, Y., Wang, H., et al. (2012). Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 5: 6180−6187. DOI: 10.1039/c2ee03158b. |
[108] | Fang, G., Zhu, C., Chen, M., et al. (2019). Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29: 1808375. DOI: 10.1002/adfm.201808375. |
[109] | Ye, L., Zhang, M., Huang, P., et al. (2017). Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8: 14785. DOI: 10.1038/ncomms14785. |
[110] | Zhou, H., Zhao, Y., Xu, J., et al. (2020). Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 11: 335. DOI: 10.1038/s41467-019-14223-w. |
[111] | Ding, X., Peng, F., Zhou, J., et al. (2019). Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 10: 41. DOI: 10.1038/s41467-018-07835-1. |
[112] | Jia, Y., Zhang, L., Zhuang, L., et al. (2019). Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2: 688−695. DOI: 10.1038/s41929-019-0297-4. |
[113] | Lu, J., Lei, Y., Lau, K.C., et al. (2013). A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4: 2383. DOI: 10.1038/ncomms3383. |
[114] | Xue, L., Li, Y., Liu, X., et al. (2018). Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9: 3819. DOI: 10.1038/s41467-018-06279-x. |
[115] | Wan, S., Qi, J., Zhang, W., et al. (2017). Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29: 1700286. DOI: 10.1002/adma.201700286. |
[116] | Dai, L., Xue, Y., Qu, L., et al. (2015). Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115: 4823−4892. DOI: 10.1021/cr5003563. |
[117] | Duan, X., Xu, J., Wei, Z., et al. (2017). Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 1701784. |
[118] | Bell, D., Rall, D., Großeheide, M., et al. (2020). Tubular hollow fibre electrodes for CO2 reduction made from copper aluminum alloy with drastically increased intrinsic porosity. Electrochem. Commun. 111: 106645. DOI: 10.1016/j.elecom.2019.106645. |
[119] | Tao, H., Sun, X., Back, S., et al. (2017). Doping palladium with tellurium for highly selective electrocatalytic reduction of aqueous CO2 to CO. Chem. Sci. 9: 483−487. |
[120] | Sun, Y.N., Zhang, M.L., Zhao, L., et al. (2019). A N, P dual-doped carbon with high porosity as an advanced metal-free oxygen reduction catalyst. Adv. Mater. Interfaces 6: 1900592. DOI: 10.1002/admi.201900592. |
[121] | Wang, Q., Lei, Y., Wang, D., and Li, Y. (2019). Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12: 1730−1750. DOI: 10.1039/C8EE03781G. |
[122] | Zhou, Y., Che, F., Liu, M., et al. (2018). Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10: 974−980. DOI: 10.1038/s41557-018-0092-x. |
[123] | Ma, W., Xie, S., Liu, T., et al. (2020). Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3: 478−487. DOI: 10.1038/s41929-020-0450-0. |
[124] | Kim, D., Resasco, J., Yu, Y., et al. (2014). Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5: 4948. DOI: 10.1038/ncomms5948. |
[125] | Kim, D., Xie, C., Becknell, N., et al. (2017). Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139: 8329−8336. DOI: 10.1021/jacs.7b03516. |
[126] | Zhang, S., Kang, P., Bakir, M., et al. (2015). Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl. Acad. Sci. U. S. A. 112: 15809−15814. DOI: 10.1073/pnas.1522496112. |
[127] | Ren, D., Ang, B.S.-H., and Yeo, B.S. (2016). Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6: 8239−8247. DOI: 10.1021/acscatal.6b02162. |
[128] | Ma, S., Sadakiyo, M., Heima, M., et al. (2017). Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139: 47−50. DOI: 10.1021/jacs.6b10740. |
[129] | David, W., Sarah, L., Franois, O., et al. (2019). Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18: 1222−1227. DOI: 10.1038/s41563-019-0445-x. |
[130] | Huang, W., Ma, X.Y., Wang, H., et al. (2017). Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 29: 1703057. DOI: 10.1002/adma.201703057. |
[131] | Wang, Y., Chen, L., Yu, X., et al. (2017). Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater. 7: 1601390. DOI: 10.1002/aenm.201601390. |
[132] | Xiao, H., Cheng, T., and Goddard III, W.A. (2017). Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139: 130−136. DOI: 10.1021/jacs.6b06846. |
[133] | Han, H., Noh, Y., Kim, Y., et al. (2020). Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 22: 71−84. DOI: 10.1039/C9GC03088C. |
[134] | Lee, C.W., Shin, S.-J., Jung, H., et al. (2019). Metal-oxide interfaces for selective electrochemical C–C coupling reactions. ACS Energy Lett. 4: 2241−2248. DOI: 10.1021/acsenergylett.9b01721. |
[135] | Bai, X., Li, Q., Shi, L., et al. (2020). Hybrid Cu0 and Cux+ as atomic interfaces promote high-selectivity conversion of CO2 to C2H5OH at low potential. Small 16: 1901981. DOI: 10.1002/smll.201901981. |
[136] | Liu, X., Schlexer, P., Xiao, J., et al. (2019). pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10: 32. DOI: 10.1038/s41467-018-07970-9. |
[137] | Dinh, C.-T., Burdyny, T., Kibria, M.G., et al. (2018). CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360: 783−787. DOI: 10.1126/science.aas9100. |
[138] | Stefan, R., Ezra, L.C., Joaquin, R., et al. (2019). Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12: 3001−3014. DOI: 10.1039/C9EE01341E. |
[139] | Murata, A., Hori, Y. (1991). Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64: 123−127. DOI: 10.1246/bcsj.64.123. |
[140] | Frumkin, A.N. (1959). Influence of cation adsorption on the kinetics of electrode processes. Trans. Faraday Soc. 55: 156. DOI: 10.1039/tf9595500156. |
[141] | Mills, J.N., McCrum, I.T., and Janik, M.J. (2014). Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys. Chem. Chem. Phys. 16: 13699−13707. DOI: 10.1039/C4CP00760C. |
[142] | Huang, J.E., Li, F., Ozden, A., et al. (2021). CO2 electrolysis to multicarbon products in strong acid. Science 372: 1074−1078. DOI: 10.1126/science.abg6582. |
[143] | Hori, Y., Murata, A., Takahashi, R.Y., et al. (1988). Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. 17−19. |
[144] | Li, W., Li, L., Xia, Q., et al. (2022). Lowering C−C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Appl. Catal. B Environ. 318: 121823. DOI: 10.1016/j.apcatb.2022.121823. |
[145] | Gennaro, A., Isse, A.A., Severin, M.-G., et al. (1996). Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J. Chem. Soc. Faraday Trans. 92: 3963−3968. DOI: 10.1039/FT9969203963. |
[146] | Cheng, Y., Hou, P., Pan, H., et al. (2020). Selective electrocatalytic reduction of carbon dioxide to oxalate by lead tin oxides with low overpotential. Appl. Catal. B Environ. 272: 118954. DOI: 10.1016/j.apcatb.2020.118954. |
[147] | Rudolph, M., Dautz, S., and Jäger, E.-G. (2000). Macrocyclic [N42-] coordinated nickel complexes as catalysts for the formation of oxalate by electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 122: 10821−10830. DOI: 10.1021/ja001254n. |
[148] | Jiang, C., Zeng, S., Ma, X., et al. (2022). Aprotic phosphonium-based ionic liquid as electrolyte for high CO2 electroreduction to oxalate. AICHE J. 69: e17859. |
[149] | Wang, X., de Araújo, J.F., Ju, W., et al. (2019). Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14: 1063−1070. DOI: 10.1038/s41565-019-0551-6. |
[150] | Luc, W., Ko, B.H., Kattel, S., et al. (2019). SO2-induced selectivity change in CO2 electroreduction. J. Am. Chem. Soc. 141: 9902−9909. DOI: 10.1021/jacs.9b03215. |
[151] | Melchaeva, O., Voyame, P., Bassetto, V.C., et al. (2017). Electrochemical reduction of protic supercritical CO2 on copper electrodes. ChemSusChem 10: 3660−3670. DOI: 10.1002/cssc.201701205. |
Li X., Chen Y., Zhan X., et al., (2023). Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper. The Innovation Materials 1(1), 100014. https://doi.org/10.59717/j.xinn-mater.2023.100014 |
Volcano plot of the CO binding strength versus partial current density for ECR at −0.8 V.
Possible C2 and C3 formation routes starting from *CO on Cu.
Mechanistic understanding of Cu-based electrocatalysts for ECR and FE toward C2+ formation
Formation of C2H4 on Cu2O with
Construction and characterization of Cu2S-based ECR electrocatalysts
ECR FEs of
Two-dimensional
Depictions of
Illustration of hybridization of C atom in reaction intermediates and mechanistic understanding of ECR on Td-Cu4@g-C3N4