Host genome-integrated hepatitis B virus (HBV) causes chronic DNA replication stress.
Prognostic DNA replication stress contributes heterogeneity of HBV+ hepatocellular carcinoma (HCC).
A tailored prognostic index (PIRS) improves population-based prognostication.
PIRS enables exploitable therapeutic vulnerabilities.
Four therapeutic targets and five agents were identified for HBV+ HCC.
[1] | Llovet, J.M., Kelley, R.K., Villanueva, A., et al. (2021). Hepatocellular carcinoma. Nat. Rev. Dis. Primers 7 : 6. DOI: 10.1038/s41572-020-00240-3. |
[2] | Torresi, J., Tran, B.M., Christiansen, D., et al. (2019). HBV-related hepatocarcinogenesis: The role of signalling pathways and innovative ex vivo research models. BMC Cancer 19 : 707. DOI: 10.1186/s12885-019-5916-6. |
[3] | Llovet, J.M., Montal, R., Sia, D., et al. (2018). Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15 : 599−616. DOI: 10.1038/s41571-018-0073-4. |
[4] | Iloeje, U.H., Yang, H.I., Jen, C.L., et al. (2007). Risk and predictors of mortality associated with chronic hepatitis B infection. Clin. Gastroenterol. Hepatol. 5 : 921−931. DOI: 10.1016/j.cgh.2007.06.015. |
[5] | Geier, A., Gartung, C., and Dietrich, C.G. (2002). Hepatitis B e antigen and the risk of hepatocellular carcinoma. N. Engl. J. Med. 347 : 1721−1722. DOI: 10.1056/nejm200211213472119. |
[6] | Li, B., Feng, W., Luo, O., et al. (2017). Development and validation of a three-gene prognostic signature for patients with hepatocellular carcinoma. Sci. Rep. 7 : 5517. DOI: 10.1038/s41598-017-04811-5. |
[7] | Yan, Y., Lu, Y., Mao, K., et al. (2019). Identification and validation of a prognostic four-genes signature for hepatocellular carcinoma: integrated ceRNA network analysis. Hepatol. Int. 13 : 618−630. DOI: 10.1007/s12072-019-09962-3. |
[8] | Hu, B., and Yang, X.B. (2020). Construction of a lipid metabolism-related and immune-associated prognostic signature for hepatocellular carcinoma. Cancer Med. 9 : 7646−7662. DOI: 10.1002/cam4.3353. |
[9] | Chen, W., Ou, M., Tang, D., et al. (2020). Identification and validation of immune-related gene prognostic signature for hepatocellular carcinoma. J. Immunol. Res. 2020 : 5494858. DOI: 10.1155/2020/5494858. |
[10] | Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: The next generation. Cell 144 : 646−674. DOI: 10.1016/j.cell.2011.02.013. |
[11] | Macheret, M., and Halazonetis, T.D. (2015). DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10 : 425−448. DOI: 10.1146/annurev-pathol-012414-040424. |
[12] | Williamson, C.T., Miller, R., Pemberton, H.N., et al. (2016). ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7 : 13837. DOI: 10.1038/ncomms13837. |
[13] | Brown, J.S., O'Carrigan, B., Jackson, S.P., et al. (2017). Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 7 : 20−37. DOI: 10.1158/2159-8290.cd-16-0860. |
[14] | Dreyer, S.B., Upstill-Goddard, R., Paulus-Hock, V., et al. (2021). Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology 160 : 362−377.e313. DOI: 10.1053/j.gastro.2020.09.043. |
[15] | Gillman, R., Lopes Floro, K., Wankell, M., et al. (2021). The role of DNA damage and repair in liver cancer. Biochim. Biophys. Acta. Rev. Cancer 1875 : 188493. DOI: 10.1016/j.bbcan.2020.188493. |
[16] | Gao, Q., Zhu, H., Dong, L., et al. (2019). Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179 : 561−577.e522. DOI: 10.1016/j.cell.2019.08.052. |
[17] | Zapatka, M., Borozan, I., Brewer, D.S., et al. (2020). The landscape of viral associations in human cancers. Nat. Genet. 52 : 320−330. DOI: 10.1038/s41588-019-0558-9. |
[18] | Wagner, G.P., Kin, K., and Lynch, V.J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131 : 281−285. DOI: 10.1007/s12064-012-0162-3. |
[19] | Chen, Y., Yao, H., Thompson, E.J., et al. (2012). VirusSeq: Software to identify viruses and their integration sites using next-generation sequencing of human cancer tissue. Bioinformatics 29 : 266−267. DOI: 10.1093/bioinformatics/bts665. |
[20] | Ghandi, M., Huang, F.W., Jané-Valbuena, J., et al. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569 : 503−508. DOI: 10.1038/s41586-019-1186-3. |
[21] | Roessler, S., Jia, H.L., Budhu, A., et al. (2010). A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 70 : 10202−10212. DOI: 10.1158/0008-5472.can-10-2607. |
[22] | Ritchie, M.E., Phipson, B., Wu, D., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 : e47−e47. DOI: 10.1093/nar/gkv007. |
[23] | Meyers, R.M., Bryan, J.G., McFarland, J.M., et al. (2017). Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49 : 1779−1784. DOI: 10.1038/ng.3984. |
[24] | Yang, C., Huang, X., Li, Y., et al. (2020). Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: An in silico strategy towards precision oncology. Brief. Bioinform. DOI: 10.1093/bib/bbaa164. |
[25] | Boyault, S., Rickman, D.S., de Reyniès, A., et al. (2007). Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45 : 42−52. DOI: 10.1002/hep.21467. |
[26] | Chiang, D.Y., Villanueva, A., Hoshida, Y., et al. (2008). Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68 : 6779−6788. DOI: 10.1158/0008-5472.can-08-0742. |
[27] | Hoshida, Y., Nijman, S.M.B., Kobayashi, M., et al. (2009). Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69 : 7385−7392. DOI: 10.1158/0008-5472.CAN-09-1089. |
[28] | Désert, R., Rohart, F., Canal, F., et al. (2017). Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 66 : 1502−1518. DOI: 10.1002/hep.29254. |
[29] | Eide, P.W., Bruun, J., Lothe, R.A., et al. (2017). CMScaller: An R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Sci. Rep. 7 : 16618. DOI: 10.1038/s41598-017-16747-x. |
[30] | Tufanaru, C., Munn, Z., Stephenson, M., et al. (2015). Fixed or random effects meta-analysis. Common methodological issues in systematic reviews of effectiveness. Int. J. Evid. Based Healthc. 13 : 196−207. DOI: 10.1097/xeb.0000000000000065. |
[31] | Tian, Y., Morris, T.J., Webster, A.P., et al. (2017). ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33 : 3982−3984. DOI: 10.1093/bioinformatics/btx513. |
[32] | Liberzon, A., Birger, C., Thorvaldsdóttir, H., et al. (2015). The molecular signatures database hallmark gene set collection. Cell Syst. 1 : 417−425. DOI: 10.1016/j.cels.2015.12.004. |
[33] | Wu, T., Hu, E., Xu, S., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2 : 100141. DOI: 10.1016/j.xinn.2021.100141. |
[34] | Mermel, C.H., Schumacher, S.E., Hill, B., et al. (2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12 : R41. DOI: 10.1186/gb-2011-12-4-r41. |
[35] | Lu, X., Meng, J., Su, L., et al. (2021). Multi-omics consensus ensemble refines the classification of muscle-invasive bladder cancer with stratified prognosis, tumour microenvironment and distinct sensitivity to frontline therapies. Clin. Transl. Med. 11 : e601. DOI: 10.1002/ctm2.601. |
[36] | Audia, J.E., and Campbell, R.M. (2016). Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8 : a019521−a019521. DOI: 10.1101/cshperspect.a019521. |
[37] | Lu, X., Vano, Y., Helleux, A., et al. (2022). An enhancer demethylator phenotype converged to immune dysfunction and resistance to immune checkpoint inhibitors in clear-cell renal cell carcinomas. Clin. Cancer Res. DOI: 10.1158/1078-0432.Ccr-22-2133. |
[38] | Newman, A.M., Liu, C.L., Green, M.R., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 : 453. DOI: 10.1038/nmeth.3337. |
[39] | Becht, E., Giraldo, N.A., Lacroix, L., et al. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17 : 218. DOI. DOI: 10.1186/s13059-016-1070-5. |
[40] | Yang, C., and Huang, X. (2020). Metabolism-associated molecular classification of hepatocellular carcinoma. Mol. Oncol. 14 : 896−913. DOI: 10.1002/1878-0261.12639. |
[41] | Malta, T.M., Sokolov, A., Gentles, A.J., et al. (2018). Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173 : 338−354.e315. DOI: 10.1016/j.cell.2018.03.034. |
[42] | Subramanian, A., Narayan, R., Corsello, S.M., et al. (2017). A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171 : 1437-1452. e1417. DOI: 10.1016/j.cell.2017.10.049. |
[43] | Geeleher, P., Cox, N.J., and Huang, R.S. (2014). Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 15 : R47. DOI: 10.1186/gb-2014-15-3-r47. |
[44] | Jiang, P., Gu, S., Pan, D., et al. (2018). Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 : 1550−1558. DOI: 10.1038/s41591-018-0136-1. |
[45] | McGranahan, N., Furness, A.J., Rosenthal, R., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351 : 1463−1469. DOI: 10.1126/science.aaf1490. |
[46] | Davoli, T., Uno, H., Wooten, E.C., et al. (2017). Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355 : eaaf8399. DOI: 10.1126/science.aaf8399. |
[47] | Lu, X., Meng, J., Zhou, Y., et al. (2020). MOVICS: An R package for multi-omics integration and visualization in cancer subtyping. Bioinformatics 36 : 5539−5541. DOI: 10.1093/bioinformatics/btaa1018. |
[48] | Jessen, C., Kreß, J.K.C., Baluapuri, A., et al. (2020). The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene 39 : 6841−6855. DOI: 10.1038/s41388-020-01477-8. |
[49] | Sun, X., Wang, Y., Ji, K., et al. (2020). NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res. 48 : 9109−9123. DOI: 10.1093/nar/gkaa631. |
[50] | Kim, D.W., Talati, C., and Kim, R. (2016). Hepatocellular carcinoma (HCC): Beyond sorafenib-chemotherapy. J. Gastrointest. Oncol. 8 : 256−265. DOI: 10.21037/jgo.2016.09.07. |
[51] | Ubhi, T., and Brown, G.W. (2019). Exploiting DNA replication stress for cancer treatment. Cancer Res. 79 : 1730−1739. DOI: 10.1158/0008-5472.can-18-3631. |
[52] | Lee, J.H., and Berger, J.M. (2019). Cell cycle-dependent control and roles of DNA topoisomerase II. Genes (Basel) 10 : 859. DOI: 10.3390/genes10110859. |
[53] | Panvichian, R., Tantiwetrueangdet, A., Angkathunyakul, N., et al. (2015). TOP2A amplification and overexpression in hepatocellular carcinoma tissues. Biomed. Res. Int. 2015 : 381602. DOI: 10.1155/2015/381602. |
[54] | Fedoriw, A., Rajapurkar, S.R., O'Brien, S., et al. (2019). Anti-tumor activity of the type I PRMT inhibitor, GSK3368715, synergizes with PRMT5 inhibition through MTAP loss. Cancer Cell 36 : 100−114.e125. DOI: 10.1016/j.ccell.2019.05.014. |
[55] | Zhang, X.P., Jiang, Y.B., Zhong, C.Q., et al. (2018). PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 signalling pathway. Cell Physiol. Biochem. 47 : 1643−1654. DOI: 10.1159/000490983. |
[56] | Wei, H., Liu, Y., Min, J., et al. (2019). Protein arginine methyltransferase 1 promotes epithelial-mesenchymal transition via TGF-beta1/Smad pathway in hepatic carcinoma cells. Neoplasma 66 : 918−929. DOI: 10.4149/neo_2018_181226N999. |
[57] | Zhao, J., Adams, A., Roberts, B., et al. (2018). Protein arginine methyl transferase 1- and Jumonji C domain-containing protein 6-dependent arginine methylation regulate hepatocyte nuclear factor 4 alpha expression and hepatocyte proliferation in mice. Hepatology 67 : 1109−1126. DOI: 10.1002/hep.29587. |
[58] | Wang, J., Wang, C., Xu, P., et al. (2021). PRMT1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Theranostics 11 : 5387−5403. DOI: 10.7150/thno.42345. |
[59] | Giuliani, V., Miller, M.A., Liu, C.-Y., et al. (2021). PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma. Nat. Commun. 12 : 4626. DOI: 10.1038/s41467-021-24798-y. |
[60] | Schittek, B., and Sinnberg, T. (2014). Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol. Cancer 13 : 231. DOI: 10.1186/1476-4598-13-231. |
[61] | Rosenberg, L.H., Lafitte, M., Quereda, V., et al. (2015). Therapeutic targeting of casein kinase 1δ in breast cancer. Sci. Transl. Med. 7 : 318ra202. DOI: 10.1126/scitranslmed.aac8773. |
[62] | Uchida, T., Takamiya, M., Takahashi, M., et al. (2003). Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10 : 15−24. DOI: 10.1016/s1074-5521(02)00310-1. |
[63] | Young, S., Craig, P., and Golzarian, J. (2019). Current trends in the treatment of hepatocellular carcinoma with transarterial embolization: a cross-sectional survey of techniques. Eur. Radiol. 29 : 3287−3295. DOI: 10.1007/s00330-018-5782-7. |
[64] | Shimose, S., Iwamoto, H., Tanaka, M., et al. (2020). Increased arterio-portal shunt formation after drug-eluting beads TACE for hepatocellular carcinoma. Oncology 98 : 558−565. DOI: 10.1159/000507262. |
[65] | Abou-Alfa, G.K., Shi, Q., Knox, J.J., et al. (2019). Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in patients with advanced hepatocellular carcinoma: Phase 3 CALGB 80802 randomized clinical trial. JAMA Oncol. 5 : 1582−1588. DOI: 10.1001/jamaoncol.2019.2792. |
[66] | Emanuel, S., Rugg, C.A., Gruninger, R.H., et al. (2005). The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res. 65 : 9038−9046. DOI: 10.1158/0008-5472.CAN-05-0882. |
[67] | Matsuhashi, A., Ohno, T., Kimura, M., et al. (2012). Growth suppression and mitotic defect induced by JNJ-7706621, an inhibitor of cyclin-dependent kinases and aurora kinases. Curr. Cancer Drug Targets 12 : 625−639. DOI: 10.2174/156800912801784839. |
[68] | Brasca, M.G., Albanese, C., Alzani, R., et al. (2010). Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing. Bioorg. Med. Chem. 18 : 1844−1853. DOI: 10.1016/j.bmc.2010.01.042. |
[69] | Ehrlich, S.M., Liebl, J., Ardelt, M.A., et al. (2015). Targeting cyclin dependent kinase 5 in hepatocellular carcinoma--A novel therapeutic approach. J. Hepatol. 63 :102-113. DOI: 10.1016/j.jhep.2015.01.031. |
[70] | Le Tourneau, C., Faivre, S., Laurence, V., et al. (2010). Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur. J. Cancer 46 : 3243−3250. DOI: 10.1016/j.ejca.2010.08.001. |
[71] | Chan, H.L.-Y., Tse, C.-H., Mo, F., et al. (2008). High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J. Clin. Oncol. 26 : 177−182. DOI: 10.1200/jco.2007.13.2043. |
[72] | Yu, S.J., and Kim, Y.J. (2014). Hepatitis B viral load affects prognosis of hepatocellular carcinoma. World J. Gastroenterol. 20 : 12039−12044. DOI: 10.3748/wjg.v20.i34.12039. |
[73] | Péneau, C., Imbeaud, S., Bella, T.L., et al. (2022). Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 71 : 616−626. DOI: 10.1136/gutjnl-2020-323153. |
Lu X., Meng J., Wang H., et al., (2023). DNA replication stress stratifies prognosis and enables exploitable therapeutic vulnerabilities of HBV-associated hepatocellular carcinoma: An in-silico precision oncology strategy. The Innovation Medicine 1(1), 100014. https://doi.org/10.59717/j.xinn-med.2023.100014 |
Experimental design
Performance of prognostic prediction based on
Landscape of
Association between immune/metabolism pathways, molecular features and
Identification of
Identification of candidate therapeutic agents with higher sensitivity in patients with high