REPORT   Open Access    

DNA replication stress stratifies prognosis and enables exploitable therapeutic vulnerabilities of HBV-associated hepatocellular carcinoma: An in-silico precision oncology strategy

    Show all affliationsShow less
More Information
    1. Host genome-integrated hepatitis B virus (HBV) causes chronic DNA replication stress.

      Prognostic DNA replication stress contributes heterogeneity of HBV+ hepatocellular carcinoma (HCC).

      A tailored prognostic index (PIRS) improves population-based prognostication.

      PIRS enables exploitable therapeutic vulnerabilities.

      Four therapeutic targets and five agents were identified for HBV+ HCC.

  • Hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC), characterized by genomic instability and chronic DNA replication stress. This study presents a robust machine-learning framework using random survival forest to develop a DNA replication stress-related prognostic index (PIRS) for HBV-associated HCC. Transcriptomic expression profiles from 606 HCC cases were used to construct PIRS, which outperformed population-based predictors, demonstrating superior prognostic prediction in HBV-associated HCC. Lower PIRS scores were associated with higher expression of HBV oncoproteins, activated immune/metabolism pathways, and increased responsiveness to immunotherapy. Conversely, higher PIRS scores correlated with elevated Ki-67 marker, cancer stemness, and enrichment in DNA replication stress, cell cycle pathways, and chromatin remodelers, resulting in an 'immune-cold' phenotype and unfavorable clinical outcomes. Through large-scale in-silico drug screening, potential therapeutic targets (TOP2A, PRMT1, CSNK1D, and PPIH) and five agents, including topoisomerase and CDK inhibitors, were identified for patients with high PIRS scores. These findings hold promise for optimizing therapeutic strategies in HCC and providing insights into the management of HBV carriers. In summary, our machine-learning approach yielded PIRS as a powerful predictor for assessing prognosis in HBV-associated HCC. This analytic framework improves population-based therapeutic strategies, facilitates personalized treatment, and ushers in a new era of precision medicine in HCC.
  • 加载中
  • [1] Llovet, J.M., Kelley, R.K., Villanueva, A., et al. (2021). Hepatocellular carcinoma. Nat. Rev. Dis. Primers 7 : 6. DOI: 10.1038/s41572-020-00240-3.

    View in Article CrossRef Google Scholar

    [2] Torresi, J., Tran, B.M., Christiansen, D., et al. (2019). HBV-related hepatocarcinogenesis: The role of signalling pathways and innovative ex vivo research models. BMC Cancer 19 : 707. DOI: 10.1186/s12885-019-5916-6.

    View in Article CrossRef Google Scholar

    [3] Llovet, J.M., Montal, R., Sia, D., et al. (2018). Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15 : 599−616. DOI: 10.1038/s41571-018-0073-4.

    View in Article CrossRef Google Scholar

    [4] Iloeje, U.H., Yang, H.I., Jen, C.L., et al. (2007). Risk and predictors of mortality associated with chronic hepatitis B infection. Clin. Gastroenterol. Hepatol. 5 : 921−931. DOI: 10.1016/j.cgh.2007.06.015.

    View in Article CrossRef Google Scholar

    [5] Geier, A., Gartung, C., and Dietrich, C.G. (2002). Hepatitis B e antigen and the risk of hepatocellular carcinoma. N. Engl. J. Med. 347 : 1721−1722. DOI: 10.1056/nejm200211213472119.

    View in Article CrossRef Google Scholar

    [6] Li, B., Feng, W., Luo, O., et al. (2017). Development and validation of a three-gene prognostic signature for patients with hepatocellular carcinoma. Sci. Rep. 7 : 5517. DOI: 10.1038/s41598-017-04811-5.

    View in Article CrossRef Google Scholar

    [7] Yan, Y., Lu, Y., Mao, K., et al. (2019). Identification and validation of a prognostic four-genes signature for hepatocellular carcinoma: integrated ceRNA network analysis. Hepatol. Int. 13 : 618−630. DOI: 10.1007/s12072-019-09962-3.

    View in Article CrossRef Google Scholar

    [8] Hu, B., and Yang, X.B. (2020). Construction of a lipid metabolism-related and immune-associated prognostic signature for hepatocellular carcinoma. Cancer Med. 9 : 7646−7662. DOI: 10.1002/cam4.3353.

    View in Article CrossRef Google Scholar

    [9] Chen, W., Ou, M., Tang, D., et al. (2020). Identification and validation of immune-related gene prognostic signature for hepatocellular carcinoma. J. Immunol. Res. 2020 : 5494858. DOI: 10.1155/2020/5494858.

    View in Article CrossRef Google Scholar

    [10] Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: The next generation. Cell 144 : 646−674. DOI: 10.1016/j.cell.2011.02.013.

    View in Article CrossRef Google Scholar

    [11] Macheret, M., and Halazonetis, T.D. (2015). DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10 : 425−448. DOI: 10.1146/annurev-pathol-012414-040424.

    View in Article CrossRef Google Scholar

    [12] Williamson, C.T., Miller, R., Pemberton, H.N., et al. (2016). ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7 : 13837. DOI: 10.1038/ncomms13837.

    View in Article CrossRef Google Scholar

    [13] Brown, J.S., O'Carrigan, B., Jackson, S.P., et al. (2017). Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 7 : 20−37. DOI: 10.1158/2159-8290.cd-16-0860.

    View in Article CrossRef Google Scholar

    [14] Dreyer, S.B., Upstill-Goddard, R., Paulus-Hock, V., et al. (2021). Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology 160 : 362−377.e313. DOI: 10.1053/j.gastro.2020.09.043.

    View in Article CrossRef Google Scholar

    [15] Gillman, R., Lopes Floro, K., Wankell, M., et al. (2021). The role of DNA damage and repair in liver cancer. Biochim. Biophys. Acta. Rev. Cancer 1875 : 188493. DOI: 10.1016/j.bbcan.2020.188493.

    View in Article CrossRef Google Scholar

    [16] Gao, Q., Zhu, H., Dong, L., et al. (2019). Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179 : 561−577.e522. DOI: 10.1016/j.cell.2019.08.052.

    View in Article CrossRef Google Scholar

    [17] Zapatka, M., Borozan, I., Brewer, D.S., et al. (2020). The landscape of viral associations in human cancers. Nat. Genet. 52 : 320−330. DOI: 10.1038/s41588-019-0558-9.

    View in Article CrossRef Google Scholar

    [18] Wagner, G.P., Kin, K., and Lynch, V.J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131 : 281−285. DOI: 10.1007/s12064-012-0162-3.

    View in Article CrossRef Google Scholar

    [19] Chen, Y., Yao, H., Thompson, E.J., et al. (2012). VirusSeq: Software to identify viruses and their integration sites using next-generation sequencing of human cancer tissue. Bioinformatics 29 : 266−267. DOI: 10.1093/bioinformatics/bts665.

    View in Article CrossRef Google Scholar

    [20] Ghandi, M., Huang, F.W., Jané-Valbuena, J., et al. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569 : 503−508. DOI: 10.1038/s41586-019-1186-3.

    View in Article CrossRef Google Scholar

    [21] Roessler, S., Jia, H.L., Budhu, A., et al. (2010). A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 70 : 10202−10212. DOI: 10.1158/0008-5472.can-10-2607.

    View in Article CrossRef Google Scholar

    [22] Ritchie, M.E., Phipson, B., Wu, D., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 : e47−e47. DOI: 10.1093/nar/gkv007.

    View in Article CrossRef Google Scholar

    [23] Meyers, R.M., Bryan, J.G., McFarland, J.M., et al. (2017). Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49 : 1779−1784. DOI: 10.1038/ng.3984.

    View in Article CrossRef Google Scholar

    [24] Yang, C., Huang, X., Li, Y., et al. (2020). Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: An in silico strategy towards precision oncology. Brief. Bioinform. DOI: 10.1093/bib/bbaa164.

    View in Article Google Scholar

    [25] Boyault, S., Rickman, D.S., de Reyniès, A., et al. (2007). Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45 : 42−52. DOI: 10.1002/hep.21467.

    View in Article CrossRef Google Scholar

    [26] Chiang, D.Y., Villanueva, A., Hoshida, Y., et al. (2008). Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68 : 6779−6788. DOI: 10.1158/0008-5472.can-08-0742.

    View in Article CrossRef Google Scholar

    [27] Hoshida, Y., Nijman, S.M.B., Kobayashi, M., et al. (2009). Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69 : 7385−7392. DOI: 10.1158/0008-5472.CAN-09-1089.

    View in Article CrossRef Google Scholar

    [28] Désert, R., Rohart, F., Canal, F., et al. (2017). Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 66 : 1502−1518. DOI: 10.1002/hep.29254.

    View in Article CrossRef Google Scholar

    [29] Eide, P.W., Bruun, J., Lothe, R.A., et al. (2017). CMScaller: An R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Sci. Rep. 7 : 16618. DOI: 10.1038/s41598-017-16747-x.

    View in Article CrossRef Google Scholar

    [30] Tufanaru, C., Munn, Z., Stephenson, M., et al. (2015). Fixed or random effects meta-analysis. Common methodological issues in systematic reviews of effectiveness. Int. J. Evid. Based Healthc. 13 : 196−207. DOI: 10.1097/xeb.0000000000000065.

    View in Article CrossRef Google Scholar

    [31] Tian, Y., Morris, T.J., Webster, A.P., et al. (2017). ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33 : 3982−3984. DOI: 10.1093/bioinformatics/btx513.

    View in Article CrossRef Google Scholar

    [32] Liberzon, A., Birger, C., Thorvaldsdóttir, H., et al. (2015). The molecular signatures database hallmark gene set collection. Cell Syst. 1 : 417−425. DOI: 10.1016/j.cels.2015.12.004.

    View in Article CrossRef Google Scholar

    [33] Wu, T., Hu, E., Xu, S., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2 : 100141. DOI: 10.1016/j.xinn.2021.100141.

    View in Article Google Scholar

    [34] Mermel, C.H., Schumacher, S.E., Hill, B., et al. (2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12 : R41. DOI: 10.1186/gb-2011-12-4-r41.

    View in Article Google Scholar

    [35] Lu, X., Meng, J., Su, L., et al. (2021). Multi-omics consensus ensemble refines the classification of muscle-invasive bladder cancer with stratified prognosis, tumour microenvironment and distinct sensitivity to frontline therapies. Clin. Transl. Med. 11 : e601. DOI: 10.1002/ctm2.601.

    View in Article CrossRef Google Scholar

    [36] Audia, J.E., and Campbell, R.M. (2016). Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8 : a019521−a019521. DOI: 10.1101/cshperspect.a019521.

    View in Article CrossRef Google Scholar

    [37] Lu, X., Vano, Y., Helleux, A., et al. (2022). An enhancer demethylator phenotype converged to immune dysfunction and resistance to immune checkpoint inhibitors in clear-cell renal cell carcinomas. Clin. Cancer Res. DOI: 10.1158/1078-0432.Ccr-22-2133.

    View in Article Google Scholar

    [38] Newman, A.M., Liu, C.L., Green, M.R., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 : 453. DOI: 10.1038/nmeth.3337.

    View in Article CrossRef Google Scholar

    [39] Becht, E., Giraldo, N.A., Lacroix, L., et al. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17 : 218. DOI. DOI: 10.1186/s13059-016-1070-5.

    View in Article CrossRef Google Scholar

    [40] Yang, C., and Huang, X. (2020). Metabolism-associated molecular classification of hepatocellular carcinoma. Mol. Oncol. 14 : 896−913. DOI: 10.1002/1878-0261.12639.

    View in Article CrossRef Google Scholar

    [41] Malta, T.M., Sokolov, A., Gentles, A.J., et al. (2018). Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173 : 338−354.e315. DOI: 10.1016/j.cell.2018.03.034.

    View in Article CrossRef Google Scholar

    [42] Subramanian, A., Narayan, R., Corsello, S.M., et al. (2017). A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171 : 1437-1452. e1417. DOI: 10.1016/j.cell.2017.10.049.

    View in Article Google Scholar

    [43] Geeleher, P., Cox, N.J., and Huang, R.S. (2014). Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 15 : R47. DOI: 10.1186/gb-2014-15-3-r47.

    View in Article CrossRef Google Scholar

    [44] Jiang, P., Gu, S., Pan, D., et al. (2018). Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 : 1550−1558. DOI: 10.1038/s41591-018-0136-1.

    View in Article CrossRef Google Scholar

    [45] McGranahan, N., Furness, A.J., Rosenthal, R., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351 : 1463−1469. DOI: 10.1126/science.aaf1490.

    View in Article CrossRef Google Scholar

    [46] Davoli, T., Uno, H., Wooten, E.C., et al. (2017). Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355 : eaaf8399. DOI: 10.1126/science.aaf8399.

    View in Article CrossRef Google Scholar

    [47] Lu, X., Meng, J., Zhou, Y., et al. (2020). MOVICS: An R package for multi-omics integration and visualization in cancer subtyping. Bioinformatics 36 : 5539−5541. DOI: 10.1093/bioinformatics/btaa1018.

    View in Article CrossRef Google Scholar

    [48] Jessen, C., Kreß, J.K.C., Baluapuri, A., et al. (2020). The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene 39 : 6841−6855. DOI: 10.1038/s41388-020-01477-8.

    View in Article CrossRef Google Scholar

    [49] Sun, X., Wang, Y., Ji, K., et al. (2020). NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res. 48 : 9109−9123. DOI: 10.1093/nar/gkaa631.

    View in Article CrossRef Google Scholar

    [50] Kim, D.W., Talati, C., and Kim, R. (2016). Hepatocellular carcinoma (HCC): Beyond sorafenib-chemotherapy. J. Gastrointest. Oncol. 8 : 256−265. DOI: 10.21037/jgo.2016.09.07.

    View in Article CrossRef Google Scholar

    [51] Ubhi, T., and Brown, G.W. (2019). Exploiting DNA replication stress for cancer treatment. Cancer Res. 79 : 1730−1739. DOI: 10.1158/0008-5472.can-18-3631.

    View in Article CrossRef Google Scholar

    [52] Lee, J.H., and Berger, J.M. (2019). Cell cycle-dependent control and roles of DNA topoisomerase II. Genes (Basel) 10 : 859. DOI: 10.3390/genes10110859.

    View in Article CrossRef Google Scholar

    [53] Panvichian, R., Tantiwetrueangdet, A., Angkathunyakul, N., et al. (2015). TOP2A amplification and overexpression in hepatocellular carcinoma tissues. Biomed. Res. Int. 2015 : 381602. DOI: 10.1155/2015/381602.

    View in Article CrossRef Google Scholar

    [54] Fedoriw, A., Rajapurkar, S.R., O'Brien, S., et al. (2019). Anti-tumor activity of the type I PRMT inhibitor, GSK3368715, synergizes with PRMT5 inhibition through MTAP loss. Cancer Cell 36 : 100−114.e125. DOI: 10.1016/j.ccell.2019.05.014.

    View in Article CrossRef Google Scholar

    [55] Zhang, X.P., Jiang, Y.B., Zhong, C.Q., et al. (2018). PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 signalling pathway. Cell Physiol. Biochem. 47 : 1643−1654. DOI: 10.1159/000490983.

    View in Article CrossRef Google Scholar

    [56] Wei, H., Liu, Y., Min, J., et al. (2019). Protein arginine methyltransferase 1 promotes epithelial-mesenchymal transition via TGF-beta1/Smad pathway in hepatic carcinoma cells. Neoplasma 66 : 918−929. DOI: 10.4149/neo_2018_181226N999.

    View in Article CrossRef Google Scholar

    [57] Zhao, J., Adams, A., Roberts, B., et al. (2018). Protein arginine methyl transferase 1- and Jumonji C domain-containing protein 6-dependent arginine methylation regulate hepatocyte nuclear factor 4 alpha expression and hepatocyte proliferation in mice. Hepatology 67 : 1109−1126. DOI: 10.1002/hep.29587.

    View in Article CrossRef Google Scholar

    [58] Wang, J., Wang, C., Xu, P., et al. (2021). PRMT1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Theranostics 11 : 5387−5403. DOI: 10.7150/thno.42345.

    View in Article CrossRef Google Scholar

    [59] Giuliani, V., Miller, M.A., Liu, C.-Y., et al. (2021). PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma. Nat. Commun. 12 : 4626. DOI: 10.1038/s41467-021-24798-y.

    View in Article CrossRef Google Scholar

    [60] Schittek, B., and Sinnberg, T. (2014). Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol. Cancer 13 : 231. DOI: 10.1186/1476-4598-13-231.

    View in Article CrossRef Google Scholar

    [61] Rosenberg, L.H., Lafitte, M., Quereda, V., et al. (2015). Therapeutic targeting of casein kinase 1δ in breast cancer. Sci. Transl. Med. 7 : 318ra202. DOI: 10.1126/scitranslmed.aac8773.

    View in Article CrossRef Google Scholar

    [62] Uchida, T., Takamiya, M., Takahashi, M., et al. (2003). Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10 : 15−24. DOI: 10.1016/s1074-5521(02)00310-1.

    View in Article CrossRef Google Scholar

    [63] Young, S., Craig, P., and Golzarian, J. (2019). Current trends in the treatment of hepatocellular carcinoma with transarterial embolization: a cross-sectional survey of techniques. Eur. Radiol. 29 : 3287−3295. DOI: 10.1007/s00330-018-5782-7.

    View in Article CrossRef Google Scholar

    [64] Shimose, S., Iwamoto, H., Tanaka, M., et al. (2020). Increased arterio-portal shunt formation after drug-eluting beads TACE for hepatocellular carcinoma. Oncology 98 : 558−565. DOI: 10.1159/000507262.

    View in Article CrossRef Google Scholar

    [65] Abou-Alfa, G.K., Shi, Q., Knox, J.J., et al. (2019). Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in patients with advanced hepatocellular carcinoma: Phase 3 CALGB 80802 randomized clinical trial. JAMA Oncol. 5 : 1582−1588. DOI: 10.1001/jamaoncol.2019.2792.

    View in Article CrossRef Google Scholar

    [66] Emanuel, S., Rugg, C.A., Gruninger, R.H., et al. (2005). The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res. 65 : 9038−9046. DOI: 10.1158/0008-5472.CAN-05-0882.

    View in Article CrossRef Google Scholar

    [67] Matsuhashi, A., Ohno, T., Kimura, M., et al. (2012). Growth suppression and mitotic defect induced by JNJ-7706621, an inhibitor of cyclin-dependent kinases and aurora kinases. Curr. Cancer Drug Targets 12 : 625−639. DOI: 10.2174/156800912801784839.

    View in Article CrossRef Google Scholar

    [68] Brasca, M.G., Albanese, C., Alzani, R., et al. (2010). Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing. Bioorg. Med. Chem. 18 : 1844−1853. DOI: 10.1016/j.bmc.2010.01.042.

    View in Article CrossRef Google Scholar

    [69] Ehrlich, S.M., Liebl, J., Ardelt, M.A., et al. (2015). Targeting cyclin dependent kinase 5 in hepatocellular carcinoma--A novel therapeutic approach. J. Hepatol. 63 :102-113. DOI: 10.1016/j.jhep.2015.01.031.

    View in Article Google Scholar

    [70] Le Tourneau, C., Faivre, S., Laurence, V., et al. (2010). Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur. J. Cancer 46 : 3243−3250. DOI: 10.1016/j.ejca.2010.08.001.

    View in Article CrossRef Google Scholar

    [71] Chan, H.L.-Y., Tse, C.-H., Mo, F., et al. (2008). High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J. Clin. Oncol. 26 : 177−182. DOI: 10.1200/jco.2007.13.2043.

    View in Article CrossRef Google Scholar

    [72] Yu, S.J., and Kim, Y.J. (2014). Hepatitis B viral load affects prognosis of hepatocellular carcinoma. World J. Gastroenterol. 20 : 12039−12044. DOI: 10.3748/wjg.v20.i34.12039.

    View in Article CrossRef Google Scholar

    [73] Péneau, C., Imbeaud, S., Bella, T.L., et al. (2022). Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 71 : 616−626. DOI: 10.1136/gutjnl-2020-323153.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Lu X., Meng J., Wang H., et al., (2023). DNA replication stress stratifies prognosis and enables exploitable therapeutic vulnerabilities of HBV-associated hepatocellular carcinoma: An in-silico precision oncology strategy. The Innovation Medicine 1(1), 100014. https://doi.org/10.59717/j.xinn-med.2023.100014
    Lu X., Meng J., Wang H., et al., (2023). DNA replication stress stratifies prognosis and enables exploitable therapeutic vulnerabilities of HBV-associated hepatocellular carcinoma: An in-silico precision oncology strategy. The Innovation Medicine 1(1), 100014. https://doi.org/10.59717/j.xinn-med.2023.100014

Figures(6)    

Supplementary Information

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(3012) PDF downloads(310) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint