[1] | Deng, C., Li, X., and Dai, J. (2023). Challenges for translating implantable brain-computer interface to medical device. Innovat. Med. 1(3): 100040. https://doi.org/10.59717/j.xinn-med.2023.100040. |
[2] | Shan, L., Huang, H., Zhang, Z., et al. (2022). Mapping the emergence of visual consciousness in the human brain via brain-wide intracranial electrophysiology. Innovation 3(3): 100243. https://doi.org/10.1016/j.xinn.2022.100243. |
[3] | Willett, F.R., Avansino, D.T., Hochberg, L.R., et al. (2021). High-performance brain-to-text communication via handwriting. Nature 593(7858): 249–254. https://doi.org/10.1038/s41586-021-03506-2. |
[4] | Huang, T., Xu, H., Wang, H., et al. (2023). Artificial intelligence for medicine: Progress, challenges, and perspectives. Innovat. Med. 1(2): 100030. https://doi.org/10.59717/j.xinn-med.2023.100030. |
[5] | Xu, Y., Liu, X., Cao, X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. Innovation 2(4): 100179. https://doi.org/10.1016/j.xinn.2021.100179. |
Zhang Z. and Dai J. (2024). Fully implantable wireless brain-computer interface for humans: Advancing toward the future. The Innovation 5(3), 100595. https://doi.org/10.1016/j.xinn.2024.100595 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
The illustration of Neuralink N1 and Neural Electronic Opportunity (NEO)