[1] | Deng, C., Li, X., and Dai, J. (2023). Challenges for translating implantable brain-computer interface to medical device. Innovat. Med. 1(3): 100040. https://doi.org/10.59717/j.xinn-med.2023.100040. |
[2] | Shan, L., Huang, H., Zhang, Z., et al. (2022). Mapping the emergence of visual consciousness in the human brain via brain-wide intracranial electrophysiology. Innovation 3(3): 100243. https://doi.org/10.1016/j.xinn.2022.100243. |
[3] | Willett, F.R., Avansino, D.T., Hochberg, L.R., et al. (2021). High-performance brain-to-text communication via handwriting. Nature 593(7858): 249–254. https://doi.org/10.1038/s41586-021-03506-2. |
[4] | Huang, T., Xu, H., Wang, H., et al. (2023). Artificial intelligence for medicine: Progress, challenges, and perspectives. Innovat. Med. 1(2): 100030. https://doi.org/10.59717/j.xinn-med.2023.100030. |
[5] | Xu, Y., Liu, X., Cao, X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. Innovation 2(4): 100179. https://doi.org/10.1016/j.xinn.2021.100179. |
Zhang Z. and Dai J. (2024). Fully implantable wireless brain-computer interface for humans: Advancing toward the future. The Innovation 5(3), 100595. https://doi.org/10.1016/j.xinn.2024.100595 |
The illustration of Neuralink N1 and Neural Electronic Opportunity (NEO)