[1] | Zu, C., and Li, H. (2013). Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4(8): 2614. DOI: 10.1039/C0EE00777C. |
[2] | Wu, J., Li, H.,Yang, Q., et al. (2016). Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based separator for Li-ion batteries. Chin Phys B 25( 7 ) :078204. DOI: 10.1088/1674-1056/25/7/078204. |
[3] | Yang, Q., Yu, X., Li, H., et al. (2018). Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high voltage lithium ion batteries and lithium polymer batteries. J Power Sources 388: 65−70. DOI: 10.1016/j.jpowsour.2018.03.076. |
[4] | Luo, F., Li, H., Chen, L., et al. (2015). Review—Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J Electrochem Soc 162(14): A2509−A2528. DOI: 10.1149/2.0131514jes. |
[5] | Li, Q., Yang, Y., Yu, X., et al. (2023). A 700Wh·kg−1 rechargeable pouch type lithium battery. Chin Phys Lett 40(4): 048201. DOI: 10.1088/0256-307X/40/4/048201. |
Li Q., Yu X., Li H., et al., (2024). The road towards high-energy-density batteries. The Innovation Energy 1(1): 100005. https://doi.org/10.59717/j.xinn-energy.2024.100005 |
The road towards high energy density batteries