LETTER   Open Access     Cite

Revisiting interfacial evaporation in the context of solar desalination

More Information
  • Corresponding author: yanjie.zheng@princeton.edu
  • 加载中
  • [1] Hazra, S.K., Saleque, A.M., Thakur, A.K., et al. (2024). Recent advancement in solar-driven interfacial steam generation for desalination: A state-of-the-art review. Energy Technol. 2301190. DOI: 10.1002/ente.202301190.

    View in Article Google Scholar

    [2] Gu, X., Dong, K., Peng, L., et al. (2023). Round-the-clock interfacial solar vapor generator enabled by form-stable phase change materials with enhanced photothermal conversion capacity. Energy Convers. Manag. 277: 116634. DOI: 10.1016/j.enconman.2022.116634.

    View in Article CrossRef Google Scholar

    [3] Zheng, Y., Gonzalez, R.A.C., Hatzell, K.B., et al. (2021). Large-scale solar-thermal desalination. Joule 5: 1971−1986. DOI: 10.1016/j.joule.2021.07.005.

    View in Article CrossRef Google Scholar

    [4] Askari, I.B., and Ameri, M. (2021). A techno-economic review of multi effect desalination systems integrated with different solar thermal sources. Appl. Therm. Eng. 185: 116323. DOI: 10.1016/j.applthermaleng.2020.116323.

    View in Article CrossRef Google Scholar

    [5] Zheng, Y., Cáceres González, R.A., Hatzell, M.C., et al. (2023). Challenges and roadmap for solar-thermal desalination. ACS ES&T Eng. 3: 1055−1082. DOI: 10.1021/acsestengg.3c00148.

    View in Article CrossRef Google Scholar

    [6] Elsheikh, A.H., Sharshir, S.W., Ali, M.K.A., et al. (2019). Thin film technology for solar steam generation: A new dawn. Sol. Energy 177: 561−575. DOI: 10.1016/j.solener.2018.11.058.

    View in Article CrossRef Google Scholar

    [7] Wang, L., Ma, X., Zhao, Y., et al. (2022). Performance study of a passive vertical multiple-effect diffusion solar still directly heated by parabolic concentrator. Renew. Energy 182: 855−866. DOI: 10.1016/j.renene.2021.09.074.

    View in Article CrossRef Google Scholar

    [8] Wang, J., Kong, Y., Liu, Z., et al. (2023). Solar-driven interfacial evaporation: Design and application progress of structural evaporators and functional distillers. Nano Energy 108: 108115. DOI: 10.1016/j.nanoen.2022.108115.

    View in Article CrossRef Google Scholar

    [9] Zhu, L., Sun, L., Zhang, H., et al. (2021). A solution to break the salt barrier for high-rate sustainable solar desalination. Energy & Environ. Sci. 14: 2451−2459. DOI: 10.1039/D1EE00113B.

    View in Article CrossRef Google Scholar

    [10] Kim, P., Weaver, S., and Labbé, N. (2016). Effect of sweeping gas flow rates on temperature-controlled multistage condensation of pyrolysis vapors in an auger intermediate pyrolysis system. J. Anal. Appl. Pyrolysis 118: 325−334. DOI: 10.1016/j.jaap.2016.02.017.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Zheng Y (2024). Revisiting interfacial evaporation in the context of solar desalination. The Innovation Energy 1(3): 100033. https://doi.org/10.59717/j.xinn-energy.2024.100033
    Zheng Y (2024). Revisiting interfacial evaporation in the context of solar desalination. The Innovation Energy 1(3): 100033. https://doi.org/10.59717/j.xinn-energy.2024.100033

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(1)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1827) PDF downloads(1047) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint