[1] | Wang, G., Tang, Z., Gao, Y., et al. (2023). Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 123: 6953−7024. DOI: 10.1021/acs.chemrev.2c00572. |
[2] | Chen, S., Chen, Z., Hu, Z., et al. (2023). Soft-hard complex microsphere strategy to construct high-temperature form-stable phase change material for melt-spun temperature-regulating fibers. Chem. Eng. J. 476: 146833. DOI: 10.1016/j.cej.2023.146833. |
[3] | Kong, W., Yang, Y., Yuan, A., et al. (2021). Processable and recyclable crosslinking solid-solid phase change materials based on dynamic disulfide covalent adaptable networks for thermal energy storage. Energy 232: 121070. DOI: 10.1016/j.energy.2021.121070. |
[4] | Wu, Y., Chen, M., Zhao, G., et al. (2024). Recyclable solid–solid phase change materials with superior latent heat via reversible anhydride-alcohol crosslinking for efficient thermal storage. Adv. Mater. 36: 2311717. DOI: 10.1002/adma.202311717. |
[5] | Wu, S., Li, T., Zhang, Z., et al. (2021). Photoswitchable phase change materials for unconventional thermal energy storage and upgrade. Matter 4: 3385−3399. DOI: 10.1016/j.matt.2021.09.017. |
Chen K., Ge C., and Chen X. (2024). Ultrahigh-enthalpy solid-solid phase change materials. The Innovation Energy 1(3): 100036. https://doi.org/10.59717/j.xinn-energy.2024.100036 |
Recyclable SSPCMs for efficient thermal energy storage