[1] | Ministry of Natural Resources, PRC. (2023). China mineral resources (2023) (Geological Publishing House). https://file.vogel.com.cn/124/upload/resources/file/434504.pdf. |
[2] | Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., et al. (2013). Impact of shale gas development on regional water quality. Science 340: 1235009. DOI: 10.1126/science.1235009. |
[3] | Wang, X., Meng, S., Ostadhassan, M., et al. (2024). Detecting shale oil hidden in nanopores using a novel electron microscopy method. The Innovation 1: 100011. DOI: 10.59717/j.xinn-energy.2024.100011. |
[4] | Vengosh, A., Jackson, R.B., Warner, N., et al. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48: 8334−8348. DOI: 10.1021/es405118y. |
[5] | Zhang, N., Chen, Z., Luo, Z., et al. (2023). Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology. Energy 265: 126136. DOI: 10.1016/j.energy.2022.126136. |
Zhang N., Zhao L., Jiang L., et al., (2024). Innovative temperature-sensitive phase-transition fracturing: Boosting unconventional resource development. The Innovation Energy 1(3): 100039. https://doi.org/10.59717/j.xinn-energy.2024.100039 |
Comparison between SPF and conventional fracturing technology.