REVIEW   Open Access     Cite

Innovations in stack design and optimization strategies for redox flow batteries in large-scale energy storage

    Show all affliationsShow less
More Information
    1. Frontier technologies for key components of redox flow battery stacks are summarized.

      Stack integration systems for redox flow battery are overviewed.

      Innovative design and optimization on key components are highlighted.

      Challenges and prospects for the design of large-scale energy storage in flow batteries are presented.

  • Redox flow batteries are promising electrochemical systems for energy storage owing to their inherent safety, long cycle life, and the distinct scalability of power and capacity. This review focuses on the stack design and optimization, providing a detailed analysis of critical components design and the stack integration. The scope of the review includes electrolytes, flow fields, electrodes, and membranes, along with the uniformity issues, thermal management, and system integration. This review aims to bridge the gap between academic research and commercial application, promoting redox flow batteries as a more reliable system for large-scale, long-term energy storage applications.
  • 加载中
  • [1] Agency, I.E. (2022). World energy outlook 2022.

    View in Article Google Scholar

    [2] Wang, X.T., Gu, Z.Y., Ang, E.H., et al. (2022). Prospects for managing end-of-life lithium-ion batteries: Present and future. Interd. Mater. 1: 417−433. DOI: 10.1002/idm2.12041.

    View in Article CrossRef Google Scholar

    [3] Gu, Z.Y., Wang, X.T., Heng, Y.L., et al. (2023). Prospects and perspectives on advanced materials for sodium-ion batteries. Sci. Bull. (Beijing) 68: 2302−2306. DOI: 10.1016/j.scib.2023.08.038.

    View in Article CrossRef Google Scholar

    [4] Xie, D., Sang, Y., Wang, D.H., et al. (2023). Znf(2) -riched inorganic/organic hybrid sei: In situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 62: e202216934. DOI: 10.1002/anie.202216934.

    View in Article CrossRef Google Scholar

    [5] Ke, X., Prahl, J.M., Alexander, J.I.D., et al. (2018). Rechargeable redox flow batteries: Flow fields, stacks and design considerations. Chem. Soc. Rev. 47: 8721−8743. DOI: 10.1039/c8cs00072g.

    View in Article CrossRef Google Scholar

    [6] Chalamala, B.R., Soundappan, T., Fisher, G.R., et al. (2014). Redox flow batteries: An engineering perspective. Proc. IEEE 102: 976−999. DOI: 10.1109/jproc.2014.2320317.

    View in Article CrossRef Google Scholar

    [7] Soloveichik, G.L. (2015). Flow batteries: Current status and trends. Chem. Rev. 115: 11533−11558. DOI: 10.1021/cr500720t.

    View in Article CrossRef Google Scholar

    [8] Reber, D., Jarvis, S.R., and Marshak, M.P. (2023). Beyond energy density: Flow battery design driven by safety and location. Energy Adv. 2: 1357−1365. DOI: 10.1039/d3ya00208j.

    View in Article CrossRef Google Scholar

    [9] Skyllas-Kazacos, M., Rychcik, M., Robins, R.G., et al. (1986). New all-vanadium redox flow cell. J. Electrochem. Soc. 133: 1057−1058. DOI: 10.1149/1.2108706.

    View in Article CrossRef Google Scholar

    [10] Zeng, Y.K., Zhao, T.S., An, L., et al. (2015). A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 300: 438−443. DOI: 10.1016/j.jpowsour.2015.09.100.

    View in Article CrossRef Google Scholar

    [11] Zhang, H., Tan, Y., Li, J., et al. (2017). Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting fe/cr redox flow battery performance. Electrochim. Acta 248: 603−613. DOI: 10.1016/j.electacta.2017.08.016.

    View in Article CrossRef Google Scholar

    [12] Xiang, H.X., Tan, A.D., Piao, J.H., et al. (2019). Efficient nitrogen-doped carbon for zinc-bromine flow battery. Small 15: e1901848. DOI: 10.1002/smll.201901848.

    View in Article CrossRef Google Scholar

    [13] Huskinson, B., Marshak, M.P., Suh, C., et al. (2014). A metal-free organic-inorganic aqueous flow battery. Nature 505: 195−198. DOI: 10.1038/nature12909.

    View in Article CrossRef Google Scholar

    [14] Arribas, B.N., Melício, R., Teixeira, J.C., et al. (2016). Vanadium redox flow battery storage system linked to the electric grid. Renew. Ener. Pow. Qual. J. 14: 1025−1036. DOI: 10.24084/repqj14.561.

    View in Article CrossRef Google Scholar

    [15] Wang, H., Pourmousavi, S.A., Soong, W.L., et al. (2023). Battery and energy management system for vanadium redox flow battery: A critical review and recommendations. J. Energy Storage 58: 106384. DOI: 10.1016/j.est.2022.106384.

    View in Article CrossRef Google Scholar

    [16] Gundlapalli, R., Kumar, S., and Jayanti, S. (2018). Stack design considerations for vanadium redox flow battery. INAE Lett. 3: 149−157. DOI: 10.1007/s41403-018-0044-1.

    View in Article CrossRef Google Scholar

    [17] Satola, B. (2021). Review—bipolar plates for the vanadium redox flow battery. J. Electrochem Soc. 168: 060503. DOI: 10.1149/1945-7111/ac0177.

    View in Article CrossRef Google Scholar

    [18] Trovò, A., Rugna, M., Poli, N., et al. (2023). Prospects for industrial vanadium flow batteries. Ceram. Int. 49: 24487−24498. DOI: 10.1016/j.ceramint.2023.01.165.

    View in Article CrossRef Google Scholar

    [19] Wu, X., Yuan, X., Wang, Z., et al. (2016). Electrochemical performance of 5 kw all-vanadium redox flow battery stack with a flow frame of multi-distribution channels. J. Solid State Electr. 21: 429−435. DOI: 10.1007/s10008-016-3361-x.

    View in Article CrossRef Google Scholar

    [20] Delgado, N.M., Monteiro, R., Cruz, J., et al. (2022). Shunt currents in vanadium redox flow batteries – a parametric and optimization study. Electrochim. Acta 403: 139667. DOI: 10.1016/j.electacta.2021.139667.

    View in Article CrossRef Google Scholar

    [21] Yan, R. and Wang, Q. (2018). Redox-targeting-based flow batteries for large-scale energy storage. Adv. Mater. 30. DOI: 10.1002/adma.201802406.

    View in Article Google Scholar

    [22] Zhao, Y., Ding, Y., Li, Y., et al. (2015). A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Che. Soc. Rev. 44: 7968−7996. DOI: 10.1039/c5cs00289c.

    View in Article CrossRef Google Scholar

    [23] Li, W. and Jin, S. (2020). Design principles and developments of integrated solar flow batteries. Acc. Chem. Res. 53: 2611−2621. DOI: 10.1021/acs.accounts.0c00373.

    View in Article CrossRef Google Scholar

    [24] Duduta, M., Ho, B., Wood, V.C., et al. (2011). Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1: 511−516. DOI: 10.1002/aenm.201100152.

    View in Article CrossRef Google Scholar

    [25] Braff, W.A., Bazant, M.Z., and Buie, C.R. (2013). Membrane-less hydrogen bromine flow battery. Nat. Commun. 4: 2346. DOI: 10.1038/ncomms3346.

    View in Article CrossRef Google Scholar

    [26] Li, G., Chen, W., Zhang, H., et al. (2020). Membrane-free zn/mno2 flow battery for large-scale energy storage. Adv. Energy Mater. 10: 201902085. DOI: 10.1002/aenm.201902085.

    View in Article CrossRef Google Scholar

    [27] Hou, S., Chen, L., Fan, X., et al. (2022). High-energy and low-cost membrane-free chlorine flow battery. Nat. Commun. 13: 1281. DOI: 10.1038/s41467-022-28880-x.

    View in Article CrossRef Google Scholar

    [28] Wang, X., Lashgari, A., Chai, J., et al. (2022). A membrane-free, aqueous/nonaqueous hybrid redox flow battery. Energy Storage Mater. 45: 1100−1108. DOI: 10.1016/j.ensm.2021.11.008.

    View in Article CrossRef Google Scholar

    [29] Gautam, R.K., Wang, X., Lashgari, A., et al. (2023). Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries. Nat. Commun. 14: 4753. DOI: 10.1038/s41467-023-40374-y.

    View in Article CrossRef Google Scholar

    [30] Grosse Austing, J., Nunes Kirchner, C., Hammer, E.-M., et al. (2015). Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode. J. Power Sources 273: 1163−1170. DOI: 10.1016/j.jpowsour.2014.09.177.

    View in Article CrossRef Google Scholar

    [31] Noack, J., Cognard, G., Oral, M., et al. (2016). Study of the long-term operation of a vanadium/oxygen fuel cell. J. Power Sources 326: 137−145. DOI: 10.1016/j.jpowsour.2016.06.121.

    View in Article CrossRef Google Scholar

    [32] Wang, K., Pei, P., Ma, Z., et al. (2014). Morphology control of zinc regeneration for zinc–air fuel cell and battery. J. Power Sources 271: 65−75. DOI: 10.1016/j.jpowsour.2014.07.182.

    View in Article CrossRef Google Scholar

    [33] Wang, K., Liu, X., Pei, P., et al. (2018). Guiding bubble motion of rechargeable zinc-air battery with electromagnetic force. Chem. Eng. J. 352: 182−187. DOI: 10.1016/j.cej.2018.07.020.

    View in Article CrossRef Google Scholar

    [34] Chen, D., Pan, L., Pei, P., et al. (2021). Carbon-coated oxygen vacancies-rich co3o4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy 224: 120142. DOI: 10.1016/j.energy.2021.120142.

    View in Article CrossRef Google Scholar

    [35] Tan, P., Kong, W., Shao, Z., et al. (2017). Advances in modeling and simulation of li–air batteries. Prog. Energ. Combust. 62: 155−189. DOI: 10.1016/j.pecs.2017.06.001.

    View in Article CrossRef Google Scholar

    [36] Ren, Y.X., Zhao, T.S., Tan, P., et al. (2017). Modeling of an aprotic li-o2 battery incorporating multiple-step reactions. Appl. Energ. 187: 706−716. DOI: 10.1016/j.apenergy.2016.11.108.

    View in Article CrossRef Google Scholar

    [37] Kim, B., Takechi, K., Ma, S., et al. (2017). Non-aqueous primary li-air flow battery and optimization of its cathode through experiment and modeling. Chem. Sus Chem. 10: 4198−4206. DOI: 10.1002/cssc.201701255.

    View in Article CrossRef Google Scholar

    [38] Yu, W., Shang, W., Tan, P., et al. (2019). Toward a new generation of low cost, efficient, and durable metal–air flow batteries. J. Mater. Chem. A 7: 26744−26768. DOI: 10.1039/C9TA10658H.

    View in Article CrossRef Google Scholar

    [39] Pan, L., Chen, D., Pei, P., et al. (2021). A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energ. 290: 116777. DOI: 10.1016/j.apenergy.2021.116777.

    View in Article CrossRef Google Scholar

    [40] Zhao, S., Liu, T., Zuo, Y., et al. (2023). High-power-density and high-energy-efficiency zinc-air flow battery system for long-duration energy storage. Chem. Eng. J. 470: 144091. DOI: 10.1016/j.cej.2023.144091.

    View in Article CrossRef Google Scholar

    [41] Gao, L., Gao, X., Jiang, P., et al. (2022). Atomically dispersed iron with densely exposed active sites as bifunctional oxygen catalysts for zinc-air flow batteries. Small 18: e2105892. DOI: 10.1002/smll.202105892.

    View in Article CrossRef Google Scholar

    [42] Cheng, Y., Guo, Y., Zhang, N., et al. (2019). In situ growing catalytic sites on 3d carbon fiber paper as self-standing bifunctional air electrodes for air-based flow batteries. Nano Energy 63: 103897. DOI: 10.1016/j.nanoen.2019.103897.

    View in Article CrossRef Google Scholar

    [43] Huang, S., Zhang, H., Zhuang, J., et al. (2022). Redox-mediated two-electron oxygen reduction reaction with ultrafast kinetics for zn-air flow battery. Adv. Energy Mater. 12: 202103622. DOI: 10.1002/aenm.202103622.

    View in Article CrossRef Google Scholar

    [44] Huang, S., Yuan, Z., Salla, M., et al. (2023). A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energ. Environ. Sci. 16: 438−445. DOI: 10.1039/D2EE02402K.

    View in Article CrossRef Google Scholar

    [45] Gao, M., Song, Y., Zou, X., et al. (2023). A redox-mediated iron-air fuel cell for sustainable and scalable power generation. Adv. Energy Mater. 13: 202301868. DOI: 10.1002/aenm.202301868.

    View in Article CrossRef Google Scholar

    [46] Zhou, Y., Zhang, S., Ding, Y., et al. (2018). Efficient solar energy harvesting and storage through a robust photocatalyst driving reversible redox reactions. Adv. Mater. 30: 201802294. DOI: 10.1002/adma.201802294.

    View in Article CrossRef Google Scholar

    [47] Li, W., Zheng, J., Hu, B., et al. (2020). High-performance solar flow battery powered by a perovskite/silicon tandem solar cell. Nat. Mater. 19: 1326−1331. DOI: 10.1038/s41563-020-0720-x.

    View in Article CrossRef Google Scholar

    [48] Hnedkovsky, L., Wood, R.H., and Balashov, V.N. (2005). Electrical conductances of aqueous na2so4, h2so4, and their mixtures: Limiting equivalent ion conductances, dissociation constants, and speciation to 673 k and 28 mpa. J. Phys. Chem. B 109: 9034−9046. DOI: 10.1021/jp045707c.

    View in Article CrossRef Google Scholar

    [49] Zhang, L., Feng, R., Wang, W., et al. (2022). Emerging chemistries and molecular designs for flow batteries. Nat. Rev. Chem. 6: 524−543. DOI: 10.1038/s41570-022-00394-6.

    View in Article CrossRef Google Scholar

    [50] Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104: 4303−4417. DOI: 10.1021/cr030203g.

    View in Article CrossRef Google Scholar

    [51] Li, Z., Lin, Y., Wan, L., et al. (2019). Stable positive electrolyte containing high-concentration fe2(so4)3 for vanadium flow battery at 50 °c. Electrochim. Acta 309: 148−156. DOI: 10.1016/j.electacta.2019.04.069.

    View in Article CrossRef Google Scholar

    [52] Jia, Z., Wang, B., Song, S., et al. (2012). Effect of polyhydroxy-alcohol on the electrochemical behavior of the positive electrolyte for vanadium redox flow batteries. J. Electrochem. Soc. 159: A843−A847. DOI: 10.1149/2.091206jes.

    View in Article CrossRef Google Scholar

    [53] Ye, Y., Wu, M., Nan, M., et al. (2024). The influence of inorganic salt additives in the electrolyte on iron–chromium flow batteries at room temperature. ACS Appl. Energy Mater. 7: 4200−4206. DOI: 10.1021/acsaem.4c00542.

    View in Article CrossRef Google Scholar

    [54] Wu, M., Nan, M., Ye, Y., et al. (2024). A highly active electrolyte for high-capacity iron-chromium flow batteries. Appl. Energ. 358: 122534. DOI: 10.1016/j.apenergy.2023.122534.

    View in Article CrossRef Google Scholar

    [55] Aaron, D.S., Liu, Q., Tang, Z., et al. (2012). Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 206: 450−453. DOI: 10.1016/j.jpowsour.2011.12.026.

    View in Article CrossRef Google Scholar

    [56] Suo, L., Borodin, O., Gao, T., et al. (2015). "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350: 938−943. DOI: 10.1126/science.aab1595.

    View in Article CrossRef Google Scholar

    [57] Shin, S.-H., Yun, S.-H., and Moon, S.-H. (2013). A review of current developments in non-aqueous redox flow batteries: Characterization of their membranes for design perspective. RSC Adv. 3: 9095−9116. DOI: 10.1039/c3ra00115f.

    View in Article CrossRef Google Scholar

    [58] Leung, P., Shah, A.A., Sanz, L., et al. (2017). Recent developments in organic redox flow batteries: A critical review. J. Power Sources 360: 243−283. DOI: 10.1016/j.jpowsour.2017.05.057.

    View in Article CrossRef Google Scholar

    [59] Zhao, Y., Wang, L., and Byon, H.R. (2013). High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4: 1896. DOI: 10.1038/ncomms2907.

    View in Article CrossRef Google Scholar

    [60] Chen, H. and Lu, Y.C. (2016). A high-energy-density multiple redox semi-solid-liquid flow battery. Adv. Energy Mater. 6: 201502183. DOI: 10.1002/aenm.201502183.

    View in Article CrossRef Google Scholar

    [61] Xie, C., Duan, Y., Xu, W., et al. (2017). A low-cost neutral zinc–iron flow battery with high energy density for stationary energy storage. Angew. Chem. Int. Ed. Engl. 56: 14953−14957. DOI: 10.1002/anie.201708664.

    View in Article CrossRef Google Scholar

    [62] Xie, C., Li, T., Deng, C., et al. (2020). A highly reversible neutral zinc/manganese battery for stationary energy storage. Energ. Environ. Sci. 13: 135−143. DOI: 10.1039/c9ee03702k.

    View in Article CrossRef Google Scholar

    [63] Zhang, C., Zhang, L., Ding, Y., et al. (2018). Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 15: 324−350. DOI: 10.1016/j.ensm.2018.06.008.

    View in Article CrossRef Google Scholar

    [64] Wei, X.L., Xu, W., Vijayakumar, M., et al. (2014). Tempo-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26: 7649−7653. DOI: 10.1002/adma.201403746.

    View in Article CrossRef Google Scholar

    [65] Liu, T., Wei, X., Nie, Z., et al. (2015). A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-ho-tempo catholyte. Adv. Energy Mater. 6: 201501449. DOI: 10.1002/aenm.201501449.

    View in Article CrossRef Google Scholar

    [66] Janoschka, T., Martin, N., Martin, U., et al. (2015). An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527: 78−81. DOI: 10.1038/nature15746.

    View in Article CrossRef Google Scholar

    [67] Liu, B., Tang, C.W., Jiang, H., et al. (2021). Carboxyl-functionalized tempo catholyte enabling high-cycling-stability and high-energy-density aqueous organic redox flow batteries. ACS Sustain. Chem. Eng. 9: 6258−6265. DOI: 10.1021/acssuschemeng.0c08946.

    View in Article CrossRef Google Scholar

    [68] DeBruler, C., Hu, B., Moss, J., et al. (2017). Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 3: 961−978. DOI: 10.1016/j.chempr.2017.11.001.

    View in Article CrossRef Google Scholar

    [69] Luo, J., Hu, B., Debruler, C., et al. (2017). A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries. Angew. Chem. Int. Ed. Engl. 57: 231−235. DOI: 10.1002/anie.201710517.

    View in Article CrossRef Google Scholar

    [70] Liu, B., Tang, C.W., Jiang, H., et al. (2020). An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte. J. Power Sources 477: 228985. DOI: 10.1016/j.jpowsour.2020.228985.

    View in Article CrossRef Google Scholar

    [71] Huskinson, B., Marshak, M.P., Suh, C., et al. (2014). A metal-free organic–inorganic aqueous flow battery. Nature 505: 195−198. DOI: 10.1038/nature12909.

    View in Article CrossRef Google Scholar

    [72] Ding, Y. and Yu, G. (2016). A bio-inspired, heavy-metal-free, dual-electrolyte liquid battery towards sustainable energy storage. Angew. Chem. Int. Ed. Engl. 55: 4772−4776. DOI: 10.1002/anie.201600705.

    View in Article CrossRef Google Scholar

    [73] Wei, X., Xu, W., Vijayakumar, M., et al. (2014). Tempo-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26: 7649−7653. DOI: 10.1002/adma.201403746.

    View in Article CrossRef Google Scholar

    [74] Hu, B., DeBruler, C., Rhodes, Z., et al. (2017). Long-cycling aqueous organic redox flow battery (aorfb) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139: 1207−1214. DOI: 10.1021/jacs.6b10984.

    View in Article CrossRef Google Scholar

    [75] Sigel, H. and R, B.M. (1982). Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82: 385−426. DOI: 10.1021/cr00050a003‚.

    View in Article CrossRef Google Scholar

    [76] Häupler, B., Wild, A., and Schubert, U.S. (2015). Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 5: 201402034. DOI: 10.1002/aenm.201402034.

    View in Article CrossRef Google Scholar

    [77] Liang, Y., Tao, Z., and Chen, J. (2012). Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2: 742−769. DOI: 10.1002/aenm.201100795.

    View in Article CrossRef Google Scholar

    [78] Lin, K., Gómez-Bombarelli, R., Beh, E.S., et al. (2016). A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 1: 16102. DOI: 10.1038/nenergy.2016.102.

    View in Article CrossRef Google Scholar

    [79] Pang, S., Wang, X., Wang, P., et al. (2021). Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral ph. Angew. Chem. Int. Ed. Engl. 60: 5289−5298. DOI: 10.1002/anie.202014610.

    View in Article CrossRef Google Scholar

    [80] Li, L., Su, Y., Ji, Y., et al. (2023). A long-lived water-soluble phenazine radical cation. J. Am. Chem. Soc. 145: 5778−5785. DOI: 10.1021/jacs.2c12683.

    View in Article CrossRef Google Scholar

    [81] Xu, J., Pang, S., Wang, X., et al. (2021). Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule. 5: 2437−2449. DOI: 10.1016/j.joule.2021.06.019.

    View in Article CrossRef Google Scholar

    [82] Zhang, Q., Khetan, A., Sorkun, E., et al. (2022). Data-driven discovery of small electroactive molecules for energy storage in aqueous redox flow batteries. Energy Storage Mater. 47: 167−177. DOI: 10.1016/j.ensm.2022.02.013.

    View in Article CrossRef Google Scholar

    [83] Noh, J., Doan, H.A., Job, H., et al. (2024). An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations. Nat. Commun. 15: 2757. DOI: 10.1038/s41467-024-47070-5.

    View in Article CrossRef Google Scholar

    [84] Zheng, Q., Xing, F., Li, X., et al. (2016). Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery. J. Power Sources 324: 402−411. DOI: 10.1016/j.jpowsour.2016.05.110.

    View in Article CrossRef Google Scholar

    [85] Wang, Y., Li, M., and Hao, L. (2022). Three-dimensional modeling study of all-vanadium redox flow batteries with the serpentine and interdigitated flow fields. J. Electroanal. Chem. 918: 116460. DOI: 10.1016/j.jelechem.2022.116460.

    View in Article CrossRef Google Scholar

    [86] Houser, J., Pezeshki, A., Clement, J.T., et al. (2017). Architecture for improved mass transport and system performance in redox flow batteries. J. Power Sources 351: 96−105. DOI: 10.1016/j.jpowsour.2017.03.083.

    View in Article CrossRef Google Scholar

    [87] Houser, J., Clement, J., Pezeshki, A., et al. (2016). Influence of architecture and material properties on vanadium redox flow battery performance. J. Power Sources 302: 369−377. DOI: 10.1016/j.jpowsour.2015.09.095.

    View in Article CrossRef Google Scholar

    [88] Zhang, B.W., Lei, Y., Bai, B.F., et al. (2019). A two-dimensional model for the design of flow fields in vanadium redox flow batteries. Int. J. Heat Mass Tran. 135: 460−469. DOI: 10.1016/j.ijheatmasstransfer.2019.02.008.

    View in Article CrossRef Google Scholar

    [89] Kumar, S. and Jayanti, S. (2017). Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery. J. Power Sources 360: 548−558. DOI: 10.1016/j.jpowsour.2017.06.045.

    View in Article CrossRef Google Scholar

    [90] Gundlapalli, R. and Jayanti, S. (2021). Effective splitting of serpentine flow field for applications in large-scale flow batteries. J. Power Sources 487: 229409. DOI: 10.1016/j.jpowsour.2020.229409.

    View in Article CrossRef Google Scholar

    [91] Sun, J., Liu, B., Zheng, M., et al. (2022). Serpentine flow field with changing rib width for enhancing electrolyte penetration uniformity in redox flow batteries. J. Energy Storage 49: 104135. DOI: 10.1016/j.est.2022.104135.

    View in Article CrossRef Google Scholar

    [92] Pan, L., Xie, J., Guo, J., et al. (2023). In-plane gradient design of flow fields enables enhanced convections for redox flow batteries. Energy Adv. 2: 2006−2017. DOI: 10.1039/D3YA00365E.

    View in Article CrossRef Google Scholar

    [93] Pan, L., Sun, J., Qi, H., et al. (2023). Along-flow-path gradient flow field enabling uniform distributions of reactants for redox flow batteries. J. Power Sources 570: 233012. DOI: 10.1016/j.jpowsour.2023.233012.

    View in Article CrossRef Google Scholar

    [94] Munoz-Perales, V., van der Heijden, M., Garcia-Salaberri, P.A., et al. (2023). Engineering lung-inspired flow field geometries for electrochemical flow cells with stereolithography 3d printing. ACS Sustain. Chem. Eng. 11: 12243−12255. DOI: 10.1021/acssuschemeng.3c00848.

    View in Article CrossRef Google Scholar

    [95] Zeng, Y., Li, F., Lu, F., et al. (2019). A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries. Appl. Energ. 238: 435−441. DOI: 10.1016/j.apenergy.2019.01.107.

    View in Article CrossRef Google Scholar

    [96] Guo, Z., Ren, J., Sun, J., et al. (2023). A bifurcate interdigitated flow field with high performance but significantly reduced pumping work for scale-up of redox flow batteries. J. Power Sources. 564: 232757. DOI: 10.1016/j.jpowsour.2023.232757.

    View in Article CrossRef Google Scholar

    [97] Sun, J., Zheng, M., Yang, Z., et al. (2019). Flow field design pathways from lab-scale toward large-scale flow batteries. Energy. 173: 637−646. DOI: 10.1016/j.energy.2019.02.107.

    View in Article CrossRef Google Scholar

    [98] Akuzum, B., Alparslan, Y.C., Robinson, N.C., et al. (2019). Obstructed flow field designs for improved performance in vanadium redox flow batteries. J. Appl. Electrochem. 49: 551−561. DOI: 10.1007/s10800-019-01306-1.

    View in Article CrossRef Google Scholar

    [99] Chen, C.-H., Yaji, K., Yamasaki, S., et al. (2019). Computational design of flow fields for vanadium redox flow batteries via topology optimization. J. Energy Storage 26: 100990. DOI: 10.1016/j.est.2019.100990.

    View in Article CrossRef Google Scholar

    [100] Lin, T.Y., Baker, S.E., Duoss, E.B., et al. (2022). Topology optimization of 3d flow fields for flow batteries. J. Electrochem. Soc. 169: 050540. DOI: 10.1149/1945-7111/ac716d.

    View in Article CrossRef Google Scholar

    [101] Yaji, K., Yamasaki, S., Tsushima, S., et al. (2017). Topology optimization for the design of flow fields in a redox flow battery. Struct. Multidiscip. O. 57: 535−546. DOI: 10.1007/s00158-017-1763-8.

    View in Article CrossRef Google Scholar

    [102] Wan, S., Jiang, H., Guo, Z., et al. (2022). Machine learning-assisted design of flow fields for redox flow batteries. Energ. Environ. Sci. 15: 2874−2888. DOI: 10.1039/D1EE03224K.

    View in Article CrossRef Google Scholar

    [103] Pan, L., Sun, J., Qi, H., et al. (2023). Dead-zone-compensated design as general method of flow field optimization for redox flow batteries. Proc. Natl. Acad. Sci. USA. 120: e2305572120. DOI: 10.1073/pnas.2305572120.

    View in Article CrossRef Google Scholar

    [104] He, Q., Fu, Y., Stinis, P., et al. (2022). Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery. J. Power Sources. 542: 231807. DOI: 10.1016/j.jpowsour.2022.231807.

    View in Article CrossRef Google Scholar

    [105] He, Q., Stinis, P., and Tartakovsky, A.M. (2022). Physics-constrained deep neural network method for estimating parameters in a redox flow battery. J. Power Sources. 528: 231147. DOI: 10.1016/j.jpowsour.2022.231147.

    View in Article CrossRef Google Scholar

    [106] Guo, Z., Sun, J., Wang, Z., et al. (2023). Numerical modeling of interdigitated flow fields for scaled-up redox flow batteries. Int. J. Heat. Mass. Tran. 201: 123548. DOI: 10.1016/j.ijheatmasstransfer.2022.123548.

    View in Article CrossRef Google Scholar

    [107] Reed, D., Thomsen, E., Li, B., et al. (2016). Performance of a low cost interdigitated flow design on a 1 kw class all vanadium mixed acid redox flow battery. J. Power Sources. 306: 24−31. DOI: 10.1016/j.jpowsour.2015.11.089.

    View in Article CrossRef Google Scholar

    [108] Sun, J., Guo, Z., Pan, L., et al. (2023). Redox flow batteries and their stack-scale flow fields. Carb. Neutral. 2: 30. DOI: 10.1007/s43979-023-00072-6.

    View in Article CrossRef Google Scholar

    [109] Su, R., Wang, Z., Cai, Y., et al. (2024). Scaling up flow fields from lab-scale to stack-scale for redox flow batteries. Chem. Eng. J. 486: 149946. DOI: 10.1016/j.cej.2024.149946.

    View in Article CrossRef Google Scholar

    [110] Wei, L., Guo, Z.X., Sun, J., et al. (2021). A convection-enhanced flow field for aqueous redox flow batteries. Int. J. Heat. Mass. Tran. 179: 121747. DOI: 10.1016/j.ijheatmasstransfer.2021.121747.

    View in Article CrossRef Google Scholar

    [111] Lu, M.-Y., Deng, Y.-M., Yang, W.-W., et al. (2020). A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery. Electrochim. Acta 361: 137089. DOI: 10.1016/j.electacta.2020.137089.

    View in Article CrossRef Google Scholar

    [112] Guo, Z., Sun, J., Fan, X., et al. (2023). Numerical modeling of a convection-enhanced flow field for high-performance redox flow batteries. J. Power Sources 583: 233540. DOI: 10.1016/j.jpowsour.2023.233540.

    View in Article CrossRef Google Scholar

    [113] Lu, M.-Y., Yang, W.-W., Tang, X.-Y., et al. (2021). Asymmetric structure design of a vanadium redox flow battery for improved battery performance. J. Energy Storage 44: 103337. DOI: 10.1016/j.est.2021.103337.

    View in Article CrossRef Google Scholar

    [114] Lu, M.-Y., Jiao, Y.-H., Tang, X.-Y., et al. (2021). Blocked serpentine flow field with enhanced species transport and improved flow distribution for vanadium redox flow battery. J. Energy Storage 35: 102284. DOI: 10.1016/j.est.2021.102284.

    View in Article CrossRef Google Scholar

    [115] Yang, F., Fan, L., Chai, Y., et al. (2023). Modification and application of spiral flow fields in vanadium redox flow batteries. J. Energy Storage 67: 107683. DOI: 10.1016/j.est.2023.107683.

    View in Article CrossRef Google Scholar

    [116] Ke, X., Prahl, J.M., Alexander, J.I.D., et al. (2018). Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance. J. Power Sources 384: 295−302. DOI: 10.1016/j.jpowsour.2018.03.001.

    View in Article CrossRef Google Scholar

    [117] Zhao, B., Jian, H., Qian, Y., et al. (2024). Analyzing the thermal and electrical performance of a tubular sofc with inserts by mass transfer coefficients. Appl. Therm. Eng. 242: 122536. DOI: 10.1016/j.applthermaleng.2024.122536.

    View in Article CrossRef Google Scholar

    [118] Zeng, Z., Zhao, B., Hao, C., et al. (2023). Effect of radial flows in fuel channels on thermal performance of counterflow tubular solid oxide fuel cells. Appl. Therm. Eng. 219: 119577. DOI: 10.1016/j.applthermaleng.2022.119577.

    View in Article CrossRef Google Scholar

    [119] Shi, X., Huo, X., Esan, O.C., et al. (2023). Mathematical modeling of fuel cells fed with an electrically rechargeable liquid fuel. Energy and AI 14: 100275. DOI: 10.1016/j.egyai.2023.100275.

    View in Article CrossRef Google Scholar

    [120] Pan, Z., Zhang, Z., Li, W., et al. (2023). Development of a high-performance ammonium formate fuel cell. ACS Energy Lett. 8: 3742−3749. DOI: 10.1021/acsenergylett.3c01165.

    View in Article CrossRef Google Scholar

    [121] Esan, O.C., Shi, X., Pan, Z., et al. (2020). Modeling and simulation of flow batteries. Adv. Energy Mater. 10. DOI: 10.1002/aenm.202000758.

    View in Article Google Scholar

    [122] Gundlapalli, R. and Jayanti, S. (2019). Effect of channel dimensions of serpentine flow fields on the performance of a vanadium redox flow battery. J. Energy Storage 23: 148−158. DOI: 10.1016/j.est.2019.03.014.

    View in Article CrossRef Google Scholar

    [123] Kim, K.J., Park, M.-S., Kim, Y.-J., et al. (2015). A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 3: 16913−16933. DOI: 10.1039/c5ta02613j.

    View in Article CrossRef Google Scholar

    [124] Jiang, H.R., Zeng, Y.K., Wu, M.C., et al. (2019). A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries. Appl. Energ. 240: 226−235. DOI: 10.1016/j.apenergy.2019.02.051.

    View in Article CrossRef Google Scholar

    [125] Wei, L., Zeng, L., Han, M.S., et al. (2023). Nano tic electrocatalysts embedded graphite felt for high rate and stable vanadium redox flow batteries. J. Power Sources 576: 233180. DOI: 10.1016/j.jpowsour.2023.233180.

    View in Article CrossRef Google Scholar

    [126] Wong, A.A., Rubinstein, S.M., and Aziz, M.J. (2021). Direct visualization of electrochemical reactions and heterogeneous transport within porous electrodes in operando by fluorescence microscopy. Cell Rep. Phys. Sci. 2: 100388. DOI: 10.1016/j.xcrp.2021.100388.

    View in Article CrossRef Google Scholar

    [127] Muñoz-Perales, V., García-Salaberri, P.Á., Mularczyk, A., et al. (2023). Investigating the coupled influence of flow fields and porous electrodes on redox flow battery performance. J. Power Sources 586: 233420. DOI: 10.1016/j.jpowsour.2023.233420.

    View in Article CrossRef Google Scholar

    [128] Sun, B. and Skyllas-Kazacos, M. (1992). Modification of graphite electrode materials for vanadium redox flow battery application—i. Thermal treatment. Electrochim. Acta 37: 1253−1260. DOI: 10.1016/0013-4686(92)85064-r.

    View in Article CrossRef Google Scholar

    [129] Pezeshki, A.M., Clement, J., Veith, G.M., et al. (2015). High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation. J. Power Sources 294: 333−338. DOI: 10.1016/j.jpowsour.2015.05.118.

    View in Article CrossRef Google Scholar

    [130] Kaur, A., Il Jeong, K., Su K., et al. (2022). Optimization of thermal treatment of carbon felt electrode based on the mechanical properties for high-efficiency vanadium redox flow batteries. Compos. Struct. 290: 115546. DOI: 10.1016/j.compstruct.2022.115546.

    View in Article CrossRef Google Scholar

    [131] Sun, B. and Skyllas-Kazacos, M. (1992). Chemical modification of graphite electrode materials for vanadium redox flow battery application—part ii. Acid treatments. Electrochim. Acta 37: 2459−2465. DOI: 10.1016/0013-4686(92)87084-d.

    View in Article CrossRef Google Scholar

    [132] Zhang, Z., Xi, J., Zhou, H., et al. (2016). Koh etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochim. Acta 218: 15−23. DOI: 10.1016/j.electacta.2016.09.099.

    View in Article CrossRef Google Scholar

    [133] Wu, X., Xie, Z., Zhou, H., et al. (2023). Designing high efficiency graphite felt electrode via hno3 vapor activation towards stable vanadium redox flow battery. Electrochim. Acta 440: 141728. DOI: 10.1016/j.electacta.2022.141728.

    View in Article CrossRef Google Scholar

    [134] Chen, J., Liao, W., Hsieh, W., et al. (2015). All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets. J. Power Sources 274: 894−898. DOI: 10.1016/j.jpowsour.2014.10.097.

    View in Article CrossRef Google Scholar

    [135] Permatasari, A., Shin, J., Lee, W., et al. (2021). The effect of plasma treated carbon felt on the performance of aqueous quinone-based redox flow batteries. Int. J. Energy Res. 45: 17878−17887. DOI: 10.1002/er.6926.

    View in Article CrossRef Google Scholar

    [136] Fu, H., Bao, X., He, M., et al. (2023). Defect-rich graphene skin modified carbon felt as a highly enhanced electrode for vanadium redox flow batteries. J. Power Sources 556: 232443. DOI: 10.1016/j.jpowsour.2022.232443.

    View in Article CrossRef Google Scholar

    [137] Kabtamu, D., Chen, J., Chang, Y., et al. (2017). Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries. J. Power Sources 341: 270−279. DOI: 10.1016/j.jpowsour.2016.12.004.

    View in Article CrossRef Google Scholar

    [138] Jing, M., Xu, Z., Fang, D., et al. (2021). Improvement of the battery performance of vanadium flow battery by enhancing the specific surface area of the carbon felt electrodes: Ii. Digging effect. J. Electrochem. Soc. 168: 030539. DOI: 10.1149/1945-7111/abf037.

    View in Article CrossRef Google Scholar

    [139] Zhong, S. and Skyllas-Kazacos, M. (1992). Electrochemical behaviour of vanadium(v)/vanadium(iv) redox couple at graphite electrodes. J. Power Sources 39: 1−9. DOI: 10.1016/0378-7753(92)85001-q.

    View in Article CrossRef Google Scholar

    [140] Gattrell, M., Qian, J., Stewart, C., et al. (2005). The electrochemical reduction of vo2+ in acidic solution at high overpotentials. Electrochim. Acta 51: 395−407. DOI: 10.1016/j.electacta.2005.05.001.

    View in Article CrossRef Google Scholar

    [141] Li, W., Liu, J., and Yan, C. (2011). Graphite–graphite oxide composite electrode for vanadium redox flow battery. Electrochim. Acta 56: 5290−5294. DOI: 10.1016/j.electacta.2011.02.083.

    View in Article CrossRef Google Scholar

    [142] Wu, X., Yamamura, T., Ohta, S., et al. (2011). Acceleration of the redox kinetics of vo2+/vo2 + and v3+/v2+ couples on carbon paper. J. Appl. Electrochem. 41: 1183−1190. DOI: 10.1007/s10800-011-0343-7.

    View in Article CrossRef Google Scholar

    [143] González, Z., Botas, C., Blanco, C., et al. (2013). Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries. J. Power Sources 241: 349−354. DOI: 10.1016/j.jpowsour.2013.04.115.

    View in Article CrossRef Google Scholar

    [144] Park, M., Jeon, I., Ryu, J., et al. (2016). Edge-halogenated graphene nanoplatelets with f, cl, or br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy 26: 233−240. DOI: 10.1016/j.nanoen.2016.05.027.

    View in Article CrossRef Google Scholar

    [145] Hu, G., Jing, M., Wang, D., et al. (2018). A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries. Energy Storage Mater. 13: 66−71. DOI: 10.1016/j.ensm.2017.12.026.

    View in Article CrossRef Google Scholar

    [146] Sankar, A., Michos, I., Dutta, I., et al. (2018). Enhanced vanadium redox flow battery performance using graphene nanoplatelets to decorate carbon electrodes. J. Power Sources 387: 91−100. DOI: 10.1016/j.jpowsour.2018.03.045.

    View in Article CrossRef Google Scholar

    [147] Guo, J., Pan, L., Sun, J., et al. (2023). Metal-free fabrication of nitrogen-doped vertical graphene on graphite felt electrodes with enhanced reaction kinetics and mass transport for high-performance redox flow batteries. Adv. Energy Mater. 14: 202302521. DOI: 10.1002/aenm.202302521.

    View in Article CrossRef Google Scholar

    [148] Li, W., Liu, J., and Yan, C. (2011). Multi-walled carbon nanotubes used as an electrode reaction catalyst for /vo2+ for a vanadium redox flow battery. Carbon 49: 3463−3470. DOI: 10.1016/j.carbon.2011.04.045.

    View in Article CrossRef Google Scholar

    [149] Li, W., Liu, J., and Yan, C. (2012). The electrochemical catalytic activity of single-walled carbon nanotubes towards vo2+/vo2+ and v3+/v2+ redox pairs for an all vanadium redox flow battery. Electrochim. Acta 79: 102−108. DOI: 10.1016/j.electacta.2012.06.109.

    View in Article CrossRef Google Scholar

    [150] Wei, G., Jia, C., Liu, J., et al. (2012). Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application. J. Power Sources 220: 185−192. DOI: 10.1016/j.jpowsour.2012.07.081.

    View in Article CrossRef Google Scholar

    [151] Park, M., Jung, Y., Kim, J., et al. (2013). Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery. Nano Lett. 13: 4833−4839. DOI: 10.1021/nl402566s.

    View in Article CrossRef Google Scholar

    [152] Yang, H., Fan, C., and Zhu, Q. (2018). Sucrose pyrolysis assembling carbon nanotubes on graphite felt using for vanadium redox flow battery positive electrode. J. Energy Chem. 27: 451−454. DOI: 10.1016/j.jechem.2017.11.019.

    View in Article CrossRef Google Scholar

    [153] Park, M., Ryu, J., Kim, Y., et al. (2014). Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 7: 3727−3735. DOI: 10.1039/c4ee02123a.

    View in Article CrossRef Google Scholar

    [154] Wei, L., Zhao, T.S., Zhao, G., et al. (2016). A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Appl. Energ. 176: 74−79. DOI: 10.1016/j.apenergy.2016.05.048.

    View in Article CrossRef Google Scholar

    [155] Wu, L., Shen, Y., Yu, L., et al. (2016). Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst. Nano Energy 28: 19−28. DOI: 10.1016/j.nanoen.2016.08.025.

    View in Article CrossRef Google Scholar

    [156] He, Z., Jiang, Y., Wei, Y., et al. (2018). N,p co-doped carbon microsphere as superior electrocatalyst for vo2+/vo2+ redox reaction. Electrochim. Acta 259: 122−130. DOI: 10.1016/j.electacta.2017.10.169.

    View in Article CrossRef Google Scholar

    [157] Wang, R., He, C., Hao, M., et al. (2023). A particle-bonded catalyst-modified electrode for flow batteries: Extending a two-phase interface toward stable mass transport and efficient redox reaction. ACS Sustain. Chem. Eng. 11: 5953−5962. DOI: 10.1021/acssuschemeng.2c07588.

    View in Article CrossRef Google Scholar

    [158] Zhang, L., Ma, Q., Hu, J.P., et al. (2020). Enhancing the catalytic kinetics of electrodes by using a multidimensional carbon network for applications in vanadium redox flow batteries. ChemElectroChem 7: 1023−1028. DOI: 10.1002/celc.201902131.

    View in Article CrossRef Google Scholar

    [159] Ling, W., Deng, Q., Ma, Q., et al. (2018). Hierarchical carbon micro/nanonetwork with superior electrocatalysis for high-rate and endurable vanadium redox flow batteries. Adv. Sci. (Weinh) 5: 1801281. DOI: 10.1002/advs.201801281.

    View in Article CrossRef Google Scholar

    [160] Gao, Y., Wang, H., Ma, Q., et al. (2019). Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries. Carbon 148: 9−15. DOI: 10.1016/j.carbon.2019.03.035.

    View in Article CrossRef Google Scholar

    [161] Wang, R. (2023). Bi-layer graphite felt as the positive electrode for zinc-bromine flow batteries: Achieving efficient redox reaction and stable mass transport. J. Energy Storage 74: 109487. DOI: 10.1016/j.est.2023.109487.

    View in Article CrossRef Google Scholar

    [162] Li, C., Xie, B., Chen, J., et al. (2017). Enhancement of nitrogen and sulfur co-doping on the electrocatalytic properties of carbon nanotubes for vo2+/vo2+ redox reaction. RSC Adv. 7: 13184−13190. DOI: 10.1039/c6ra27734a.

    View in Article CrossRef Google Scholar

    [163] Kim, K.J., Lee, H.S., Kim, J., et al. (2016). Superior electrocatalytic activity of a robust carbon-felt electrode with oxygen-rich phosphate groups for all-vanadium redox flow batteries. ChemSusChem 9: 1329−1338. DOI: 10.1002/cssc.201600106.

    View in Article CrossRef Google Scholar

    [164] Kim, H., Yi, J.S., and Lee, D. (2020). Marked electrocatalytic effects of two-step boron and oxygen atomic doping of carbon electrodes for vanadium redox flow battery. ACS Appl. Energy Mater. 4: 425−433. DOI: 10.1021/acsaem.0c02338.

    View in Article CrossRef Google Scholar

    [165] Jiang, Y., Wang, Y., Cheng, G., et al. (2024). Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery. Carbon Energy 6: e537. DOI: 10.1002/cey2.537.

    View in Article CrossRef Google Scholar

    [166] Zhang, X., Liu, L., Hou, S., et al. (2024). Nitrogen, phosphorus, and sulfur co-doped carbon nanotubes/melamine foam composite electrode for high-performance vanadium redox flow battery. J. Mater. Sci. Technol. 190: 127−134. DOI: 10.1016/j.jmst.2023.12.029.

    View in Article CrossRef Google Scholar

    [167] Long, T., Long, Y., Ding, M., et al. (2021). Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano. Res. 14: 3538−3544. DOI: 10.1007/s12274-021-3564-z.

    View in Article CrossRef Google Scholar

    [168] Liu, Y., Liang, F., Zhao, Y., et al. (2018). Broad temperature adaptability of vanadium redox flow battery–part 4: Unraveling wide temperature promotion mechanism of bismuth for v2+/v3+ couple. J. Energy Chem. 27: 1333−1340. DOI: 10.1016/j.jechem.2018.01.028.

    View in Article CrossRef Google Scholar

    [169] Jiang, H., Shyy, W., Wu, M., et al. (2019). A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energ. 233-234: 105−113. DOI: 10.1016/j.apenergy.2018.10.033.

    View in Article CrossRef Google Scholar

    [170] Ren, J., Wang, Z., Sun, J., et al. (2023). In-situ electrodeposition of homogeneous and dense bismuth nanoparticles onto scale-up graphite felt anodes for vanadium redox flow batteries. J. Power Sources 586: 105−113. DOI: 10.1016/j.jpowsour.2023.233655.

    View in Article CrossRef Google Scholar

    [171] Mehboob, S., Mehmood, A., Lee, J., et al. (2017). Excellent electrocatalytic effects of tin through in situ electrodeposition on the performance of all-vanadium redox flow batteries. J. Mater. Chem. A 5: 17388−17400. DOI: 10.1039/C7TA05657E.

    View in Article CrossRef Google Scholar

    [172] Wei, L., Zhao, T., Zeng, L., et al. (2016). Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energ. 180: 386−391. DOI: 10.1016/j.apenergy.2016.07.134.

    View in Article CrossRef Google Scholar

    [173] Sun, B. and Skyllas-Kazakos, M. (1991). Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim. Acta 36: 513−517. DOI: 10.1016/0013-4686(91)85135-t.

    View in Article CrossRef Google Scholar

    [174] Kim, K., Park, M., Kim, J., et al. (2012). Novel catalytic effects of mn3o4 for all vanadium redox flow batteries. Chem. Commun. (Camb) 48: 5455−5457. DOI: 10.1039/c2cc31433a.

    View in Article CrossRef Google Scholar

    [175] Chen, F., Cheng, X., Liu, L., et al. (2023). Modification of carbon felt electrode by mno@c from metal-organic framework for vanadium flow battery. J. Power Sources 580: 233421. DOI: 10.1016/j.jpowsour.2023.233421.

    View in Article CrossRef Google Scholar

    [176] Wang, R., Hao, M., He, C., et al. (2023). Gradient-distributed nico2o4 nanorod electrode for redox flow batteries: Establishing the ordered reaction interface to meet the anisotropic mass transport. Appl. Catal. B-Environ. 332: 122773. DOI: 10.1016/j.apcatb.2023.122773.

    View in Article CrossRef Google Scholar

    [177] Li, B., Gu, M., Nie, Z., et al. (2014). Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett. 14: 158−165. DOI: 10.1021/nl403674a.

    View in Article CrossRef Google Scholar

    [178] Jing, M., Zhang, X., Fan, X., et al. (2016). CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery. Electrochim. Acta 215: 57−65. DOI: 10.1016/j.electacta.2016.08.095.

    View in Article CrossRef Google Scholar

    [179] Yun, N., Park, J., Park, O., et al. (2018). Electrocatalytic effect of nio nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries. Electrochim. Acta 278: 226−235. DOI: 10.1016/j.electacta.2018.05.039.

    View in Article CrossRef Google Scholar

    [180] Wei, L., Zhao, T., Zeng, L., et al. (2017). Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. J. Power Sources 341: 318−326. DOI: 10.1016/j.jpowsour.2016.12.016.

    View in Article CrossRef Google Scholar

    [181] Ghimire, P., Schweiss, R., Scherer, G., et al. (2018). Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries. J. Mater. Chem. A 6: 6625−6632. DOI: 10.1039/c8ta00464a.

    View in Article CrossRef Google Scholar

    [182] Jiang, H., Shyy, W., Wu, M., et al. (2017). Highly active, bi-functional and metal-free b 4 c-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries. J. Power Sources 365: 34−42. DOI: 10.1016/j.jpowsour.2017.08.075.

    View in Article CrossRef Google Scholar

    [183] Wang, R., Li, Y., and He, Y. (2019). Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: Meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale. J. Mater. Chem. A 7: 10962−10970. DOI: 10.1039/c9ta00807a.

    View in Article CrossRef Google Scholar

    [184] Zhou, X., Zhang, X., Mo, L., et al. (2020). Densely populated bismuth nanosphere semi-embedded carbon felt for ultrahigh-rate and stable vanadium redox flow batteries. Small 16: e1907333. DOI: 10.1002/smll.201907333.

    View in Article CrossRef Google Scholar

    [185] Zhang, Q., Yan, H., Song, Y., et al. (2023). Boosting anode kinetics in vanadium flow batteries with catalytic bismuth nanoparticle decorated carbon felt via electro-deoxidization processing. J. Mater. Chem. A 11: 8700−8709. DOI: 10.1039/D2TA09909H.

    View in Article CrossRef Google Scholar

    [186] Sun, J., Wu, M., Jiang, H., et al. (2021). Advances in the design and fabrication of high-performance flow battery electrodes for renewable energy storage. Adv. Appl. Energ. 2: 100016. DOI: 10.1016/j.adapen.2021.100016.

    View in Article CrossRef Google Scholar

    [187] Sun, J., Wu, M., Fan, X., et al. (2021). Aligned microfibers interweaved with highly porous carbon nanofibers: A novel electrode for high-power vanadium redox flow batteries. Energy Storage Mater. 43: 30−41. DOI: 10.1016/j.ensm.2021.08.034.

    View in Article CrossRef Google Scholar

    [188] Zeng, L., Sun, J., Zhao, T., et al. (2020). Balancing the specific surface area and mass diffusion property of electrospun carbon fibers to enhance the cell performance of vanadium redox flow battery. Int. J. Hydrog. Energy 45: 12565−12576. DOI: 10.1016/j.ijhydene.2020.02.177.

    View in Article CrossRef Google Scholar

    [189] Xu, C., Li, X., Liu, T., et al. (2017). Design and synthesis of a free-standing carbon nano-fibrous web electrode with ultra large pores for high-performance vanadium flow batteries. RSC Adv. 7: 45932−45937. DOI: 10.1039/c7ra07365h.

    View in Article CrossRef Google Scholar

    [190] Arenas, L., Ponce de L., C., and Walsh, F. (2017). 3D-printed porous electrodes for advanced electrochemical flow reactors: A Ni/stainless steel electrode and its mass transport characteristics. Electrochem. Commun. 77: 133−137. DOI: 10.1016/j.elecom.2017.03.009.

    View in Article CrossRef Google Scholar

    [191] Sun, J., Jiang, H., Zhang, B., et al. (2020). Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries. Appl. Energ. 259: 114198. DOI: 10.1016/j.apenergy.2019.114198.

    View in Article CrossRef Google Scholar

    [192] Wan, S., Liang, X., Jiang, H., et al. (2021). A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries. Appl. Energ. 298: 117177. DOI: 10.1016/j.apenergy.2021.117177.

    View in Article CrossRef Google Scholar

    [193] Sun, J., Jiang, H., Wu, M., et al. (2020). Aligned hierarchical electrodes for high-performance aqueous redox flow battery. Appl. Energ. 271: 115235. DOI: 10.1016/j.apenergy.2020.115235.

    View in Article CrossRef Google Scholar

    [194] van der Heijden, M., Kroese, M., Borneman, Z., et al. (2023). Investigating mass transfer relationships in stereolithography 3D printed electrodes for redox flow batteries. Adv. Mater. Technol. 8: 202300611. DOI: 10.1002/admt.202300611.

    View in Article CrossRef Google Scholar

    [195] Wan, C., Ismail, A., Quinn, A., et al. (2023). Synthesis and characterization of dense carbon films as model surfaces to estimate electron transfer kinetics on redox flow battery electrodes. Langmuir 39: 1198−1214. DOI: 10.1021/acs.langmuir.2c03003.

    View in Article CrossRef Google Scholar

    [196] Wan, C., Jacquemond, R., Chiang, Y., et al. (2023). Engineering redox flow battery electrodes with spatially varying porosity using non-solvent-induced phase separation. Energy Technol. 11: 202300137. DOI: 10.1002/ente.202300137.

    View in Article CrossRef Google Scholar

    [197] Beck, V., Ivanovskaya, A., Chandrasekaran, S., et al. (2021). Inertially enhanced mass transport using 3d-printed porous flow-through electrodes with periodic lattice structures. Proc. Natl. Acad. Sci. U S A 118: e2025562118. DOI: 10.1073/pnas.2025562118.

    View in Article CrossRef Google Scholar

    [198] Guillen, G., Pan, Y., Li, M., et al. (2011). Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 50: 3798−3817. DOI: 10.1021/ie101928r.

    View in Article CrossRef Google Scholar

    [199] Wu, Q., Wan, L., and Xu, Z. (2012). Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. J. Membr. Sci. 409-410: 355−364. DOI: 10.1016/j.memsci.2012.04.006.

    View in Article CrossRef Google Scholar

    [200] Venault, A., Chang, Y., Wang, D., et al. (2012). Pegylation of anti-biofouling polysulfone membranes via liquid- and vapor-induced phase separation processing. J. Membrane Sci. 403-404: 47−57. DOI: 10.1016/j.memsci.2012.02.019.

    View in Article CrossRef Google Scholar

    [201] Xu, W., Li, X., Cao, J., et al. (2014). Morphology and performance of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend porous membranes for vanadium flow battery application. RSC Adv. 4: 40400−40406. DOI: 10.1039/c4ra05083e.

    View in Article CrossRef Google Scholar

    [202] Wan, Y., Sun, J., Jian, Q., et al. (2022). A detachable sandwiched polybenzimidazole-based membrane for high-performance aqueous redox flow batteries. J. Power Sources 526: 231139. DOI: 10.1016/j.jpowsour.2022.231139.

    View in Article CrossRef Google Scholar

    [203] Shi, X., Esan, O., Huo, X., et al. (2021). Polymer electrolyte membranes for vanadium redox flow batteries: Fundamentals and applications. Prog. Energy Combust. Sci. 85: 100926. DOI: 10.1016/j.pecs.2021.100926.

    View in Article CrossRef Google Scholar

    [204] Li, X., Zhang, H., Mai, Z., et al. (2011). Ion exchange membranes for vanadium redox flow battery (vrb) applications. Energy Environ. Sci. 4: 1147−1160. DOI: 10.1039/c0ee00770f.

    View in Article CrossRef Google Scholar

    [205] Jiang, B., Wu, L., Yu, L., et al. (2016). A comparative study of nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 510: 18−26. DOI: 10.1016/j.memsci.2016.03.007.

    View in Article CrossRef Google Scholar

    [206] Dai, Q., Liu, Z., Huang, L., et al. (2020). Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat. Commun. 11: 13. DOI: 10.1038/s41467-019-13704-2.

    View in Article CrossRef Google Scholar

    [207] Jiang, H., Sun, J., Wei, L., et al. (2020). A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 24: 529−540. DOI: 10.1016/j.ensm.2019.07.005.

    View in Article CrossRef Google Scholar

    [208] Ji, Y., Tay, Z., and Li, S. (2017). Highly selective sulfonated poly(ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries. J. Membrane Sci. 539: 197−205. DOI: 10.1016/j.memsci.2017.06.015.

    View in Article CrossRef Google Scholar

    [209] Teng, X., Dai, J., Bi, F., et al. (2015). Ultra-thin polytetrafluoroethene/nafion/silica membranes prepared with nano sio2 and its comparison with sol–gel derived one for vanadium redox flow battery. Solid State lon. 280: 30−36. DOI: 10.1016/j.ssi.2015.08.005.

    View in Article CrossRef Google Scholar

    [210] Ahn, S., Jeong, H., Jang, J., et al. (2018). Polybenzimidazole/nafion hybrid membrane with improved chemical stability for vanadium redox flow battery application. RSC Adv. 8: 25304−25312. DOI: 10.1039/c8ra03921f.

    View in Article CrossRef Google Scholar

    [211] Xi, J., Wu, Z., Qiu, X., et al. (2007). Nafion/sio2 hybrid membrane for vanadium redox flow battery. J. Power Sources 166: 531−536. DOI: 10.1016/j.jpowsour.2007.01.069.

    View in Article CrossRef Google Scholar

    [212] Vijayakumar, M., Schwenzer, B., Kim, S., et al. (2012). Investigation of local environments in nafion–sio2 composite membranes used in vanadium redox flow batteries. Solid State Nucl. Magn. Reson. 42: 71−80. DOI: 10.1016/j.ssnmr.2011.11.005.

    View in Article CrossRef Google Scholar

    [213] Li, J., Zhang, Y., Zhang, S., et al. (2014). Novel sulfonated polyimide/zro2composite membrane as a separator of vanadium redox flow battery. Polym. Adv. Technol. 25: 1610−1615. DOI: 10.1002/pat.3411.

    View in Article CrossRef Google Scholar

    [214] Aziz, M. and Shanmugam, S. (2017). Zirconium oxide nanotube–nafion composite as high performance membrane for all vanadium redox flow battery. J. Power Sources 337: 36−44. DOI: 10.1016/j.jpowsour.2016.10.113.

    View in Article CrossRef Google Scholar

    [215] Dai, W., Yu, L., Li, Z., et al. (2014). Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim. Acta 132: 200−207. DOI: 10.1016/j.electacta.2014.03.156.

    View in Article CrossRef Google Scholar

    [216] Zeng, L., Zhao, T., Wei, L., et al. (2019). Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges. Appl. Energ. 233-234: 622−643. DOI: 10.1016/j.apenergy.2018.10.063.

    View in Article CrossRef Google Scholar

    [217] Yuan, Z., Li, X., Zhao, Y., et al. (2015). Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery. ACS Appl. Mater. Interfaces 7: 19446−19454. DOI: 10.1021/acsami.5b05840.

    View in Article CrossRef Google Scholar

    [218] Zhang, B., Wang, Q., Guan, S., et al. (2018). High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications. J. Power Sources 399: 18−25. DOI: 10.1016/j.jpowsour.2018.07.050.

    View in Article CrossRef Google Scholar

    [219] Ahn, Y. and Kim, D. (2019). Anion exchange membrane prepared from imidazolium grafted poly(arylene ether ketone) with enhanced durability for vanadium redox flow battery. J. Ind. Eng. Chem. 71: 361−368. DOI: 10.1016/j.jiec.2018.11.047.

    View in Article CrossRef Google Scholar

    [220] Zhang, B., Zhang, S., Xing, D., et al. (2012). Quaternized poly (phthalazinone ether ketone ketone) anion exchange membrane with low permeability of vanadium ions for vanadium redox flow battery application. J. Power Sources 217: 296−302. DOI: 10.1016/j.jpowsour.2012.06.027.

    View in Article CrossRef Google Scholar

    [221] Wang, F., Ai, F., and Lu, Y. (2023). Ion selective membrane for redox flow battery, what’s next. Next Energy 1: 100053. DOI: 10.1016/j.nxener.2023.100053.

    View in Article CrossRef Google Scholar

    [222] Li, Z. and Lu, Y. (2021). Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6: 517−528. DOI: 10.1038/s41560-021-00804-x.

    View in Article CrossRef Google Scholar

    [223] Wei, W., Nan, S., Wang, H., et al. (2023). Design and preparation of sulfonated polymer membranes for zn/mno2 flow batteries with assistance of machine learning. J. Membr. Sci. 672: 121453. DOI: 10.1016/j.memsci.2023.121453.

    View in Article CrossRef Google Scholar

    [224] Wei, W., Zhang, H., Li, X., et al. (2013). Hydrophobic asymmetric ultrafiltration pvdf membranes: An alternative separator for vfb with excellent stability. Phys. Chem. Chem. Phys 15: 1766−1771. DOI: 10.1039/c2cp43761a.

    View in Article CrossRef Google Scholar

    [225] Xue, R., Jiang, F., Wang, F., et al. (2020). Towards cost-effective proton-exchange membranes for redox flow batteries: A facile and innovative method. J. Power Sources 449: 227475. DOI: 10.1016/j.jpowsour.2019.227475.

    View in Article CrossRef Google Scholar

    [226] Zhang, H., Zhang, H., Li, X., et al. (2011). Nanofiltration (nf) membranes: The next generation separators for all vanadium redox flow batteries (vrbs). Energy Environ. Sci. 4: 1676−1679. DOI: 10.1039/c1ee01117k.

    View in Article CrossRef Google Scholar

    [227] Zhang, H., Zhang, H., Li, X., et al. (2012). Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy Environ. Sci. 5: 6299−6303. DOI: 10.1039/c1ee02571f.

    View in Article CrossRef Google Scholar

    [228] Chae, I., Luo, T., Moon, G., et al. (2016). Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv. Energy Mater. 6: 201600517. DOI: 10.1002/aenm.201600517.

    View in Article CrossRef Google Scholar

    [229] Fang, B., Wei, Y., Arai, T., et al. (2003). Development of a novel redox flow battery for electricity storage system. J. Appl. Electrochem. 33: 197−203. DOI: 10.1023/a:1024025603600.

    View in Article CrossRef Google Scholar

    [230] Mögelin, H., Yao, G., Zhong, H., et al. (2018). Porous glass membranes for vanadium redox-flow battery application - effect of pore size on the performance. J. Power Sources 377: 18−25. DOI: 10.1016/j.jpowsour.2017.12.001.

    View in Article CrossRef Google Scholar

    [231] Lu, W., Yuan, Z., Zhao, Y., et al. (2016). High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy Environ. Sci. 9: 2319−2325. DOI: 10.1039/c6ee01371f.

    View in Article CrossRef Google Scholar

    [232] Park, M., Ryu, J., Wang, W., et al. (2016). Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2: 16080. DOI: 10.1038/natrevmats.2016.80.

    View in Article CrossRef Google Scholar

    [233] Zhou, X., Zhao, T., An, L., et al. (2016). Performance of a vanadium redox flow battery with a vanadion membrane. Appl. Energ. 180: 353−359. DOI: 10.1016/j.apenergy.2016.08.001.

    View in Article CrossRef Google Scholar

    [234] Zhao, Z., Dai, Q., Huang, S., et al. (2024). Highly stable side-chain-type cardo poly(aryl ether ketone)s membranes for vanadium flow battery. Chin. Chem. Lett. 35: 109231. DOI: 10.1016/j.cclet.2023.109231.

    View in Article CrossRef Google Scholar

    [235] Kong, D., Yuan, C., Zhi, L., et al. (2023). N-cnts-based composite membrane engineered by a partially embedded strategy: A facile route to high-performing zinc-based flow batteries. Adv. Funct. Mater. 33: 202301448. DOI: 10.1002/adfm.202301448.

    View in Article CrossRef Google Scholar

    [236] Yuan, Z., Liang, L., Dai, Q., et al. (2022). Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule 6: 884−905. DOI: 10.1016/j.joule.2022.02.016.

    View in Article CrossRef Google Scholar

    [237] Zuo, P., Ye, C., Jiao, Z., et al. (2023). Near-frictionless ion transport within triazine framework membranes. Nature 617: 299−305. DOI: 10.1038/s41586-023-05888-x.

    View in Article CrossRef Google Scholar

    [238] Gundlapalli, R. and Jayanti, S. (2021). Case studies of operational failures of vanadium redox flow battery stacks, diagnoses and remedial actions. J. Energy Storage 33: 102078. DOI: 10.1016/j.est.2020.102078.

    View in Article CrossRef Google Scholar

    [239] Xiaoling, F., Yang, L., Fuwen, S., et al. (2022). A multi-stack vanadium redox flow battery model considering electrolyte transfer delay. 2022 iSPEC. DOI: 10.1109/iSPEC54162.2022.10033033.

    View in Article Google Scholar

    [240] Fink, H. and Remy, M. (2015). Shunt currents in vanadium flow batteries: Measurement, modelling and implications for efficiency. J. Power Sources 284: 547−553. DOI: 10.1016/j.jpowsour.2015.03.057.

    View in Article CrossRef Google Scholar

    [241] Yu-Hang, J., Zhi-Kuo, Z., Pei-Yuan, D., et al. (2023). Consistency analysis and resistance network design for vanadium redox flow battery stacks with a cell-resolved stack model. Int. J. Green Energy 20: 166−180. DOI: 10.1080/15435075.2021.2023885.

    View in Article CrossRef Google Scholar

    [242] Tang, A., McCann, J., Bao, J., et al. (2013). Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery. J. Power Sources 242: 349−356. DOI: 10.1016/j.jpowsour.2013.05.079.

    View in Article CrossRef Google Scholar

    [243] Trovò, A., Marini, G., Sutto, A., et al. (2019). Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects. Appl. Energ. 240: 893−906. DOI: 10.1016/j.apenergy.2019.02.067.

    View in Article CrossRef Google Scholar

    [244] Wandschneider, F., Röhm, S., Fischer, P., et al. (2014). A multi-stack simulation of shunt currents in vanadium redox flow batteries. J. Power Sources 261: 64−74. DOI: 10.1016/j.jpowsour.2014.03.054.

    View in Article CrossRef Google Scholar

    [245] Chen, H., Cheng, M., Feng, X., et al. (2021). Analysis and optimization for multi-stack vanadium flow battery module incorporating electrode permeability. J. Power Sources 515: 230606. DOI: 10.1016/j.jpowsour.2021.230606.

    View in Article CrossRef Google Scholar

    [246] Ravendra, G., Sanjay, K., and Jayanti, S. (2018). Stack design considerations for vanadium redox flow battery. INAE Lett. 2018: 149−157. DOI: 10.1007/s41403-018-0044-1.

    View in Article CrossRef Google Scholar

    [247] Xiong, B., Zhao, J., Tseng, K., et al. (2013). Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery. J. Power Sources 242: 314−324. DOI: 10.1016/j.jpowsour.2013.05.092.

    View in Article CrossRef Google Scholar

    [248] Ren, J., Wei, L., Wang, Z., et al. (2022). An electrochemical-thermal coupled model for aqueous redox flow batteries. Int. J. Heat. Mass. Tran. 192: 122926. DOI: 10.1016/j.ijheatmasstransfer.2022.122926.

    View in Article CrossRef Google Scholar

    [249] Xi, J., Xiao, S., Yu, L., et al. (2016). Broad temperature adaptability of vanadium redox flow battery—part 2: Cell research. Electrochim. Acta 191: 695−704. DOI: 10.1016/j.electacta.2016.01.165.

    View in Article CrossRef Google Scholar

    [250] Xiao, S., Yu, L., Wu, L., et al. (2016). Broad temperature adaptability of vanadium redox flow battery—part 1: Electrolyte research. Electrochim. Acta 187: 525−534. DOI: 10.1016/j.electacta.2015.11.062.

    View in Article CrossRef Google Scholar

    [251] Wang, K., Zhang, Y., Liu, L., et al. (2018). Broad temperature adaptability of vanadium redox flow battery-part 3: The effects of total vanadium concentration and sulfuric acid concentration. Electrochim. Acta 259: 11−19. DOI: 10.1016/j.electacta.2017.10.148.

    View in Article CrossRef Google Scholar

    [252] Pan, J., Huang, M., Li, X., et al. (2016). The performance of all vanadium redox flow batteries at below-ambient temperatures. Energy 107: 784−790. DOI: 10.1016/j.energy.2016.04.075.

    View in Article CrossRef Google Scholar

    [253] Han, S. and Tan, L. (2020). Thermal and efficiency improvements of all vanadium redox flow battery with novel main-side-tank system and slow pump shutdown. J. Energy Storage 28: 101274. DOI: 10.1016/j.est.2020.101274.

    View in Article CrossRef Google Scholar

    [254] Yang, Y., Zhang, Y., Liu, T., et al. (2019). Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte. J. Power Sources 415: 62−68. DOI: 10.1016/j.jpowsour.2019.01.049.

    View in Article CrossRef Google Scholar

    [255] Tang, A. and Skyllas-Kazacos, M. (2014). Simulation analysis of regional temperature effects and battery management schedules for a residential-scale vanadium redox flow battery system. ChemPlusChem 80: 368−375. DOI: 10.1002/cplu.201400034.

    View in Article CrossRef Google Scholar

    [256] Wang, H., Soong, W., Pourmousavi, S., et al. (2023). Thermal dynamics assessment of vanadium redox flow batteries and thermamanagement by active temperature control. J. Power Sources 570: 233027. DOI: 10.1016/j.jpowsour.2023.233027.

    View in Article CrossRef Google Scholar

    [257] Report, C. (2016). Operation of one of the world's largest storage battery sytems has been started. DOI: global-sei.com/csr/feature/2016/topics2016.pdf.

    View in Article Google Scholar

    [258] Trovó, A. (2020). Battery management system for industrial-scale vanadium redox flow batteries: Features and operation. J. Power Sources 465: 228229. DOI: 10.1016/j.jpowsour.2020.228229.

    View in Article CrossRef Google Scholar

    [259] Raya-Armenta, J., Bazmohammadi, N., Avina-Cervantes, J., et al. (2021). Energy management system optimization in islanded microgrids: An overview and future trends. Renew. Sust. Energ. Rev. 149: 111327. DOI: 10.1016/j.rser.2021.111327.

    View in Article CrossRef Google Scholar

    [260] Service, R. (2018). New generation of ‘flow batteries’ could eventually sustain a grid powered by the sun and wind. Science DOI: 10.1126/science.aav9127.

    View in Article Google Scholar

    [261] Foles, A., Fialho, L., Collares-Pereira, M., et al. (2022). An approach to implement photovoltaic self-consumption and ramp-rate control algorithm with a vanadium redox flow battery day-to-day forecast charging. SEGAN 30. DOI: ARTN 10062610.1016/j.segan.2022.100626.

    View in Article Google Scholar

    [262] Khaki, B. and Das, P. (2021). Multi-objective optimal charging current and flow management of vanadium redox flow batteries for fast charging and energy-efficient operation. J. Power Sources 506: 230199. DOI: ARTN 23019910.1016/j.jpowsour.2021.230199. DOI: 10.1016/j.jpowsour.2021.230199.

    View in Article CrossRef Google Scholar

    [263] Bhattacharjee, A. and Saha, H. (2018). Development of an efficient thermal management system for vanadium redox flow battery under different charge-discharge conditions. Appl. Energ. 230: 1182−1192. DOI: 10.1016/j.apenergy.2018.09.056.

    View in Article CrossRef Google Scholar

    [264] Tang, A., Bao, J., and Skyllas-Kazacos, M. (2011). Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J. Power Sources 196: 10737−10747. DOI: 10.1016/j.jpowsour.2011.09.003.

    View in Article CrossRef Google Scholar

    [265] Kallol Roy, K., Mandal K.K., and Mandal A.C. (2020). A hybrid rfcro approach for the energy management of the grid connected microgrid system. International Transactions on Electrical Energy Systems. Int. Trans. Electr. Energ. Syst. 30: ete12660. DOI: 0.1002/2050-7038.12660.

    View in Article Google Scholar

    [266] Wang, H., Pourmousavi, S., Soong, W., et al. (2023). Battery and energy management system for vanadium redox flow battery: A critical review and recommendations. J. Energy Storage 58: 106384. DOI: ARTN 10638410.1016/j.est.2022.106384. DOI: 10.1016/j.est.2022.106384.

    View in Article CrossRef Google Scholar

    [267] Quan, H., Teo, J., Trivedi, A., et al. (2019). Optimal energy management of vanadium redox flow batteries energy storage system for frequency regulation and peak shaving in an islanded microgrid. 2019 ISGT Asia. DOI: 10.1109/ISGT-Asia.2019.8880902.

    View in Article Google Scholar

  • Cite this article:

    Pan L., Rao H., Ren J., et al., (2024). Innovations in stack design and optimization strategies for redox flow batteries in large-scale energy storage. The Innovation Energy 1(3): 100040. https://doi.org/10.59717/j.xinn-energy.2024.100040
    Pan L., Rao H., Ren J., et al., (2024). Innovations in stack design and optimization strategies for redox flow batteries in large-scale energy storage. The Innovation Energy 1(3): 100040. https://doi.org/10.59717/j.xinn-energy.2024.100040

Figures(10)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2970) PDF downloads(733) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint