Frontier technologies for key components of redox flow battery stacks are summarized.
Stack integration systems for redox flow battery are overviewed.
Innovative design and optimization on key components are highlighted.
Challenges and prospects for the design of large-scale energy storage in flow batteries are presented.
[1] | Agency, I.E. (2022). World energy outlook 2022. |
[2] | Wang, X.T., Gu, Z.Y., Ang, E.H., et al. (2022). Prospects for managing end-of-life lithium-ion batteries: Present and future. Interd. Mater. 1: 417−433. DOI: 10.1002/idm2.12041. |
[3] | Gu, Z.Y., Wang, X.T., Heng, Y.L., et al. (2023). Prospects and perspectives on advanced materials for sodium-ion batteries. Sci. Bull. (Beijing) 68: 2302−2306. DOI: 10.1016/j.scib.2023.08.038. |
[4] | Xie, D., Sang, Y., Wang, D.H., et al. (2023). Znf(2) -riched inorganic/organic hybrid sei: In situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 62: e202216934. DOI: 10.1002/anie.202216934. |
[5] | Ke, X., Prahl, J.M., Alexander, J.I.D., et al. (2018). Rechargeable redox flow batteries: Flow fields, stacks and design considerations. Chem. Soc. Rev. 47: 8721−8743. DOI: 10.1039/c8cs00072g. |
[6] | Chalamala, B.R., Soundappan, T., Fisher, G.R., et al. (2014). Redox flow batteries: An engineering perspective. Proc. IEEE 102: 976−999. DOI: 10.1109/jproc.2014.2320317. |
[7] | Soloveichik, G.L. (2015). Flow batteries: Current status and trends. Chem. Rev. 115: 11533−11558. DOI: 10.1021/cr500720t. |
[8] | Reber, D., Jarvis, S.R., and Marshak, M.P. (2023). Beyond energy density: Flow battery design driven by safety and location. Energy Adv. 2: 1357−1365. DOI: 10.1039/d3ya00208j. |
[9] | Skyllas-Kazacos, M., Rychcik, M., Robins, R.G., et al. (1986). New all-vanadium redox flow cell. J. Electrochem. Soc. 133: 1057−1058. DOI: 10.1149/1.2108706. |
[10] | Zeng, Y.K., Zhao, T.S., An, L., et al. (2015). A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 300: 438−443. DOI: 10.1016/j.jpowsour.2015.09.100. |
[11] | Zhang, H., Tan, Y., Li, J., et al. (2017). Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting fe/cr redox flow battery performance. Electrochim. Acta 248: 603−613. DOI: 10.1016/j.electacta.2017.08.016. |
[12] | Xiang, H.X., Tan, A.D., Piao, J.H., et al. (2019). Efficient nitrogen-doped carbon for zinc-bromine flow battery. Small 15: e1901848. DOI: 10.1002/smll.201901848. |
[13] | Huskinson, B., Marshak, M.P., Suh, C., et al. (2014). A metal-free organic-inorganic aqueous flow battery. Nature 505: 195−198. DOI: 10.1038/nature12909. |
[14] | Arribas, B.N., Melício, R., Teixeira, J.C., et al. (2016). Vanadium redox flow battery storage system linked to the electric grid. Renew. Ener. Pow. Qual. J. 14: 1025−1036. DOI: 10.24084/repqj14.561. |
[15] | Wang, H., Pourmousavi, S.A., Soong, W.L., et al. (2023). Battery and energy management system for vanadium redox flow battery: A critical review and recommendations. J. Energy Storage 58: 106384. DOI: 10.1016/j.est.2022.106384. |
[16] | Gundlapalli, R., Kumar, S., and Jayanti, S. (2018). Stack design considerations for vanadium redox flow battery. INAE Lett. 3: 149−157. DOI: 10.1007/s41403-018-0044-1. |
[17] | Satola, B. (2021). Review—bipolar plates for the vanadium redox flow battery. J. Electrochem Soc. 168: 060503. DOI: 10.1149/1945-7111/ac0177. |
[18] | Trovò, A., Rugna, M., Poli, N., et al. (2023). Prospects for industrial vanadium flow batteries. Ceram. Int. 49: 24487−24498. DOI: 10.1016/j.ceramint.2023.01.165. |
[19] | Wu, X., Yuan, X., Wang, Z., et al. (2016). Electrochemical performance of 5 kw all-vanadium redox flow battery stack with a flow frame of multi-distribution channels. J. Solid State Electr. 21: 429−435. DOI: 10.1007/s10008-016-3361-x. |
[20] | Delgado, N.M., Monteiro, R., Cruz, J., et al. (2022). Shunt currents in vanadium redox flow batteries – a parametric and optimization study. Electrochim. Acta 403: 139667. DOI: 10.1016/j.electacta.2021.139667. |
[21] | Yan, R. and Wang, Q. (2018). Redox-targeting-based flow batteries for large-scale energy storage. Adv. Mater. 30. DOI: 10.1002/adma.201802406. |
[22] | Zhao, Y., Ding, Y., Li, Y., et al. (2015). A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Che. Soc. Rev. 44: 7968−7996. DOI: 10.1039/c5cs00289c. |
[23] | Li, W. and Jin, S. (2020). Design principles and developments of integrated solar flow batteries. Acc. Chem. Res. 53: 2611−2621. DOI: 10.1021/acs.accounts.0c00373. |
[24] | Duduta, M., Ho, B., Wood, V.C., et al. (2011). Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1: 511−516. DOI: 10.1002/aenm.201100152. |
[25] | Braff, W.A., Bazant, M.Z., and Buie, C.R. (2013). Membrane-less hydrogen bromine flow battery. Nat. Commun. 4: 2346. DOI: 10.1038/ncomms3346. |
[26] | Li, G., Chen, W., Zhang, H., et al. (2020). Membrane-free zn/mno2 flow battery for large-scale energy storage. Adv. Energy Mater. 10: 201902085. DOI: 10.1002/aenm.201902085. |
[27] | Hou, S., Chen, L., Fan, X., et al. (2022). High-energy and low-cost membrane-free chlorine flow battery. Nat. Commun. 13: 1281. DOI: 10.1038/s41467-022-28880-x. |
[28] | Wang, X., Lashgari, A., Chai, J., et al. (2022). A membrane-free, aqueous/nonaqueous hybrid redox flow battery. Energy Storage Mater. 45: 1100−1108. DOI: 10.1016/j.ensm.2021.11.008. |
[29] | Gautam, R.K., Wang, X., Lashgari, A., et al. (2023). Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries. Nat. Commun. 14: 4753. DOI: 10.1038/s41467-023-40374-y. |
[30] | Grosse Austing, J., Nunes Kirchner, C., Hammer, E.-M., et al. (2015). Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode. J. Power Sources 273: 1163−1170. DOI: 10.1016/j.jpowsour.2014.09.177. |
[31] | Noack, J., Cognard, G., Oral, M., et al. (2016). Study of the long-term operation of a vanadium/oxygen fuel cell. J. Power Sources 326: 137−145. DOI: 10.1016/j.jpowsour.2016.06.121. |
[32] | Wang, K., Pei, P., Ma, Z., et al. (2014). Morphology control of zinc regeneration for zinc–air fuel cell and battery. J. Power Sources 271: 65−75. DOI: 10.1016/j.jpowsour.2014.07.182. |
[33] | Wang, K., Liu, X., Pei, P., et al. (2018). Guiding bubble motion of rechargeable zinc-air battery with electromagnetic force. Chem. Eng. J. 352: 182−187. DOI: 10.1016/j.cej.2018.07.020. |
[34] | Chen, D., Pan, L., Pei, P., et al. (2021). Carbon-coated oxygen vacancies-rich co3o4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy 224: 120142. DOI: 10.1016/j.energy.2021.120142. |
[35] | Tan, P., Kong, W., Shao, Z., et al. (2017). Advances in modeling and simulation of li–air batteries. Prog. Energ. Combust. 62: 155−189. DOI: 10.1016/j.pecs.2017.06.001. |
[36] | Ren, Y.X., Zhao, T.S., Tan, P., et al. (2017). Modeling of an aprotic li-o2 battery incorporating multiple-step reactions. Appl. Energ. 187: 706−716. DOI: 10.1016/j.apenergy.2016.11.108. |
[37] | Kim, B., Takechi, K., Ma, S., et al. (2017). Non-aqueous primary li-air flow battery and optimization of its cathode through experiment and modeling. Chem. Sus Chem. 10: 4198−4206. DOI: 10.1002/cssc.201701255. |
[38] | Yu, W., Shang, W., Tan, P., et al. (2019). Toward a new generation of low cost, efficient, and durable metal–air flow batteries. J. Mater. Chem. A 7: 26744−26768. DOI: 10.1039/C9TA10658H. |
[39] | Pan, L., Chen, D., Pei, P., et al. (2021). A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energ. 290: 116777. DOI: 10.1016/j.apenergy.2021.116777. |
[40] | Zhao, S., Liu, T., Zuo, Y., et al. (2023). High-power-density and high-energy-efficiency zinc-air flow battery system for long-duration energy storage. Chem. Eng. J. 470: 144091. DOI: 10.1016/j.cej.2023.144091. |
[41] | Gao, L., Gao, X., Jiang, P., et al. (2022). Atomically dispersed iron with densely exposed active sites as bifunctional oxygen catalysts for zinc-air flow batteries. Small 18: e2105892. DOI: 10.1002/smll.202105892. |
[42] | Cheng, Y., Guo, Y., Zhang, N., et al. (2019). In situ growing catalytic sites on 3d carbon fiber paper as self-standing bifunctional air electrodes for air-based flow batteries. Nano Energy 63: 103897. DOI: 10.1016/j.nanoen.2019.103897. |
[43] | Huang, S., Zhang, H., Zhuang, J., et al. (2022). Redox-mediated two-electron oxygen reduction reaction with ultrafast kinetics for zn-air flow battery. Adv. Energy Mater. 12: 202103622. DOI: 10.1002/aenm.202103622. |
[44] | Huang, S., Yuan, Z., Salla, M., et al. (2023). A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energ. Environ. Sci. 16: 438−445. DOI: 10.1039/D2EE02402K. |
[45] | Gao, M., Song, Y., Zou, X., et al. (2023). A redox-mediated iron-air fuel cell for sustainable and scalable power generation. Adv. Energy Mater. 13: 202301868. DOI: 10.1002/aenm.202301868. |
[46] | Zhou, Y., Zhang, S., Ding, Y., et al. (2018). Efficient solar energy harvesting and storage through a robust photocatalyst driving reversible redox reactions. Adv. Mater. 30: 201802294. DOI: 10.1002/adma.201802294. |
[47] | Li, W., Zheng, J., Hu, B., et al. (2020). High-performance solar flow battery powered by a perovskite/silicon tandem solar cell. Nat. Mater. 19: 1326−1331. DOI: 10.1038/s41563-020-0720-x. |
[48] | Hnedkovsky, L., Wood, R.H., and Balashov, V.N. (2005). Electrical conductances of aqueous na2so4, h2so4, and their mixtures: Limiting equivalent ion conductances, dissociation constants, and speciation to 673 k and 28 mpa. J. Phys. Chem. B 109: 9034−9046. DOI: 10.1021/jp045707c. |
[49] | Zhang, L., Feng, R., Wang, W., et al. (2022). Emerging chemistries and molecular designs for flow batteries. Nat. Rev. Chem. 6: 524−543. DOI: 10.1038/s41570-022-00394-6. |
[50] | Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104: 4303−4417. DOI: 10.1021/cr030203g. |
[51] | Li, Z., Lin, Y., Wan, L., et al. (2019). Stable positive electrolyte containing high-concentration fe2(so4)3 for vanadium flow battery at 50 °c. Electrochim. Acta 309: 148−156. DOI: 10.1016/j.electacta.2019.04.069. |
[52] | Jia, Z., Wang, B., Song, S., et al. (2012). Effect of polyhydroxy-alcohol on the electrochemical behavior of the positive electrolyte for vanadium redox flow batteries. J. Electrochem. Soc. 159: A843−A847. DOI: 10.1149/2.091206jes. |
[53] | Ye, Y., Wu, M., Nan, M., et al. (2024). The influence of inorganic salt additives in the electrolyte on iron–chromium flow batteries at room temperature. ACS Appl. Energy Mater. 7: 4200−4206. DOI: 10.1021/acsaem.4c00542. |
[54] | Wu, M., Nan, M., Ye, Y., et al. (2024). A highly active electrolyte for high-capacity iron-chromium flow batteries. Appl. Energ. 358: 122534. DOI: 10.1016/j.apenergy.2023.122534. |
[55] | Aaron, D.S., Liu, Q., Tang, Z., et al. (2012). Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 206: 450−453. DOI: 10.1016/j.jpowsour.2011.12.026. |
[56] | Suo, L., Borodin, O., Gao, T., et al. (2015). "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350: 938−943. DOI: 10.1126/science.aab1595. |
[57] | Shin, S.-H., Yun, S.-H., and Moon, S.-H. (2013). A review of current developments in non-aqueous redox flow batteries: Characterization of their membranes for design perspective. RSC Adv. 3: 9095−9116. DOI: 10.1039/c3ra00115f. |
[58] | Leung, P., Shah, A.A., Sanz, L., et al. (2017). Recent developments in organic redox flow batteries: A critical review. J. Power Sources 360: 243−283. DOI: 10.1016/j.jpowsour.2017.05.057. |
[59] | Zhao, Y., Wang, L., and Byon, H.R. (2013). High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4: 1896. DOI: 10.1038/ncomms2907. |
[60] | Chen, H. and Lu, Y.C. (2016). A high-energy-density multiple redox semi-solid-liquid flow battery. Adv. Energy Mater. 6: 201502183. DOI: 10.1002/aenm.201502183. |
[61] | Xie, C., Duan, Y., Xu, W., et al. (2017). A low-cost neutral zinc–iron flow battery with high energy density for stationary energy storage. Angew. Chem. Int. Ed. Engl. 56: 14953−14957. DOI: 10.1002/anie.201708664. |
[62] | Xie, C., Li, T., Deng, C., et al. (2020). A highly reversible neutral zinc/manganese battery for stationary energy storage. Energ. Environ. Sci. 13: 135−143. DOI: 10.1039/c9ee03702k. |
[63] | Zhang, C., Zhang, L., Ding, Y., et al. (2018). Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 15: 324−350. DOI: 10.1016/j.ensm.2018.06.008. |
[64] | Wei, X.L., Xu, W., Vijayakumar, M., et al. (2014). Tempo-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26: 7649−7653. DOI: 10.1002/adma.201403746. |
[65] | Liu, T., Wei, X., Nie, Z., et al. (2015). A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-ho-tempo catholyte. Adv. Energy Mater. 6: 201501449. DOI: 10.1002/aenm.201501449. |
[66] | Janoschka, T., Martin, N., Martin, U., et al. (2015). An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527: 78−81. DOI: 10.1038/nature15746. |
[67] | Liu, B., Tang, C.W., Jiang, H., et al. (2021). Carboxyl-functionalized tempo catholyte enabling high-cycling-stability and high-energy-density aqueous organic redox flow batteries. ACS Sustain. Chem. Eng. 9: 6258−6265. DOI: 10.1021/acssuschemeng.0c08946. |
[68] | DeBruler, C., Hu, B., Moss, J., et al. (2017). Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 3: 961−978. DOI: 10.1016/j.chempr.2017.11.001. |
[69] | Luo, J., Hu, B., Debruler, C., et al. (2017). A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries. Angew. Chem. Int. Ed. Engl. 57: 231−235. DOI: 10.1002/anie.201710517. |
[70] | Liu, B., Tang, C.W., Jiang, H., et al. (2020). An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte. J. Power Sources 477: 228985. DOI: 10.1016/j.jpowsour.2020.228985. |
[71] | Huskinson, B., Marshak, M.P., Suh, C., et al. (2014). A metal-free organic–inorganic aqueous flow battery. Nature 505: 195−198. DOI: 10.1038/nature12909. |
[72] | Ding, Y. and Yu, G. (2016). A bio-inspired, heavy-metal-free, dual-electrolyte liquid battery towards sustainable energy storage. Angew. Chem. Int. Ed. Engl. 55: 4772−4776. DOI: 10.1002/anie.201600705. |
[73] | Wei, X., Xu, W., Vijayakumar, M., et al. (2014). Tempo-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26: 7649−7653. DOI: 10.1002/adma.201403746. |
[74] | Hu, B., DeBruler, C., Rhodes, Z., et al. (2017). Long-cycling aqueous organic redox flow battery (aorfb) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139: 1207−1214. DOI: 10.1021/jacs.6b10984. |
[75] | Sigel, H. and R, B.M. (1982). Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82: 385−426. DOI: 10.1021/cr00050a003‚. |
[76] | Häupler, B., Wild, A., and Schubert, U.S. (2015). Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 5: 201402034. DOI: 10.1002/aenm.201402034. |
[77] | Liang, Y., Tao, Z., and Chen, J. (2012). Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2: 742−769. DOI: 10.1002/aenm.201100795. |
[78] | Lin, K., Gómez-Bombarelli, R., Beh, E.S., et al. (2016). A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 1: 16102. DOI: 10.1038/nenergy.2016.102. |
[79] | Pang, S., Wang, X., Wang, P., et al. (2021). Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral ph. Angew. Chem. Int. Ed. Engl. 60: 5289−5298. DOI: 10.1002/anie.202014610. |
[80] | Li, L., Su, Y., Ji, Y., et al. (2023). A long-lived water-soluble phenazine radical cation. J. Am. Chem. Soc. 145: 5778−5785. DOI: 10.1021/jacs.2c12683. |
[81] | Xu, J., Pang, S., Wang, X., et al. (2021). Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule. 5: 2437−2449. DOI: 10.1016/j.joule.2021.06.019. |
[82] | Zhang, Q., Khetan, A., Sorkun, E., et al. (2022). Data-driven discovery of small electroactive molecules for energy storage in aqueous redox flow batteries. Energy Storage Mater. 47: 167−177. DOI: 10.1016/j.ensm.2022.02.013. |
[83] | Noh, J., Doan, H.A., Job, H., et al. (2024). An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations. Nat. Commun. 15: 2757. DOI: 10.1038/s41467-024-47070-5. |
[84] | Zheng, Q., Xing, F., Li, X., et al. (2016). Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery. J. Power Sources 324: 402−411. DOI: 10.1016/j.jpowsour.2016.05.110. |
[85] | Wang, Y., Li, M., and Hao, L. (2022). Three-dimensional modeling study of all-vanadium redox flow batteries with the serpentine and interdigitated flow fields. J. Electroanal. Chem. 918: 116460. DOI: 10.1016/j.jelechem.2022.116460. |
[86] | Houser, J., Pezeshki, A., Clement, J.T., et al. (2017). Architecture for improved mass transport and system performance in redox flow batteries. J. Power Sources 351: 96−105. DOI: 10.1016/j.jpowsour.2017.03.083. |
[87] | Houser, J., Clement, J., Pezeshki, A., et al. (2016). Influence of architecture and material properties on vanadium redox flow battery performance. J. Power Sources 302: 369−377. DOI: 10.1016/j.jpowsour.2015.09.095. |
[88] | Zhang, B.W., Lei, Y., Bai, B.F., et al. (2019). A two-dimensional model for the design of flow fields in vanadium redox flow batteries. Int. J. Heat Mass Tran. 135: 460−469. DOI: 10.1016/j.ijheatmasstransfer.2019.02.008. |
[89] | Kumar, S. and Jayanti, S. (2017). Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery. J. Power Sources 360: 548−558. DOI: 10.1016/j.jpowsour.2017.06.045. |
[90] | Gundlapalli, R. and Jayanti, S. (2021). Effective splitting of serpentine flow field for applications in large-scale flow batteries. J. Power Sources 487: 229409. DOI: 10.1016/j.jpowsour.2020.229409. |
[91] | Sun, J., Liu, B., Zheng, M., et al. (2022). Serpentine flow field with changing rib width for enhancing electrolyte penetration uniformity in redox flow batteries. J. Energy Storage 49: 104135. DOI: 10.1016/j.est.2022.104135. |
[92] | Pan, L., Xie, J., Guo, J., et al. (2023). In-plane gradient design of flow fields enables enhanced convections for redox flow batteries. Energy Adv. 2: 2006−2017. DOI: 10.1039/D3YA00365E. |
[93] | Pan, L., Sun, J., Qi, H., et al. (2023). Along-flow-path gradient flow field enabling uniform distributions of reactants for redox flow batteries. J. Power Sources 570: 233012. DOI: 10.1016/j.jpowsour.2023.233012. |
[94] | Munoz-Perales, V., van der Heijden, M., Garcia-Salaberri, P.A., et al. (2023). Engineering lung-inspired flow field geometries for electrochemical flow cells with stereolithography 3d printing. ACS Sustain. Chem. Eng. 11: 12243−12255. DOI: 10.1021/acssuschemeng.3c00848. |
[95] | Zeng, Y., Li, F., Lu, F., et al. (2019). A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries. Appl. Energ. 238: 435−441. DOI: 10.1016/j.apenergy.2019.01.107. |
[96] | Guo, Z., Ren, J., Sun, J., et al. (2023). A bifurcate interdigitated flow field with high performance but significantly reduced pumping work for scale-up of redox flow batteries. J. Power Sources. 564: 232757. DOI: 10.1016/j.jpowsour.2023.232757. |
[97] | Sun, J., Zheng, M., Yang, Z., et al. (2019). Flow field design pathways from lab-scale toward large-scale flow batteries. Energy. 173: 637−646. DOI: 10.1016/j.energy.2019.02.107. |
[98] | Akuzum, B., Alparslan, Y.C., Robinson, N.C., et al. (2019). Obstructed flow field designs for improved performance in vanadium redox flow batteries. J. Appl. Electrochem. 49: 551−561. DOI: 10.1007/s10800-019-01306-1. |
[99] | Chen, C.-H., Yaji, K., Yamasaki, S., et al. (2019). Computational design of flow fields for vanadium redox flow batteries via topology optimization. J. Energy Storage 26: 100990. DOI: 10.1016/j.est.2019.100990. |
[100] | Lin, T.Y., Baker, S.E., Duoss, E.B., et al. (2022). Topology optimization of 3d flow fields for flow batteries. J. Electrochem. Soc. 169: 050540. DOI: 10.1149/1945-7111/ac716d. |
[101] | Yaji, K., Yamasaki, S., Tsushima, S., et al. (2017). Topology optimization for the design of flow fields in a redox flow battery. Struct. Multidiscip. O. 57: 535−546. DOI: 10.1007/s00158-017-1763-8. |
[102] | Wan, S., Jiang, H., Guo, Z., et al. (2022). Machine learning-assisted design of flow fields for redox flow batteries. Energ. Environ. Sci. 15: 2874−2888. DOI: 10.1039/D1EE03224K. |
[103] | Pan, L., Sun, J., Qi, H., et al. (2023). Dead-zone-compensated design as general method of flow field optimization for redox flow batteries. Proc. Natl. Acad. Sci. USA. 120: e2305572120. DOI: 10.1073/pnas.2305572120. |
[104] | He, Q., Fu, Y., Stinis, P., et al. (2022). Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery. J. Power Sources. 542: 231807. DOI: 10.1016/j.jpowsour.2022.231807. |
[105] | He, Q., Stinis, P., and Tartakovsky, A.M. (2022). Physics-constrained deep neural network method for estimating parameters in a redox flow battery. J. Power Sources. 528: 231147. DOI: 10.1016/j.jpowsour.2022.231147. |
[106] | Guo, Z., Sun, J., Wang, Z., et al. (2023). Numerical modeling of interdigitated flow fields for scaled-up redox flow batteries. Int. J. Heat. Mass. Tran. 201: 123548. DOI: 10.1016/j.ijheatmasstransfer.2022.123548. |
[107] | Reed, D., Thomsen, E., Li, B., et al. (2016). Performance of a low cost interdigitated flow design on a 1 kw class all vanadium mixed acid redox flow battery. J. Power Sources. 306: 24−31. DOI: 10.1016/j.jpowsour.2015.11.089. |
[108] | Sun, J., Guo, Z., Pan, L., et al. (2023). Redox flow batteries and their stack-scale flow fields. Carb. Neutral. 2: 30. DOI: 10.1007/s43979-023-00072-6. |
[109] | Su, R., Wang, Z., Cai, Y., et al. (2024). Scaling up flow fields from lab-scale to stack-scale for redox flow batteries. Chem. Eng. J. 486: 149946. DOI: 10.1016/j.cej.2024.149946. |
[110] | Wei, L., Guo, Z.X., Sun, J., et al. (2021). A convection-enhanced flow field for aqueous redox flow batteries. Int. J. Heat. Mass. Tran. 179: 121747. DOI: 10.1016/j.ijheatmasstransfer.2021.121747. |
[111] | Lu, M.-Y., Deng, Y.-M., Yang, W.-W., et al. (2020). A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery. Electrochim. Acta 361: 137089. DOI: 10.1016/j.electacta.2020.137089. |
[112] | Guo, Z., Sun, J., Fan, X., et al. (2023). Numerical modeling of a convection-enhanced flow field for high-performance redox flow batteries. J. Power Sources 583: 233540. DOI: 10.1016/j.jpowsour.2023.233540. |
[113] | Lu, M.-Y., Yang, W.-W., Tang, X.-Y., et al. (2021). Asymmetric structure design of a vanadium redox flow battery for improved battery performance. J. Energy Storage 44: 103337. DOI: 10.1016/j.est.2021.103337. |
[114] | Lu, M.-Y., Jiao, Y.-H., Tang, X.-Y., et al. (2021). Blocked serpentine flow field with enhanced species transport and improved flow distribution for vanadium redox flow battery. J. Energy Storage 35: 102284. DOI: 10.1016/j.est.2021.102284. |
[115] | Yang, F., Fan, L., Chai, Y., et al. (2023). Modification and application of spiral flow fields in vanadium redox flow batteries. J. Energy Storage 67: 107683. DOI: 10.1016/j.est.2023.107683. |
[116] | Ke, X., Prahl, J.M., Alexander, J.I.D., et al. (2018). Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance. J. Power Sources 384: 295−302. DOI: 10.1016/j.jpowsour.2018.03.001. |
[117] | Zhao, B., Jian, H., Qian, Y., et al. (2024). Analyzing the thermal and electrical performance of a tubular sofc with inserts by mass transfer coefficients. Appl. Therm. Eng. 242: 122536. DOI: 10.1016/j.applthermaleng.2024.122536. |
[118] | Zeng, Z., Zhao, B., Hao, C., et al. (2023). Effect of radial flows in fuel channels on thermal performance of counterflow tubular solid oxide fuel cells. Appl. Therm. Eng. 219: 119577. DOI: 10.1016/j.applthermaleng.2022.119577. |
[119] | Shi, X., Huo, X., Esan, O.C., et al. (2023). Mathematical modeling of fuel cells fed with an electrically rechargeable liquid fuel. Energy and AI 14: 100275. DOI: 10.1016/j.egyai.2023.100275. |
[120] | Pan, Z., Zhang, Z., Li, W., et al. (2023). Development of a high-performance ammonium formate fuel cell. ACS Energy Lett. 8: 3742−3749. DOI: 10.1021/acsenergylett.3c01165. |
[121] | Esan, O.C., Shi, X., Pan, Z., et al. (2020). Modeling and simulation of flow batteries. Adv. Energy Mater. 10. DOI: 10.1002/aenm.202000758. |
[122] | Gundlapalli, R. and Jayanti, S. (2019). Effect of channel dimensions of serpentine flow fields on the performance of a vanadium redox flow battery. J. Energy Storage 23: 148−158. DOI: 10.1016/j.est.2019.03.014. |
[123] | Kim, K.J., Park, M.-S., Kim, Y.-J., et al. (2015). A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 3: 16913−16933. DOI: 10.1039/c5ta02613j. |
[124] | Jiang, H.R., Zeng, Y.K., Wu, M.C., et al. (2019). A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries. Appl. Energ. 240: 226−235. DOI: 10.1016/j.apenergy.2019.02.051. |
[125] | Wei, L., Zeng, L., Han, M.S., et al. (2023). Nano tic electrocatalysts embedded graphite felt for high rate and stable vanadium redox flow batteries. J. Power Sources 576: 233180. DOI: 10.1016/j.jpowsour.2023.233180. |
[126] | Wong, A.A., Rubinstein, S.M., and Aziz, M.J. (2021). Direct visualization of electrochemical reactions and heterogeneous transport within porous electrodes in operando by fluorescence microscopy. Cell Rep. Phys. Sci. 2: 100388. DOI: 10.1016/j.xcrp.2021.100388. |
[127] | Muñoz-Perales, V., García-Salaberri, P.Á., Mularczyk, A., et al. (2023). Investigating the coupled influence of flow fields and porous electrodes on redox flow battery performance. J. Power Sources 586: 233420. DOI: 10.1016/j.jpowsour.2023.233420. |
[128] | Sun, B. and Skyllas-Kazacos, M. (1992). Modification of graphite electrode materials for vanadium redox flow battery application—i. Thermal treatment. Electrochim. Acta 37: 1253−1260. DOI: 10.1016/0013-4686(92)85064-r. |
[129] | Pezeshki, A.M., Clement, J., Veith, G.M., et al. (2015). High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation. J. Power Sources 294: 333−338. DOI: 10.1016/j.jpowsour.2015.05.118. |
[130] | Kaur, A., Il Jeong, K., Su K., et al. (2022). Optimization of thermal treatment of carbon felt electrode based on the mechanical properties for high-efficiency vanadium redox flow batteries. Compos. Struct. 290: 115546. DOI: 10.1016/j.compstruct.2022.115546. |
[131] | Sun, B. and Skyllas-Kazacos, M. (1992). Chemical modification of graphite electrode materials for vanadium redox flow battery application—part ii. Acid treatments. Electrochim. Acta 37: 2459−2465. DOI: 10.1016/0013-4686(92)87084-d. |
[132] | Zhang, Z., Xi, J., Zhou, H., et al. (2016). Koh etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochim. Acta 218: 15−23. DOI: 10.1016/j.electacta.2016.09.099. |
[133] | Wu, X., Xie, Z., Zhou, H., et al. (2023). Designing high efficiency graphite felt electrode via hno3 vapor activation towards stable vanadium redox flow battery. Electrochim. Acta 440: 141728. DOI: 10.1016/j.electacta.2022.141728. |
[134] | Chen, J., Liao, W., Hsieh, W., et al. (2015). All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets. J. Power Sources 274: 894−898. DOI: 10.1016/j.jpowsour.2014.10.097. |
[135] | Permatasari, A., Shin, J., Lee, W., et al. (2021). The effect of plasma treated carbon felt on the performance of aqueous quinone-based redox flow batteries. Int. J. Energy Res. 45: 17878−17887. DOI: 10.1002/er.6926. |
[136] | Fu, H., Bao, X., He, M., et al. (2023). Defect-rich graphene skin modified carbon felt as a highly enhanced electrode for vanadium redox flow batteries. J. Power Sources 556: 232443. DOI: 10.1016/j.jpowsour.2022.232443. |
[137] | Kabtamu, D., Chen, J., Chang, Y., et al. (2017). Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries. J. Power Sources 341: 270−279. DOI: 10.1016/j.jpowsour.2016.12.004. |
[138] | Jing, M., Xu, Z., Fang, D., et al. (2021). Improvement of the battery performance of vanadium flow battery by enhancing the specific surface area of the carbon felt electrodes: Ii. Digging effect. J. Electrochem. Soc. 168: 030539. DOI: 10.1149/1945-7111/abf037. |
[139] | Zhong, S. and Skyllas-Kazacos, M. (1992). Electrochemical behaviour of vanadium(v)/vanadium(iv) redox couple at graphite electrodes. J. Power Sources 39: 1−9. DOI: 10.1016/0378-7753(92)85001-q. |
[140] | Gattrell, M., Qian, J., Stewart, C., et al. (2005). The electrochemical reduction of vo2+ in acidic solution at high overpotentials. Electrochim. Acta 51: 395−407. DOI: 10.1016/j.electacta.2005.05.001. |
[141] | Li, W., Liu, J., and Yan, C. (2011). Graphite–graphite oxide composite electrode for vanadium redox flow battery. Electrochim. Acta 56: 5290−5294. DOI: 10.1016/j.electacta.2011.02.083. |
[142] | Wu, X., Yamamura, T., Ohta, S., et al. (2011). Acceleration of the redox kinetics of vo2+/vo2 + and v3+/v2+ couples on carbon paper. J. Appl. Electrochem. 41: 1183−1190. DOI: 10.1007/s10800-011-0343-7. |
[143] | González, Z., Botas, C., Blanco, C., et al. (2013). Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries. J. Power Sources 241: 349−354. DOI: 10.1016/j.jpowsour.2013.04.115. |
[144] | Park, M., Jeon, I., Ryu, J., et al. (2016). Edge-halogenated graphene nanoplatelets with f, cl, or br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy 26: 233−240. DOI: 10.1016/j.nanoen.2016.05.027. |
[145] | Hu, G., Jing, M., Wang, D., et al. (2018). A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries. Energy Storage Mater. 13: 66−71. DOI: 10.1016/j.ensm.2017.12.026. |
[146] | Sankar, A., Michos, I., Dutta, I., et al. (2018). Enhanced vanadium redox flow battery performance using graphene nanoplatelets to decorate carbon electrodes. J. Power Sources 387: 91−100. DOI: 10.1016/j.jpowsour.2018.03.045. |
[147] | Guo, J., Pan, L., Sun, J., et al. (2023). Metal-free fabrication of nitrogen-doped vertical graphene on graphite felt electrodes with enhanced reaction kinetics and mass transport for high-performance redox flow batteries. Adv. Energy Mater. 14: 202302521. DOI: 10.1002/aenm.202302521. |
[148] | Li, W., Liu, J., and Yan, C. (2011). Multi-walled carbon nanotubes used as an electrode reaction catalyst for /vo2+ for a vanadium redox flow battery. Carbon 49: 3463−3470. DOI: 10.1016/j.carbon.2011.04.045. |
[149] | Li, W., Liu, J., and Yan, C. (2012). The electrochemical catalytic activity of single-walled carbon nanotubes towards vo2+/vo2+ and v3+/v2+ redox pairs for an all vanadium redox flow battery. Electrochim. Acta 79: 102−108. DOI: 10.1016/j.electacta.2012.06.109. |
[150] | Wei, G., Jia, C., Liu, J., et al. (2012). Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application. J. Power Sources 220: 185−192. DOI: 10.1016/j.jpowsour.2012.07.081. |
[151] | Park, M., Jung, Y., Kim, J., et al. (2013). Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery. Nano Lett. 13: 4833−4839. DOI: 10.1021/nl402566s. |
[152] | Yang, H., Fan, C., and Zhu, Q. (2018). Sucrose pyrolysis assembling carbon nanotubes on graphite felt using for vanadium redox flow battery positive electrode. J. Energy Chem. 27: 451−454. DOI: 10.1016/j.jechem.2017.11.019. |
[153] | Park, M., Ryu, J., Kim, Y., et al. (2014). Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 7: 3727−3735. DOI: 10.1039/c4ee02123a. |
[154] | Wei, L., Zhao, T.S., Zhao, G., et al. (2016). A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Appl. Energ. 176: 74−79. DOI: 10.1016/j.apenergy.2016.05.048. |
[155] | Wu, L., Shen, Y., Yu, L., et al. (2016). Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst. Nano Energy 28: 19−28. DOI: 10.1016/j.nanoen.2016.08.025. |
[156] | He, Z., Jiang, Y., Wei, Y., et al. (2018). N,p co-doped carbon microsphere as superior electrocatalyst for vo2+/vo2+ redox reaction. Electrochim. Acta 259: 122−130. DOI: 10.1016/j.electacta.2017.10.169. |
[157] | Wang, R., He, C., Hao, M., et al. (2023). A particle-bonded catalyst-modified electrode for flow batteries: Extending a two-phase interface toward stable mass transport and efficient redox reaction. ACS Sustain. Chem. Eng. 11: 5953−5962. DOI: 10.1021/acssuschemeng.2c07588. |
[158] | Zhang, L., Ma, Q., Hu, J.P., et al. (2020). Enhancing the catalytic kinetics of electrodes by using a multidimensional carbon network for applications in vanadium redox flow batteries. ChemElectroChem 7: 1023−1028. DOI: 10.1002/celc.201902131. |
[159] | Ling, W., Deng, Q., Ma, Q., et al. (2018). Hierarchical carbon micro/nanonetwork with superior electrocatalysis for high-rate and endurable vanadium redox flow batteries. Adv. Sci. (Weinh) 5: 1801281. DOI: 10.1002/advs.201801281. |
[160] | Gao, Y., Wang, H., Ma, Q., et al. (2019). Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries. Carbon 148: 9−15. DOI: 10.1016/j.carbon.2019.03.035. |
[161] | Wang, R. (2023). Bi-layer graphite felt as the positive electrode for zinc-bromine flow batteries: Achieving efficient redox reaction and stable mass transport. J. Energy Storage 74: 109487. DOI: 10.1016/j.est.2023.109487. |
[162] | Li, C., Xie, B., Chen, J., et al. (2017). Enhancement of nitrogen and sulfur co-doping on the electrocatalytic properties of carbon nanotubes for vo2+/vo2+ redox reaction. RSC Adv. 7: 13184−13190. DOI: 10.1039/c6ra27734a. |
[163] | Kim, K.J., Lee, H.S., Kim, J., et al. (2016). Superior electrocatalytic activity of a robust carbon-felt electrode with oxygen-rich phosphate groups for all-vanadium redox flow batteries. ChemSusChem 9: 1329−1338. DOI: 10.1002/cssc.201600106. |
[164] | Kim, H., Yi, J.S., and Lee, D. (2020). Marked electrocatalytic effects of two-step boron and oxygen atomic doping of carbon electrodes for vanadium redox flow battery. ACS Appl. Energy Mater. 4: 425−433. DOI: 10.1021/acsaem.0c02338. |
[165] | Jiang, Y., Wang, Y., Cheng, G., et al. (2024). Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery. Carbon Energy 6: e537. DOI: 10.1002/cey2.537. |
[166] | Zhang, X., Liu, L., Hou, S., et al. (2024). Nitrogen, phosphorus, and sulfur co-doped carbon nanotubes/melamine foam composite electrode for high-performance vanadium redox flow battery. J. Mater. Sci. Technol. 190: 127−134. DOI: 10.1016/j.jmst.2023.12.029. |
[167] | Long, T., Long, Y., Ding, M., et al. (2021). Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano. Res. 14: 3538−3544. DOI: 10.1007/s12274-021-3564-z. |
[168] | Liu, Y., Liang, F., Zhao, Y., et al. (2018). Broad temperature adaptability of vanadium redox flow battery–part 4: Unraveling wide temperature promotion mechanism of bismuth for v2+/v3+ couple. J. Energy Chem. 27: 1333−1340. DOI: 10.1016/j.jechem.2018.01.028. |
[169] | Jiang, H., Shyy, W., Wu, M., et al. (2019). A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energ. 233-234: 105−113. DOI: 10.1016/j.apenergy.2018.10.033. |
[170] | Ren, J., Wang, Z., Sun, J., et al. (2023). In-situ electrodeposition of homogeneous and dense bismuth nanoparticles onto scale-up graphite felt anodes for vanadium redox flow batteries. J. Power Sources 586: 105−113. DOI: 10.1016/j.jpowsour.2023.233655. |
[171] | Mehboob, S., Mehmood, A., Lee, J., et al. (2017). Excellent electrocatalytic effects of tin through in situ electrodeposition on the performance of all-vanadium redox flow batteries. J. Mater. Chem. A 5: 17388−17400. DOI: 10.1039/C7TA05657E. |
[172] | Wei, L., Zhao, T., Zeng, L., et al. (2016). Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries. Appl. Energ. 180: 386−391. DOI: 10.1016/j.apenergy.2016.07.134. |
[173] | Sun, B. and Skyllas-Kazakos, M. (1991). Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim. Acta 36: 513−517. DOI: 10.1016/0013-4686(91)85135-t. |
[174] | Kim, K., Park, M., Kim, J., et al. (2012). Novel catalytic effects of mn3o4 for all vanadium redox flow batteries. Chem. Commun. (Camb) 48: 5455−5457. DOI: 10.1039/c2cc31433a. |
[175] | Chen, F., Cheng, X., Liu, L., et al. (2023). Modification of carbon felt electrode by mno@c from metal-organic framework for vanadium flow battery. J. Power Sources 580: 233421. DOI: 10.1016/j.jpowsour.2023.233421. |
[176] | Wang, R., Hao, M., He, C., et al. (2023). Gradient-distributed nico2o4 nanorod electrode for redox flow batteries: Establishing the ordered reaction interface to meet the anisotropic mass transport. Appl. Catal. B-Environ. 332: 122773. DOI: 10.1016/j.apcatb.2023.122773. |
[177] | Li, B., Gu, M., Nie, Z., et al. (2014). Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett. 14: 158−165. DOI: 10.1021/nl403674a. |
[178] | Jing, M., Zhang, X., Fan, X., et al. (2016). CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery. Electrochim. Acta 215: 57−65. DOI: 10.1016/j.electacta.2016.08.095. |
[179] | Yun, N., Park, J., Park, O., et al. (2018). Electrocatalytic effect of nio nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries. Electrochim. Acta 278: 226−235. DOI: 10.1016/j.electacta.2018.05.039. |
[180] | Wei, L., Zhao, T., Zeng, L., et al. (2017). Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries. J. Power Sources 341: 318−326. DOI: 10.1016/j.jpowsour.2016.12.016. |
[181] | Ghimire, P., Schweiss, R., Scherer, G., et al. (2018). Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries. J. Mater. Chem. A 6: 6625−6632. DOI: 10.1039/c8ta00464a. |
[182] | Jiang, H., Shyy, W., Wu, M., et al. (2017). Highly active, bi-functional and metal-free b 4 c-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries. J. Power Sources 365: 34−42. DOI: 10.1016/j.jpowsour.2017.08.075. |
[183] | Wang, R., Li, Y., and He, Y. (2019). Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: Meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale. J. Mater. Chem. A 7: 10962−10970. DOI: 10.1039/c9ta00807a. |
[184] | Zhou, X., Zhang, X., Mo, L., et al. (2020). Densely populated bismuth nanosphere semi-embedded carbon felt for ultrahigh-rate and stable vanadium redox flow batteries. Small 16: e1907333. DOI: 10.1002/smll.201907333. |
[185] | Zhang, Q., Yan, H., Song, Y., et al. (2023). Boosting anode kinetics in vanadium flow batteries with catalytic bismuth nanoparticle decorated carbon felt via electro-deoxidization processing. J. Mater. Chem. A 11: 8700−8709. DOI: 10.1039/D2TA09909H. |
[186] | Sun, J., Wu, M., Jiang, H., et al. (2021). Advances in the design and fabrication of high-performance flow battery electrodes for renewable energy storage. Adv. Appl. Energ. 2: 100016. DOI: 10.1016/j.adapen.2021.100016. |
[187] | Sun, J., Wu, M., Fan, X., et al. (2021). Aligned microfibers interweaved with highly porous carbon nanofibers: A novel electrode for high-power vanadium redox flow batteries. Energy Storage Mater. 43: 30−41. DOI: 10.1016/j.ensm.2021.08.034. |
[188] | Zeng, L., Sun, J., Zhao, T., et al. (2020). Balancing the specific surface area and mass diffusion property of electrospun carbon fibers to enhance the cell performance of vanadium redox flow battery. Int. J. Hydrog. Energy 45: 12565−12576. DOI: 10.1016/j.ijhydene.2020.02.177. |
[189] | Xu, C., Li, X., Liu, T., et al. (2017). Design and synthesis of a free-standing carbon nano-fibrous web electrode with ultra large pores for high-performance vanadium flow batteries. RSC Adv. 7: 45932−45937. DOI: 10.1039/c7ra07365h. |
[190] | Arenas, L., Ponce de L., C., and Walsh, F. (2017). 3D-printed porous electrodes for advanced electrochemical flow reactors: A Ni/stainless steel electrode and its mass transport characteristics. Electrochem. Commun. 77: 133−137. DOI: 10.1016/j.elecom.2017.03.009. |
[191] | Sun, J., Jiang, H., Zhang, B., et al. (2020). Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries. Appl. Energ. 259: 114198. DOI: 10.1016/j.apenergy.2019.114198. |
[192] | Wan, S., Liang, X., Jiang, H., et al. (2021). A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries. Appl. Energ. 298: 117177. DOI: 10.1016/j.apenergy.2021.117177. |
[193] | Sun, J., Jiang, H., Wu, M., et al. (2020). Aligned hierarchical electrodes for high-performance aqueous redox flow battery. Appl. Energ. 271: 115235. DOI: 10.1016/j.apenergy.2020.115235. |
[194] | van der Heijden, M., Kroese, M., Borneman, Z., et al. (2023). Investigating mass transfer relationships in stereolithography 3D printed electrodes for redox flow batteries. Adv. Mater. Technol. 8: 202300611. DOI: 10.1002/admt.202300611. |
[195] | Wan, C., Ismail, A., Quinn, A., et al. (2023). Synthesis and characterization of dense carbon films as model surfaces to estimate electron transfer kinetics on redox flow battery electrodes. Langmuir 39: 1198−1214. DOI: 10.1021/acs.langmuir.2c03003. |
[196] | Wan, C., Jacquemond, R., Chiang, Y., et al. (2023). Engineering redox flow battery electrodes with spatially varying porosity using non-solvent-induced phase separation. Energy Technol. 11: 202300137. DOI: 10.1002/ente.202300137. |
[197] | Beck, V., Ivanovskaya, A., Chandrasekaran, S., et al. (2021). Inertially enhanced mass transport using 3d-printed porous flow-through electrodes with periodic lattice structures. Proc. Natl. Acad. Sci. U S A 118: e2025562118. DOI: 10.1073/pnas.2025562118. |
[198] | Guillen, G., Pan, Y., Li, M., et al. (2011). Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 50: 3798−3817. DOI: 10.1021/ie101928r. |
[199] | Wu, Q., Wan, L., and Xu, Z. (2012). Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. J. Membr. Sci. 409-410: 355−364. DOI: 10.1016/j.memsci.2012.04.006. |
[200] | Venault, A., Chang, Y., Wang, D., et al. (2012). Pegylation of anti-biofouling polysulfone membranes via liquid- and vapor-induced phase separation processing. J. Membrane Sci. 403-404: 47−57. DOI: 10.1016/j.memsci.2012.02.019. |
[201] | Xu, W., Li, X., Cao, J., et al. (2014). Morphology and performance of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend porous membranes for vanadium flow battery application. RSC Adv. 4: 40400−40406. DOI: 10.1039/c4ra05083e. |
[202] | Wan, Y., Sun, J., Jian, Q., et al. (2022). A detachable sandwiched polybenzimidazole-based membrane for high-performance aqueous redox flow batteries. J. Power Sources 526: 231139. DOI: 10.1016/j.jpowsour.2022.231139. |
[203] | Shi, X., Esan, O., Huo, X., et al. (2021). Polymer electrolyte membranes for vanadium redox flow batteries: Fundamentals and applications. Prog. Energy Combust. Sci. 85: 100926. DOI: 10.1016/j.pecs.2021.100926. |
[204] | Li, X., Zhang, H., Mai, Z., et al. (2011). Ion exchange membranes for vanadium redox flow battery (vrb) applications. Energy Environ. Sci. 4: 1147−1160. DOI: 10.1039/c0ee00770f. |
[205] | Jiang, B., Wu, L., Yu, L., et al. (2016). A comparative study of nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 510: 18−26. DOI: 10.1016/j.memsci.2016.03.007. |
[206] | Dai, Q., Liu, Z., Huang, L., et al. (2020). Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat. Commun. 11: 13. DOI: 10.1038/s41467-019-13704-2. |
[207] | Jiang, H., Sun, J., Wei, L., et al. (2020). A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 24: 529−540. DOI: 10.1016/j.ensm.2019.07.005. |
[208] | Ji, Y., Tay, Z., and Li, S. (2017). Highly selective sulfonated poly(ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries. J. Membrane Sci. 539: 197−205. DOI: 10.1016/j.memsci.2017.06.015. |
[209] | Teng, X., Dai, J., Bi, F., et al. (2015). Ultra-thin polytetrafluoroethene/nafion/silica membranes prepared with nano sio2 and its comparison with sol–gel derived one for vanadium redox flow battery. Solid State lon. 280: 30−36. DOI: 10.1016/j.ssi.2015.08.005. |
[210] | Ahn, S., Jeong, H., Jang, J., et al. (2018). Polybenzimidazole/nafion hybrid membrane with improved chemical stability for vanadium redox flow battery application. RSC Adv. 8: 25304−25312. DOI: 10.1039/c8ra03921f. |
[211] | Xi, J., Wu, Z., Qiu, X., et al. (2007). Nafion/sio2 hybrid membrane for vanadium redox flow battery. J. Power Sources 166: 531−536. DOI: 10.1016/j.jpowsour.2007.01.069. |
[212] | Vijayakumar, M., Schwenzer, B., Kim, S., et al. (2012). Investigation of local environments in nafion–sio2 composite membranes used in vanadium redox flow batteries. Solid State Nucl. Magn. Reson. 42: 71−80. DOI: 10.1016/j.ssnmr.2011.11.005. |
[213] | Li, J., Zhang, Y., Zhang, S., et al. (2014). Novel sulfonated polyimide/zro2composite membrane as a separator of vanadium redox flow battery. Polym. Adv. Technol. 25: 1610−1615. DOI: 10.1002/pat.3411. |
[214] | Aziz, M. and Shanmugam, S. (2017). Zirconium oxide nanotube–nafion composite as high performance membrane for all vanadium redox flow battery. J. Power Sources 337: 36−44. DOI: 10.1016/j.jpowsour.2016.10.113. |
[215] | Dai, W., Yu, L., Li, Z., et al. (2014). Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim. Acta 132: 200−207. DOI: 10.1016/j.electacta.2014.03.156. |
[216] | Zeng, L., Zhao, T., Wei, L., et al. (2019). Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges. Appl. Energ. 233-234: 622−643. DOI: 10.1016/j.apenergy.2018.10.063. |
[217] | Yuan, Z., Li, X., Zhao, Y., et al. (2015). Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery. ACS Appl. Mater. Interfaces 7: 19446−19454. DOI: 10.1021/acsami.5b05840. |
[218] | Zhang, B., Wang, Q., Guan, S., et al. (2018). High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications. J. Power Sources 399: 18−25. DOI: 10.1016/j.jpowsour.2018.07.050. |
[219] | Ahn, Y. and Kim, D. (2019). Anion exchange membrane prepared from imidazolium grafted poly(arylene ether ketone) with enhanced durability for vanadium redox flow battery. J. Ind. Eng. Chem. 71: 361−368. DOI: 10.1016/j.jiec.2018.11.047. |
[220] | Zhang, B., Zhang, S., Xing, D., et al. (2012). Quaternized poly (phthalazinone ether ketone ketone) anion exchange membrane with low permeability of vanadium ions for vanadium redox flow battery application. J. Power Sources 217: 296−302. DOI: 10.1016/j.jpowsour.2012.06.027. |
[221] | Wang, F., Ai, F., and Lu, Y. (2023). Ion selective membrane for redox flow battery, what’s next. Next Energy 1: 100053. DOI: 10.1016/j.nxener.2023.100053. |
[222] | Li, Z. and Lu, Y. (2021). Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6: 517−528. DOI: 10.1038/s41560-021-00804-x. |
[223] | Wei, W., Nan, S., Wang, H., et al. (2023). Design and preparation of sulfonated polymer membranes for zn/mno2 flow batteries with assistance of machine learning. J. Membr. Sci. 672: 121453. DOI: 10.1016/j.memsci.2023.121453. |
[224] | Wei, W., Zhang, H., Li, X., et al. (2013). Hydrophobic asymmetric ultrafiltration pvdf membranes: An alternative separator for vfb with excellent stability. Phys. Chem. Chem. Phys 15: 1766−1771. DOI: 10.1039/c2cp43761a. |
[225] | Xue, R., Jiang, F., Wang, F., et al. (2020). Towards cost-effective proton-exchange membranes for redox flow batteries: A facile and innovative method. J. Power Sources 449: 227475. DOI: 10.1016/j.jpowsour.2019.227475. |
[226] | Zhang, H., Zhang, H., Li, X., et al. (2011). Nanofiltration (nf) membranes: The next generation separators for all vanadium redox flow batteries (vrbs). Energy Environ. Sci. 4: 1676−1679. DOI: 10.1039/c1ee01117k. |
[227] | Zhang, H., Zhang, H., Li, X., et al. (2012). Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy Environ. Sci. 5: 6299−6303. DOI: 10.1039/c1ee02571f. |
[228] | Chae, I., Luo, T., Moon, G., et al. (2016). Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv. Energy Mater. 6: 201600517. DOI: 10.1002/aenm.201600517. |
[229] | Fang, B., Wei, Y., Arai, T., et al. (2003). Development of a novel redox flow battery for electricity storage system. J. Appl. Electrochem. 33: 197−203. DOI: 10.1023/a:1024025603600. |
[230] | Mögelin, H., Yao, G., Zhong, H., et al. (2018). Porous glass membranes for vanadium redox-flow battery application - effect of pore size on the performance. J. Power Sources 377: 18−25. DOI: 10.1016/j.jpowsour.2017.12.001. |
[231] | Lu, W., Yuan, Z., Zhao, Y., et al. (2016). High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy Environ. Sci. 9: 2319−2325. DOI: 10.1039/c6ee01371f. |
[232] | Park, M., Ryu, J., Wang, W., et al. (2016). Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2: 16080. DOI: 10.1038/natrevmats.2016.80. |
[233] | Zhou, X., Zhao, T., An, L., et al. (2016). Performance of a vanadium redox flow battery with a vanadion membrane. Appl. Energ. 180: 353−359. DOI: 10.1016/j.apenergy.2016.08.001. |
[234] | Zhao, Z., Dai, Q., Huang, S., et al. (2024). Highly stable side-chain-type cardo poly(aryl ether ketone)s membranes for vanadium flow battery. Chin. Chem. Lett. 35: 109231. DOI: 10.1016/j.cclet.2023.109231. |
[235] | Kong, D., Yuan, C., Zhi, L., et al. (2023). N-cnts-based composite membrane engineered by a partially embedded strategy: A facile route to high-performing zinc-based flow batteries. Adv. Funct. Mater. 33: 202301448. DOI: 10.1002/adfm.202301448. |
[236] | Yuan, Z., Liang, L., Dai, Q., et al. (2022). Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule 6: 884−905. DOI: 10.1016/j.joule.2022.02.016. |
[237] | Zuo, P., Ye, C., Jiao, Z., et al. (2023). Near-frictionless ion transport within triazine framework membranes. Nature 617: 299−305. DOI: 10.1038/s41586-023-05888-x. |
[238] | Gundlapalli, R. and Jayanti, S. (2021). Case studies of operational failures of vanadium redox flow battery stacks, diagnoses and remedial actions. J. Energy Storage 33: 102078. DOI: 10.1016/j.est.2020.102078. |
[239] | Xiaoling, F., Yang, L., Fuwen, S., et al. (2022). A multi-stack vanadium redox flow battery model considering electrolyte transfer delay. 2022 iSPEC. DOI: 10.1109/iSPEC54162.2022.10033033. |
[240] | Fink, H. and Remy, M. (2015). Shunt currents in vanadium flow batteries: Measurement, modelling and implications for efficiency. J. Power Sources 284: 547−553. DOI: 10.1016/j.jpowsour.2015.03.057. |
[241] | Yu-Hang, J., Zhi-Kuo, Z., Pei-Yuan, D., et al. (2023). Consistency analysis and resistance network design for vanadium redox flow battery stacks with a cell-resolved stack model. Int. J. Green Energy 20: 166−180. DOI: 10.1080/15435075.2021.2023885. |
[242] | Tang, A., McCann, J., Bao, J., et al. (2013). Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery. J. Power Sources 242: 349−356. DOI: 10.1016/j.jpowsour.2013.05.079. |
[243] | Trovò, A., Marini, G., Sutto, A., et al. (2019). Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects. Appl. Energ. 240: 893−906. DOI: 10.1016/j.apenergy.2019.02.067. |
[244] | Wandschneider, F., Röhm, S., Fischer, P., et al. (2014). A multi-stack simulation of shunt currents in vanadium redox flow batteries. J. Power Sources 261: 64−74. DOI: 10.1016/j.jpowsour.2014.03.054. |
[245] | Chen, H., Cheng, M., Feng, X., et al. (2021). Analysis and optimization for multi-stack vanadium flow battery module incorporating electrode permeability. J. Power Sources 515: 230606. DOI: 10.1016/j.jpowsour.2021.230606. |
[246] | Ravendra, G., Sanjay, K., and Jayanti, S. (2018). Stack design considerations for vanadium redox flow battery. INAE Lett. 2018: 149−157. DOI: 10.1007/s41403-018-0044-1. |
[247] | Xiong, B., Zhao, J., Tseng, K., et al. (2013). Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery. J. Power Sources 242: 314−324. DOI: 10.1016/j.jpowsour.2013.05.092. |
[248] | Ren, J., Wei, L., Wang, Z., et al. (2022). An electrochemical-thermal coupled model for aqueous redox flow batteries. Int. J. Heat. Mass. Tran. 192: 122926. DOI: 10.1016/j.ijheatmasstransfer.2022.122926. |
[249] | Xi, J., Xiao, S., Yu, L., et al. (2016). Broad temperature adaptability of vanadium redox flow battery—part 2: Cell research. Electrochim. Acta 191: 695−704. DOI: 10.1016/j.electacta.2016.01.165. |
[250] | Xiao, S., Yu, L., Wu, L., et al. (2016). Broad temperature adaptability of vanadium redox flow battery—part 1: Electrolyte research. Electrochim. Acta 187: 525−534. DOI: 10.1016/j.electacta.2015.11.062. |
[251] | Wang, K., Zhang, Y., Liu, L., et al. (2018). Broad temperature adaptability of vanadium redox flow battery-part 3: The effects of total vanadium concentration and sulfuric acid concentration. Electrochim. Acta 259: 11−19. DOI: 10.1016/j.electacta.2017.10.148. |
[252] | Pan, J., Huang, M., Li, X., et al. (2016). The performance of all vanadium redox flow batteries at below-ambient temperatures. Energy 107: 784−790. DOI: 10.1016/j.energy.2016.04.075. |
[253] | Han, S. and Tan, L. (2020). Thermal and efficiency improvements of all vanadium redox flow battery with novel main-side-tank system and slow pump shutdown. J. Energy Storage 28: 101274. DOI: 10.1016/j.est.2020.101274. |
[254] | Yang, Y., Zhang, Y., Liu, T., et al. (2019). Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte. J. Power Sources 415: 62−68. DOI: 10.1016/j.jpowsour.2019.01.049. |
[255] | Tang, A. and Skyllas-Kazacos, M. (2014). Simulation analysis of regional temperature effects and battery management schedules for a residential-scale vanadium redox flow battery system. ChemPlusChem 80: 368−375. DOI: 10.1002/cplu.201400034. |
[256] | Wang, H., Soong, W., Pourmousavi, S., et al. (2023). Thermal dynamics assessment of vanadium redox flow batteries and thermamanagement by active temperature control. J. Power Sources 570: 233027. DOI: 10.1016/j.jpowsour.2023.233027. |
[257] | Report, C. (2016). Operation of one of the world's largest storage battery sytems has been started. DOI: global-sei.com/csr/feature/2016/topics2016.pdf. |
[258] | Trovó, A. (2020). Battery management system for industrial-scale vanadium redox flow batteries: Features and operation. J. Power Sources 465: 228229. DOI: 10.1016/j.jpowsour.2020.228229. |
[259] | Raya-Armenta, J., Bazmohammadi, N., Avina-Cervantes, J., et al. (2021). Energy management system optimization in islanded microgrids: An overview and future trends. Renew. Sust. Energ. Rev. 149: 111327. DOI: 10.1016/j.rser.2021.111327. |
[260] | Service, R. (2018). New generation of ‘flow batteries’ could eventually sustain a grid powered by the sun and wind. Science DOI: 10.1126/science.aav9127. |
[261] | Foles, A., Fialho, L., Collares-Pereira, M., et al. (2022). An approach to implement photovoltaic self-consumption and ramp-rate control algorithm with a vanadium redox flow battery day-to-day forecast charging. SEGAN 30. DOI: ARTN 10062610.1016/j.segan.2022.100626. |
[262] | Khaki, B. and Das, P. (2021). Multi-objective optimal charging current and flow management of vanadium redox flow batteries for fast charging and energy-efficient operation. J. Power Sources 506: 230199. DOI: ARTN 23019910.1016/j.jpowsour.2021.230199. DOI: 10.1016/j.jpowsour.2021.230199. |
[263] | Bhattacharjee, A. and Saha, H. (2018). Development of an efficient thermal management system for vanadium redox flow battery under different charge-discharge conditions. Appl. Energ. 230: 1182−1192. DOI: 10.1016/j.apenergy.2018.09.056. |
[264] | Tang, A., Bao, J., and Skyllas-Kazacos, M. (2011). Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J. Power Sources 196: 10737−10747. DOI: 10.1016/j.jpowsour.2011.09.003. |
[265] | Kallol Roy, K., Mandal K.K., and Mandal A.C. (2020). A hybrid rfcro approach for the energy management of the grid connected microgrid system. International Transactions on Electrical Energy Systems. Int. Trans. Electr. Energ. Syst. 30: ete12660. DOI: 0.1002/2050-7038.12660. |
[266] | Wang, H., Pourmousavi, S., Soong, W., et al. (2023). Battery and energy management system for vanadium redox flow battery: A critical review and recommendations. J. Energy Storage 58: 106384. DOI: ARTN 10638410.1016/j.est.2022.106384. DOI: 10.1016/j.est.2022.106384. |
[267] | Quan, H., Teo, J., Trivedi, A., et al. (2019). Optimal energy management of vanadium redox flow batteries energy storage system for frequency regulation and peak shaving in an islanded microgrid. 2019 ISGT Asia. DOI: 10.1109/ISGT-Asia.2019.8880902. |
Pan L., Rao H., Ren J., et al., (2024). Innovations in stack design and optimization strategies for redox flow batteries in large-scale energy storage. The Innovation Energy 1(3): 100040. https://doi.org/10.59717/j.xinn-energy.2024.100040 |
The typical structure of the RFB stack.
Different types of electrolytes for RFBs including
Modified designs for SFFs include introducing parallel channels, subzones, and gradient designs
Novel flow field design methods
The catalysts modifications on conventional electrodes
Methodologies of designing the structural parameters of porous electrodes
The basic structure and principle of membranes
Uniformity issues of RFB stacks
Thermal management methods of RFBs
A hypothetical RFB-BMS scheme with the proposed functionalities.