LiFePO4 batteries offer stability but face gas risks in thermal runaway
In-situ analysis reveals ethylene and CO2 as main gases
Anode–electrolyte reactions drive heat and gas at 200–300 °C
Hydrogen mainly from Li–H2O reactions in reducing conditions
Findings guide safer design of next-generation LiFePO4 battery packs
| [1] | Jeevarajan J. A., Joshi T., Parhizi M., et al. (2022). Battery Hazards for Large Energy Storage Systems. ACS Energy Lett. 7:2725−2733. DOI:10.1021/acsenergylett.2c01400 |
| [2] | Wang G., Ping P., Peng R., et al. (2023). A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system. Renew. Sustain. Energy Rev. 186:113672. DOI:10.1016/j.rser.2023.113672 |
| [3] | Cheng Z., Wang C., Mei W., et al. (2024). Thermal runaway evolution of a 280 Ah lithium-ion battery with LiFePO4 as the cathode for different heat transfer modes constructed by mechanical abuse. J. Energy Chem. 93:32−45. DOI:10.1016/j.jechem.2024.01.073 |
| [4] | Wang H., Xu H., Zhang Z., et al. (2022). Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study. eTransportation 13:100190. DOI:10.1016/j.etran.2022.100190 |
| [5] | Song L., Huang Z., Mei W., et al. (2023). Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery. Process Safety Environ. Protect. 170:1066−1078. DOI:10.1016/j.psep.2022.12.082 |
| [6] | Wang Q., Wang H., Xu C., et al. (2024). Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage. eTransportation 20:100328. DOI:10.1016/j.etran.2024.100328 |
| [7] | Jin C., Sun Y., Yao J., et al. (2022). No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology. eTransportation 14. DOI:10.1016/j.etran.2022.100199. |
| [8] | Zhou Z., Zhou X., Li M., et al. (2022). Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module. Appl. Energy 327. DOI:10.1016/j.apenergy.2022.120119. |
| [9] | Gao P., Song L., Jia Z., et al. (2025). Revealing the contribution of flame spread to vertical thermal runaway propagation for energy storage systems. J. Power Sour. 628:235897. DOI:10.1016/j.jpowsour.2024.235897 |
| [10] | Zhang Y., Cheng S., Mei W., et al. (2023). Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis. Appl. Energy 336:120695. DOI:10.1016/j.apenergy.2023.120695 |
| [11] | Zhao L., Hou J., Feng X., et al. (2024). The trade-off characteristic between battery thermal runaway and combustion. Energy Storage Mater. 69:103380. DOI:10.1016/j.ensm.2024.103380 |
| [12] | Hou J., Feng X., Wang L., et al. (2021). Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Mater. 39:395−402. DOI:10.1016/j.ensm.2021.04.035 |
| [13] | Li Y., Liu X., Wang L., et al. (2021). Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy 85:105878. DOI:10.1016/j.nanoen.2021.105878. |
| [14] | Kim J., Park K.-Y., Park I., et al. (2012). Thermal stability of Fe–Mn binary olivine cathodes for Li rechargeable batteries. J. Mater. Chem. 22:11964−11970. DOI:10.1039/C2JM30733B |
| [15] | Barkholtz H. M., Preger Y., Ivanov S., et al. (2019). Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J Power Sources 435:226777. DOI:10.1016/j.jpowsour.2019.226777 |
| [16] | Röder P., Baba N., Friedrich K. A. and Wiemhöfer H. D. (2013). Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry. J. Power Sources 236:151−157. DOI:10.1016/j.jpowsour.2013.02.044 |
| [17] | Liu X., Yin L., Ren D., et al. (2021). In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12:4235. DOI:10.1038/s41467-021-24404-1 |
| [18] | Abd‐El‐Latif A. A., Sichler P., Kasper M., et al. (2021). Insights Into Thermal Runaway of Li–Ion Cells by Accelerating Rate Calorimetry Coupled with External Sensors and Online Gas Analysis. Batteries & Supercaps. DOI:10.1002/batt.202100023. |
| [19] | Bugryniec P. J., Resendiz E. G., Nwophoke S. M., et al. (2024). Review of gas emissions from lithium-ion battery thermal runaway failure — Considering toxic and flammable compounds. J. Energy Storage 87:111288. DOI:10.1016/j.est.2024.111288 |
| [20] | Roth E. P. and Orendorff C. J. (2012). How Electrolytes Influence Battery Safety. Electrochem. Soc. Inter. 21:45. DOI:10.1149/2.F04122if |
| [21] | Chen H., Yang K., Shao J., et al. (2024). Explosion dynamics for thermal runaway gases of 314 Ah LiFePO4 lithium-ion batteries triggered by overheating and overcharging. Process Safety Environ. Protect. 192:1238−1248. DOI:10.1016/j.psep.2024.10.111 |
| [22] | Chen J., Xu C., Wang Q., et al. (2025). The thermal-gas coupling mechanism of lithium iron phosphate batteries during thermal runaway. J. Power Sources 625:235728. DOI:10.1016/j.jpowsour.2024.235728 |
| [23] | Zheng Y., Shi Z., Ren D., et al. (2022). In-depth investigation of the exothermic reactions between lithiated graphite and electrolyte in lithium-ion battery. J. Energy Chem. 69:593−600. DOI:10.1016/j.jechem.2022.01.027 |
| [24] | Strehle B., Solchenbach S., Metzger M., et al. (2017). The Effect of CO2 on Alkyl Carbonate Trans-Esterification during Formation of Graphite Electrodes in Li-Ion Batteries. J. Electrochem. Soc. 164:A2513. DOI:10.1149/2.1001712jes |
| [25] | Hao W., Liu S., Niu P., et al. (2024). A device for real-time detection of gas generated from commercial lithium-ion cell. J.Phy. Conference Series 2826:012020. DOI:10.1088/1742-6596/2826/1/012020 |
| [26] | Bak S.-M., Hu E., Zhou Y., et al. (2014). Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy. Acs Appl. Mater. Inter. 6:22594−22601. DOI:10.1021/am506712c |
| [27] | Jo S., Seo S., Kang S. K., et al. (2024). Thermal Runaway Mechanism in Ni-Rich Cathode Full Cells of Lithium-Ion Batteries: The Role of Multidirectional Crosstalk. Adv. Mater. 36:2402024. DOI:10.1002/adma.202402024 |
| [28] | Ong S. P., Wang L., Kang B. and Ceder G. (2008). Li−Fe−P−O2 Phase Diagram from First Principles Calculations. Chem. Mater. 20:1798−1807. DOI:10.1021/cm702327g |
| [29] | Wang Y., Cai S., Sun Z., et al. (2022). An Active-Oxygen-Scavenging Oriented Cathode-Electrolyte-Interphase for Long-Life Lithium-Rich Cathode Materials. Small 18:2106072. DOI:10.1002/smll.202106072 |
| [30] | Haik O., Ganin S., Gershinsky G., et al. (2011). On the Thermal Behavior of Lithium Intercalated Graphites. J. Electrochem. Soc. 158:A913. DOI:10.1149/1.3598173 |
| [31] | Zhou H., Parmananda M., Crompton K. R., et al. (2022). Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios. Energy Storage Mater. 44:326−341. DOI:10.1016/j.ensm.2021.10.030 |
| [32] | Wang Q. S., Mao B. B., Stoliarov S. I. and Sun J. H. (2019). A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energ. Combust. 73:95−131. DOI:10.1016/j.pecs.2019.03.002 |
| [33] | Wandt J., Freiberg A. T. S., Ogrodnik A. and Gasteiger H. A. (2018). Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21:825−833. DOI:10.1016/j.mattod.2018.03.037 |
| [34] | Song L., Wang S., Jia Z., et al. (2024). A comprehensive investigation of thermal runaway critical temperature and energy for lithium iron phosphate batteries. J. Energy Storage 86:111162. DOI:10.1016/j.est.2024.111162 |
| [35] | Yue Y., Jia Z., Li Y., et al. (2024). Thermal runaway hazards comparison between sodium-ion and lithium-ion batteries using accelerating rate calorimetry. Process Safety Environ. Protect. 189:61−70. DOI:10.1016/j.psep.2024.06.032 |
| [36] | Xu G., Li J., Wang C., et al. (2021). The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angew. Chemie. 133:7849−7855. DOI:10.1002/ange.202013812 |
| [37] | Aurbach D., Weissman I., Zaban A. and Dan P. (1999). On the role of water contamination in rechargeable Li batteries. Electrochim. Acta 45:1135−1140. DOI:10.1002/ange.202013812 |
| [38] | Du Pasquier A., Disma F., Bowmer T., et al. (1998). Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries. J. Electrochem. Soc. 145:472−477. DOI:10.1149/1.1838287 |
| [39] | Wang Y., Feng X., Huang W., et al. (2023). Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of High-Energy Batteries. Adv. Energy Mater 2203841. DOI:10.1002/aenm.202203841 |
| [40] | Wang H., Tang A. and Wang K. (2011). Thermal Behavior Investigation ofLiNi1/3Co1/3Mn1/3O2-Based Li-ion Battery under Overcharged Test. Chinese J.Chem. 29:27−32. DOI:10.1002/cjoc.201190056 |
| [41] | Kanayama K., Takahashi S., Morikura S., et al. (2022). Study on oxidation and pyrolysis of carbonate esters using a micro flow reactor with a controlled temperature profile. Part I: Reactivities of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. Combust. Flame 237:111810. DOI:10.1016/j.combustflame.2021.111810 |
| [42] | Golubkov A. W., Fuchs D., Wagner J., et al. (2014). Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. Rsc. Adv. 4:3633−3642. DOI:10.1039/C3RA45748F |
| [43] | Golubkov A. W., Scheikl S., Planteu R., et al. (2015). Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge. Rsc. Adv. 5:57171−57186. DOI:10.1039/c5ra05897j |
| [44] | Metzger M., Strehle B., Solchenbach S. and Gasteiger H. A. (2016). Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. J. Electrochem. Soc. 163:A798. DOI:10.1149/2.1151605jes |
| [45] | Feng X., Ouyang M., Liu X., et al. (2018). Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 10:246−267. DOI:10.1016/j.ensm.2017.05.013 |
| [46] | MacNeil D. D., Christensen L., Landucci J., et al. (2000). An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature. J. Electrochem. Soc. 147:970−979. DOI:10.1149/1.1393299 |
| [47] | Richard M. N. and Dahn J. R. (1999). Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte II. Modeling the results and predicting differential scanning calorimeter curves. J. Electrochem. Soc. 146:2078−2084. |
| [48] | Qin P., Sun J. and Wang Q. (2021). A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway. J. Power Sour. 486:229357. DOI:10.1016/j.jpowsour.2020.229357 |
| Zhang Y., Teng A., Fang Z., et al. (2025). In-situ gas observation in thermal-driven degradation of LiFePO4 battery. The Innovation Energy 2:100107. https://doi.org/10.59717/j.xinn-energy.2025.100107 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Experimental setup and procedures for the gas analysis.
General gas analysis of full cell sample based on in-situ TG-MS-IR experiments
Experiments to explore oxygen evolution of LiFePO4 battery
The evolution of H2 during the thermal degradation of the active materials
Schematic illustration of three primary mechanisms for CO2 and CO evolution.31,43,45-47
(A) Real-time gassing behavior of DEC, EC, POF3, CO2 in the full cell sample, AN+ELE sample and CA+ELE sample based on MS spectra. (B) Temperature-dependent FTIR study of gas generation in full cell samples.
The mechanism proposed by gas observation in thermal-driven degradation of LiFePO4 battery.