Article Contents
ARTICLE   Open Access     Cite

In-situ gas observation in thermal-driven degradation of LiFePO4 battery

More Information
  • Corresponding author: pinew@ustc.edu.cn (Q. Wang)
  • DownLoad: Full size image
    1. LiFePO4 batteries offer stability but face gas risks in thermal runaway

      In-situ analysis reveals ethylene and CO2 as main gases

      Anode–electrolyte reactions drive heat and gas at 200–300 °C

      Hydrogen mainly from Li–H2O reactions in reducing conditions

      Findings guide safer design of next-generation LiFePO4 battery packs

  • Lithium-ion batteries are gaining prominence as energy storage needs evolve to meet modern performance and sustainability demands. Lithium iron phosphate batteries, despite their high thermal stability, face safety risks from flammable gas emissions during thermal runaway. Determining the pathways of gas evolution reactions is essential for understanding the thermal runaway mechanism. This study systematically investigates characteristic gas generation pathways through in situ analysis coupled with structural characterization of the LiFePO4 cathode, proposing six key gas generation reactions involved in the thermal degradation of LiFePO4 batteries. The internal reaction mechanisms are inherently dependent on environmental conditions, and the product distribution is essentially a probabilistic process. The in-situ analysis shows that ethylene and carbon dioxide are the primary gases produced during thermal runaway, mainly resulting from chemical reactions involving electrolyte decomposition. Diethyl carbonate undergoes concurrent evaporation and thermal degradation, while ethylene carbonate preferentially reacts with active electrode materials. Although cathode structural transformations occur during heating, no direct oxygen evolution was detected in our experimental conditions. The primary thermal runaway drivers are identified as anode-electrolyte reactions that synergistically release heat and gases during 200-300°C. Furthermore, correlation analysis was performed to investigate the source of hydrogen, indicating that a significant amount of hydrogen in cell-level tests was generated by reactions involving metallic lithium and trace water in the reductive environment. These insights advance both fundamental understanding of battery degradation chemistry and practical design of next-generation LiFePO4 pack systems with intrinsic thermal safety.
  • 加载中
  • [1] Jeevarajan J. A., Joshi T., Parhizi M., et al. (2022). Battery Hazards for Large Energy Storage Systems. ACS Energy Lett. 7:2725−2733. DOI:10.1021/acsenergylett.2c01400

    View in Article CrossRef Google Scholar

    [2] Wang G., Ping P., Peng R., et al. (2023). A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system. Renew. Sustain. Energy Rev. 186:113672. DOI:10.1016/j.rser.2023.113672

    View in Article CrossRef Google Scholar

    [3] Cheng Z., Wang C., Mei W., et al. (2024). Thermal runaway evolution of a 280 Ah lithium-ion battery with LiFePO4 as the cathode for different heat transfer modes constructed by mechanical abuse. J. Energy Chem. 93:32−45. DOI:10.1016/j.jechem.2024.01.073

    View in Article CrossRef Google Scholar

    [4] Wang H., Xu H., Zhang Z., et al. (2022). Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study. eTransportation 13:100190. DOI:10.1016/j.etran.2022.100190

    View in Article CrossRef Google Scholar

    [5] Song L., Huang Z., Mei W., et al. (2023). Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery. Process Safety Environ. Protect. 170:1066−1078. DOI:10.1016/j.psep.2022.12.082

    View in Article CrossRef Google Scholar

    [6] Wang Q., Wang H., Xu C., et al. (2024). Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage. eTransportation 20:100328. DOI:10.1016/j.etran.2024.100328

    View in Article CrossRef Google Scholar

    [7] Jin C., Sun Y., Yao J., et al. (2022). No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology. eTransportation 14. DOI:10.1016/j.etran.2022.100199.

    View in Article Google Scholar

    [8] Zhou Z., Zhou X., Li M., et al. (2022). Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module. Appl. Energy 327. DOI:10.1016/j.apenergy.2022.120119.

    View in Article Google Scholar

    [9] Gao P., Song L., Jia Z., et al. (2025). Revealing the contribution of flame spread to vertical thermal runaway propagation for energy storage systems. J. Power Sour. 628:235897. DOI:10.1016/j.jpowsour.2024.235897

    View in Article CrossRef Google Scholar

    [10] Zhang Y., Cheng S., Mei W., et al. (2023). Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis. Appl. Energy 336:120695. DOI:10.1016/j.apenergy.2023.120695

    View in Article CrossRef Google Scholar

    [11] Zhao L., Hou J., Feng X., et al. (2024). The trade-off characteristic between battery thermal runaway and combustion. Energy Storage Mater. 69:103380. DOI:10.1016/j.ensm.2024.103380

    View in Article CrossRef Google Scholar

    [12] Hou J., Feng X., Wang L., et al. (2021). Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Mater. 39:395−402. DOI:10.1016/j.ensm.2021.04.035

    View in Article CrossRef Google Scholar

    [13] Li Y., Liu X., Wang L., et al. (2021). Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy 85:105878. DOI:10.1016/j.nanoen.2021.105878.

    View in Article Google Scholar

    [14] Kim J., Park K.-Y., Park I., et al. (2012). Thermal stability of Fe–Mn binary olivine cathodes for Li rechargeable batteries. J. Mater. Chem. 22:11964−11970. DOI:10.1039/C2JM30733B

    View in Article CrossRef Google Scholar

    [15] Barkholtz H. M., Preger Y., Ivanov S., et al. (2019). Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J Power Sources 435:226777. DOI:10.1016/j.jpowsour.2019.226777

    View in Article CrossRef Google Scholar

    [16] Röder P., Baba N., Friedrich K. A. and Wiemhöfer H. D. (2013). Impact of delithiated Li0FePO4 on the decomposition of LiPF6-based electrolyte studied by accelerating rate calorimetry. J. Power Sources 236:151−157. DOI:10.1016/j.jpowsour.2013.02.044

    View in Article CrossRef Google Scholar

    [17] Liu X., Yin L., Ren D., et al. (2021). In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12:4235. DOI:10.1038/s41467-021-24404-1

    View in Article CrossRef Google Scholar

    [18] Abd‐El‐Latif A. A., Sichler P., Kasper M., et al. (2021). Insights Into Thermal Runaway of Li–Ion Cells by Accelerating Rate Calorimetry Coupled with External Sensors and Online Gas Analysis. Batteries & Supercaps. DOI:10.1002/batt.202100023.

    View in Article Google Scholar

    [19] Bugryniec P. J., Resendiz E. G., Nwophoke S. M., et al. (2024). Review of gas emissions from lithium-ion battery thermal runaway failure — Considering toxic and flammable compounds. J. Energy Storage 87:111288. DOI:10.1016/j.est.2024.111288

    View in Article CrossRef Google Scholar

    [20] Roth E. P. and Orendorff C. J. (2012). How Electrolytes Influence Battery Safety. Electrochem. Soc. Inter. 21:45. DOI:10.1149/2.F04122if

    View in Article CrossRef Google Scholar

    [21] Chen H., Yang K., Shao J., et al. (2024). Explosion dynamics for thermal runaway gases of 314 Ah LiFePO4 lithium-ion batteries triggered by overheating and overcharging. Process Safety Environ. Protect. 192:1238−1248. DOI:10.1016/j.psep.2024.10.111

    View in Article CrossRef Google Scholar

    [22] Chen J., Xu C., Wang Q., et al. (2025). The thermal-gas coupling mechanism of lithium iron phosphate batteries during thermal runaway. J. Power Sources 625:235728. DOI:10.1016/j.jpowsour.2024.235728

    View in Article CrossRef Google Scholar

    [23] Zheng Y., Shi Z., Ren D., et al. (2022). In-depth investigation of the exothermic reactions between lithiated graphite and electrolyte in lithium-ion battery. J. Energy Chem. 69:593−600. DOI:10.1016/j.jechem.2022.01.027

    View in Article CrossRef Google Scholar

    [24] Strehle B., Solchenbach S., Metzger M., et al. (2017). The Effect of CO2 on Alkyl Carbonate Trans-Esterification during Formation of Graphite Electrodes in Li-Ion Batteries. J. Electrochem. Soc. 164:A2513. DOI:10.1149/2.1001712jes

    View in Article CrossRef Google Scholar

    [25] Hao W., Liu S., Niu P., et al. (2024). A device for real-time detection of gas generated from commercial lithium-ion cell. J.Phy. Conference Series 2826:012020. DOI:10.1088/1742-6596/2826/1/012020

    View in Article CrossRef Google Scholar

    [26] Bak S.-M., Hu E., Zhou Y., et al. (2014). Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy. Acs Appl. Mater. Inter. 6:22594−22601. DOI:10.1021/am506712c

    View in Article CrossRef Google Scholar

    [27] Jo S., Seo S., Kang S. K., et al. (2024). Thermal Runaway Mechanism in Ni-Rich Cathode Full Cells of Lithium-Ion Batteries: The Role of Multidirectional Crosstalk. Adv. Mater. 36:2402024. DOI:10.1002/adma.202402024

    View in Article CrossRef Google Scholar

    [28] Ong S. P., Wang L., Kang B. and Ceder G. (2008). Li−Fe−P−O2 Phase Diagram from First Principles Calculations. Chem. Mater. 20:1798−1807. DOI:10.1021/cm702327g

    View in Article CrossRef Google Scholar

    [29] Wang Y., Cai S., Sun Z., et al. (2022). An Active-Oxygen-Scavenging Oriented Cathode-Electrolyte-Interphase for Long-Life Lithium-Rich Cathode Materials. Small 18:2106072. DOI:10.1002/smll.202106072

    View in Article CrossRef Google Scholar

    [30] Haik O., Ganin S., Gershinsky G., et al. (2011). On the Thermal Behavior of Lithium Intercalated Graphites. J. Electrochem. Soc. 158:A913. DOI:10.1149/1.3598173

    View in Article CrossRef Google Scholar

    [31] Zhou H., Parmananda M., Crompton K. R., et al. (2022). Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios. Energy Storage Mater. 44:326−341. DOI:10.1016/j.ensm.2021.10.030

    View in Article CrossRef Google Scholar

    [32] Wang Q. S., Mao B. B., Stoliarov S. I. and Sun J. H. (2019). A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energ. Combust. 73:95−131. DOI:10.1016/j.pecs.2019.03.002

    View in Article CrossRef Google Scholar

    [33] Wandt J., Freiberg A. T. S., Ogrodnik A. and Gasteiger H. A. (2018). Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21:825−833. DOI:10.1016/j.mattod.2018.03.037

    View in Article CrossRef Google Scholar

    [34] Song L., Wang S., Jia Z., et al. (2024). A comprehensive investigation of thermal runaway critical temperature and energy for lithium iron phosphate batteries. J. Energy Storage 86:111162. DOI:10.1016/j.est.2024.111162

    View in Article CrossRef Google Scholar

    [35] Yue Y., Jia Z., Li Y., et al. (2024). Thermal runaway hazards comparison between sodium-ion and lithium-ion batteries using accelerating rate calorimetry. Process Safety Environ. Protect. 189:61−70. DOI:10.1016/j.psep.2024.06.032

    View in Article CrossRef Google Scholar

    [36] Xu G., Li J., Wang C., et al. (2021). The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angew. Chemie. 133:7849−7855. DOI:10.1002/ange.202013812

    View in Article CrossRef Google Scholar

    [37] Aurbach D., Weissman I., Zaban A. and Dan P. (1999). On the role of water contamination in rechargeable Li batteries. Electrochim. Acta 45:1135−1140. DOI:10.1002/ange.202013812

    View in Article CrossRef Google Scholar

    [38] Du Pasquier A., Disma F., Bowmer T., et al. (1998). Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries. J. Electrochem. Soc. 145:472−477. DOI:10.1149/1.1838287

    View in Article CrossRef Google Scholar

    [39] Wang Y., Feng X., Huang W., et al. (2023). Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of High-Energy Batteries. Adv. Energy Mater 2203841. DOI:10.1002/aenm.202203841

    View in Article CrossRef Google Scholar

    [40] Wang H., Tang A. and Wang K. (2011). Thermal Behavior Investigation ofLiNi1/3Co1/3Mn1/3O2-Based Li-ion Battery under Overcharged Test. Chinese J.Chem. 29:27−32. DOI:10.1002/cjoc.201190056

    View in Article Google Scholar

    [41] Kanayama K., Takahashi S., Morikura S., et al. (2022). Study on oxidation and pyrolysis of carbonate esters using a micro flow reactor with a controlled temperature profile. Part I: Reactivities of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. Combust. Flame 237:111810. DOI:10.1016/j.combustflame.2021.111810

    View in Article CrossRef Google Scholar

    [42] Golubkov A. W., Fuchs D., Wagner J., et al. (2014). Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. Rsc. Adv. 4:3633−3642. DOI:10.1039/C3RA45748F

    View in Article CrossRef Google Scholar

    [43] Golubkov A. W., Scheikl S., Planteu R., et al. (2015). Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge. Rsc. Adv. 5:57171−57186. DOI:10.1039/c5ra05897j

    View in Article CrossRef Google Scholar

    [44] Metzger M., Strehle B., Solchenbach S. and Gasteiger H. A. (2016). Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. J. Electrochem. Soc. 163:A798. DOI:10.1149/2.1151605jes

    View in Article CrossRef Google Scholar

    [45] Feng X., Ouyang M., Liu X., et al. (2018). Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 10:246−267. DOI:10.1016/j.ensm.2017.05.013

    View in Article CrossRef Google Scholar

    [46] MacNeil D. D., Christensen L., Landucci J., et al. (2000). An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature. J. Electrochem. Soc. 147:970−979. DOI:10.1149/1.1393299

    View in Article CrossRef Google Scholar

    [47] Richard M. N. and Dahn J. R. (1999). Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte II. Modeling the results and predicting differential scanning calorimeter curves. J. Electrochem. Soc. 146:2078−2084.

    View in Article Google Scholar

    [48] Qin P., Sun J. and Wang Q. (2021). A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway. J. Power Sour. 486:229357. DOI:10.1016/j.jpowsour.2020.229357

    View in Article CrossRef Google Scholar

  • Cite this article:

    Zhang Y., Teng A., Fang Z., et al. (2025). In-situ gas observation in thermal-driven degradation of LiFePO4 battery. The Innovation Energy 2:100107. https://doi.org/10.59717/j.xinn-energy.2025.100107
    Zhang Y., Teng A., Fang Z., et al. (2025). In-situ gas observation in thermal-driven degradation of LiFePO4 battery. The Innovation Energy 2:100107. https://doi.org/10.59717/j.xinn-energy.2025.100107

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(7)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2881) PDF downloads(447)

Relative Articles

Cited by

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint