[1] | Lusty, P.A.J., and Murton, B.J. (2018). Deep-ocean mineral deposits: Metal resources and windows into earth processes. Elements 14: 301−306. DOI: 10.2138/gselements.14.5.301. |
[2] | Hitchin, B., Smith, S., Kröger, K., et al. (2022). Thresholds in deep-seabed mining: A primer for their development. Marine Policy 149: 105505. DOI: 10.1016/j.marpol.2023.105505. |
[3] | Mestre, N., Auguste, M., De Sá, L., et al. (2019). Are shallow-water shrimps proxies for hydrothermal-vent shrimps to assess the impact of deep-sea mining. Marine Environmental Research 151: 104771. DOI: 10.1016/j.marenvres.2019.104771. |
[4] | Kwan, Y.H., Zhang, D., Mestre, N.C., et al. (2019). Comparative proteomics on deep-sea amphipods after in situ copper exposure. Environmental Science & Technology 53: 13981−13991. DOI: 10.1021/acs.est.9b04503. |
[5] | Van Dover, C.L., Ardron, J., Escobar, E., et al. (2017). Biodiversity loss from deep-sea mining. Nature Geoscience 10: 464−465. DOI: 10.1038/ngeo2983. |
Kwan Y.-H., Mestre N.-C., Zhang D., et al., (2023). Metal ecotoxicology: An essential component in environmental impact assessment of deep-sea mining. The Innovation Geoscience 1(1), 100004. https://doi.org/10.59717/j.xinn-geo.2023.100004 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
(A) Illustration of potential metal toxicology impacts generated from DSM. (B) Systematic workflow proposed for standardizing DSM research in the future.