Asia has a unique landscape characterized by high plateau, monsoon, and aridity.
Asian landscape has evolved by three stages during the past ~50 million years.
The Asian landscape was established at ~3.0 million years ago.
Tectonic uplift and global cooling have determined the Asian landscape.
[1] | Ding, L., Kapp, P., Cai, F.L., et al. (2022). Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652-667. |
[2] | Fielding, E.J. (1996). Tibet uplift and erosion. Tectonophysics. 260, 55-84. |
[3] | Harrison, T.M., Copeland, P., Kidd, W.S.F., and Yin, A. (1992). Raising Tibet. Science. 255, 1663-1670. |
[4] | Hu, X.M., Wang, J.G., An, W., et al. (2017). Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci. China: Earth Sci. 60, 603-625. |
[5] | Najman, Y., Jenks, D., Godin, L., et al. (2017). The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet. Sci. Lett. 459, 301-310. |
[6] | Molnar, P., and England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature. 346, 29-34. |
[7] | Tapponnier, P., and Molnar, P. (1977). Active faulting and tectonics in China. J. Geophys. Res. 82, 2905-2930. |
[8] | Spicer, R.A., Su, T., Valdes, P.J., et al. (2021). Why 'the uplift of the Tibetan Plateau' is a myth. Natl. Sci. Rev. 8, nwaa091. |
[9] | Wu, F.L., Fang, X.M., Yang, Y.B., et al. (2022). Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 684-700. |
[10] | Molnar, P., and Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science. 189, 419-26. |
[11] | Molnar, P., and Tapponnier, P. (1977). The collision between India and Eurasia. Sci. Am. 236, 30-41. |
[12] | Zhu, R.X., and Xu, Y.G. (2019). The subduction of the west Pacific plate and the destruction of the North China Craton. Sci. China: Earth Sci. 62, 1340-1350. |
[13] | Kimura, J., Stern, R.J., and Yoshida, T. (2005). Reinitiation of subduction and magmatic responses in SW Japan during Neogene time. Geol. Soc. Am. Bull. 117, 969-986. |
[14] | Clinkscales, C., Kapp, P., Thomson, S., et al. (2021). Regional exhumation and tectonic history of the Shanxi Rift and Taihangshan, North China. Tectonics. 40, e2020TC006416. |
[15] | Clinkscales, C., and Kapp, P. (2019). Structural style and kinematics of the Taihang-Luliangshan fold belt, north China; implications for the Yanshanian Orogeny. Lithosphere. 11, 767-783. |
[16] | Dong, Y.P., Shi, X.H., Sun, S.S., et al. (2022). Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China. Geosystems and Geoenvironment. 1, 100032. |
[17] | Enkelmann, E., Ratschbacher, L., Jonckheere, R., et al. (2006). Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin? Geol. Soc. Am. Bull. 118, 651-671. |
[18] | Kapp, P., and DeCelles, P.G. (2019). Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159-254. |
[19] | Liu, J.H., Zhang, P.Z., Lease, R.O., et al. (2013). Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics. 584, 281-296. |
[20] | Yu, J.X., Zheng, D.W., Pang, J.Z., et al. (2022). Cenozoic mountain building in eastern China and its correlation with reorganization of the Asian climate regime. Geology. 50, 859-863. |
[21] | Zhang, G.W., Zhang, B.R., Yuan, X.C., and Xiao, Q.H. (2001). Qinling orogenic belt and continental dynamics. Science Press, Beijing, 802. |
[22] | Chiang, J.C.H., Fung, I.Y., Wu, C., et al. (2015). Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111-129. |
[23] | Ding, Y.H. (2004). Seasonal march of the East-Asian summer monsoon. East Asian Monsoon, 3-53. |
[24] | Li, J.P., and Zeng, Q.C. (2005). A New Monsoon Index, its interannual variability and relation with monsoon precipitation. Climatic and Environmental Research (in Chinese). 10, 351-365. |
[25] | Wang, B. (2006). The Asian monsoon. Springer Science & Business Media. |
[26] | Wang, P.X., Wang, B., Cheng, H., et al. (2017). The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci. Rev. 174, 84-121. |
[27] | Berger, A., and Yin, Q. (2021). Astronomical theories of climate: a long history. In: Jacques Joyard, René Moreau and Joël Sommeria, Encyclopedia of the Environment, 1-15. |
[28] | Berger, A.L. (1978). Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quat. Res. 9, 139-167. |
[29] | Laskar, J., Robutel, P., Joutel, F., et al. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261-285. |
[30] | Clemens, S.C., Murray, D.W., Prell, W.L. (1996). Nonstationary phase of the plio-pleistocene Asian monsoon. Science. 274, 943-948. |
[31] | Clemens, S.C., Prell, W.L., Sun, Y.B., et al. (2008). Southern Hemisphere forcing of Pliocene d18O and the evolution of Indo-Asian monsoons. Paleoceanography. 23, PA4210. |
[32] | Liu, Z.Y., and Alexander, M. (2007). Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45, RG2005. |
[33] | Lu, H.Y., Liu, X.D., Zhang, F.Q., et al. (1999). Astronomical calibration of loess-paleosol deposits at Luochuan, central Chinese Loess Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol. 154, 237-246. |
[34] | Lu, H.Y., Zhang, F.Q., Liu, X.D., and Duce, R.A. (2004). Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China. Quat. Sci. Rev. 23, 1891-1900. |
[35] | Wang, Y.C., Lu, H.Y., Wang, K.X., et al. (2020). Combined high- and low-latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period. Sci. Adv. 6, eabc2414. |
[36] | Lu, H.Y., Zhang, F.Q., and Liu, X.D. (2002). Patterns and frequencies of the East Asian winter monsoon variations during the past million years revealed by wavelet and spectral analyses. Glob. Planet. Change. 35, 67-74. |
[37] | Lu, H.Y., Wang, X.Y., Wang, Y., et al. (2022). Chinese loess and the Asian monsoon: What we know and what remains unknown. Quatern. Int. 620, 85-97. |
[38] | Lu, H.Y. (2015). Driving force behind global cooling in the Cenozoic: an ongoing mystery. Sci. Bull. 60, 2091-2095. |
[39] | Beerling, D.J., and Royer, D.L. (2011). Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418-420. |
[40] | Herbert, T.D., Dalton, C.A., Liu, Z.H., et al. (2022). Tectonic degassing drove global temperature trends since 20 Ma. Science. 377, 116-119. |
[41] | Westerhold, T., Marwan, N., Drury, A.J., et al. (2020). An astronomically dated record of Earth' s climate and its predictability over the last 66 million years. Science. 369, 1383-1387. |
[42] | Zhang, Y.G., Pagani, M., Liu, Z.H., et al. (2013). A 40-million-year history of atmospheric CO2. Phil. Trans. R. Soc. A. 371, 20130096. |
[43] | P. R. Shukla, J. Skea, R. Slade, et al. (2022). IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2029. |
[44] | Lu, H.Y., Zhang, H.Z., Feng, H., et al. (2023). Landform evolution in Asia during the Cenozoic revealed by formation of drainages of Wei River and Indus River. Palaeogeogr., Palaeoclimatol., Palaeoecol. 619, 111516. |
[45] | Lu, H.Y., Zhang, H.Z., Wang, Y.C., et al. (2018). Cenozoic depositional sequence in the Weihe Basin (Central China): A long-term record of Asian monsoon precipitation from the greenhouse to icehouse Earth. Quat. Sci. 38, 1057-1067. |
[46] | Wang, Y.C., Lu, H.Y., Lyu, H.Z., et al. (2023). East Asian hydroclimate responses to the Eocene-Oligocene transition in the Weihe Basin, central China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 615, 111436. |
[47] | Feng, H., Lu, H.Y., Carrapa, B., et al. (2021). Erosion of the Himalaya-Karakoram recorded by Indus Fan deposits since the Oligocene. Geology. 49, 1126-1131. |
[48] | Lu, H.Y., and Guo, Z.T. (2014). Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review. Sci. China: Earth Sci. 57, 70-79. |
[49] | Li, Z.Y., Zhang, Y.G., Torres, M., and Mills, B.J.W. (2023). Neogene burial of organic carbon in the global ocean. Nature. 613, 90-95. |
[50] | Tapponnier, P., Peltzer, G., Le Dain, A.Y., et al. (1982). Propagating extrusion tectonics in Asia; new insights from simple experiments with plasticine. Geology. 10, 611-616. |
[51] | Yin, A. (2010). Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics. 488, 293-325. |
[52] | Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., et al. (2009). Global multi-resolution topography synthesis. Geochem., Geophys., Geosyst. 10, Q03014. |
[53] | Huang, J.Q., and Chen, B.W. (1987). The evolution of the Tethys in China and adjacent regions. Geological Publishing House. |
[54] | Pan, G.T., Xiao, Q.H., Lu, S.N., et al. (2009). Subdivision of tectonic units in China. Geology in China. 36, 1-28. |
[55] | Ren, J.S. (1996). The continental tectonics of China. J. Southeast Asian Earth Sci. 13, 197-204. |
[56] | Rowley, D.B., and Currie, B.S. (2006). Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature. 439, 677-681. |
[57] | Royden, L.H., Burchfiel, B.C., King, R.W., et al. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science. 276, 788-790. |
[58] | Yin, A., and Harrison, T.M. (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 211-280. |
[59] | Molnar, P., and Stock, J.M. (2009). Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics. 28, TC3001. |
[60] | Wang, C.S., Zhao, X.X., Liu, Z.F., et al. (2008). Constraints on the early uplift history of the Tibetan Plateau. Proc. Natl. Acad. Sci. U. S. A. 105, 4987-4992. |
[61] | Wang, C.S., Dai, J.G., Zhao, X.X., et al. (2014). Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics. 621, 1-43. |
[62] | Duvall, A.R., Clark, M.K., Kirby, E., et al. (2013). Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics. 32, 1190-1211. |
[63] | England, P.C., and Houseman, G.A. (1988). The mechanics of the Tibetan Plateau. Phil. Trans. R. Soc. A. 326, 301-320. |
[64] | England, P., and Searle, M. (1986). The Cretaceous-tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet. Tectonics. 5, 1-14. |
[65] | Fang, X.M., Yan, M.D., Zhang, W.L., et al. (2021). Paleogeography control of Indian monsoon intensification and expansion at 41 Ma. Sci. Bull. 66, 2320-2328. |
[66] | Fang, X.M., Fang, Y.H., Zan, J.B., et al. (2019). Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth-Sci. Rev. 190, 460-485. |
[67] | Jiao, L.Q., Tapponnier, P., Donzé, F.V., et al. (2023). Discrete element modeling of Southeast Asia's 3D lithospheric deformation during the Indian collision. J. Geophys. Res.: Solid Earth. 128, e2022JB025578. |
[68] | Kong, F.C., Lawver, L.A., Lee, T. (2000). Evolution of the southern Taiwan-Sinzi Folded Zone and opening of the southern Okinawa trough. J. Asian Earth Sci. 18, 325-341. |
[69] | Liu-Zeng, J., Tapponnier, P., Gaudemer, Y., and Ding, L. (2008). Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. J. Geophys. Res. 113, F04018. |
[70] | Rohrmann, A., Kapp, P., Carrapa, B., et al. (2012). Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology. 40, 187-190. |
[71] | Tapponnier, P., Xu, Z.Q., Roger, F., et al. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science. 294, 1671-1677. |
[72] | Wang, W.T., Zhang, P.Z., Garzione, C.N., et al. (2022). Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proc. Natl. Acad. Sci. U. S. A. 119 , e2120364119. |
[73] | Worrall, D.M., Kruglyak, V., Kunst, F., and Kuznetsov, V. (1996). Tertiary tectonics of the Sea of Okhotsk, Russia: Far-field effects of the India-Eurasia collision. Tectonics. 15, 813-826. |
[74] | Xu, Z.Q., Li, Y.D., Yang, J., et al. (2008). Advances and prospectives of continental dynamics: Theory and application. Acta. Petrol. Sin. 24, 1433-1444. |
[75] | Xu, Z.Q., Wang, Q., Sun, W.D., and Li, Z.H. (2018). The spherical structure of the earth and across-sphere tectonics. Geological Review. 64, 261-282. |
[76] | Yuan, D.Y., Ge, W.P., Chen, Z.W., et al. (2013). The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: A review of recent studies. Tectonics. 32, 1358-1370. |
[77] | Zhang, P.Z., Shen, Z.K., Wang, M., et al. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geol. Soc. Am. Bull. 116, S809. |
[78] | Zhang, P.Z., Zheng, D.W., Yin, G.M., et al. (2006). Discussion on Late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau. Quat. Sci. 26, 5-13. |
[79] | Zhao, P., Alexandrov, I., Jahn, B., and Ivin, V. (2018). Timing of Okhotsk sea plate collision with Eurasia plate: Zircon U-Pb Age constraints from the Sakhalin Island, Russian Far East. J. Geophys. Res.: Solid Earth. 123, 8279-8293. |
[80] | Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics. 23, TC1006. |
[81] | Lin, A.M., Yang, Z.Y., Sun, Z.M., and Yang, T.S. (2001). How and when did the Yellow River develop its square bend? Geology. 29, 951-954. |
[82] | Nie, J.S., Ruetenik, G., Gallagher, K., et al. (2018). Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nat. Geosci. 11, 944-948. |
[83] | Salles, T., Husson, L., Rey, P., et al. (2023). Hundred million years of landscape dynamics from catchment to global scale. Science. 379, 918-923. |
[84] | Yuan, X.P., Huppert, K.L., Braun, J., et al. (2021). Propagating uplift controls on high-elevation, low-relief landscape formation in the southeast Tibetan Plateau. Geology. 50, 60-65. |
[85] | Zhao, X.D., Zhang, H.P., Hetzel, R., et al. (2021). Existence of a continental-scale river system in eastern Tibet during the late Cretaceous-early Palaeogene. Nat. Commun. 12, 7231. |
[86] | Huang, L., Liu, C.Y., Zhou, X.H., and Wang, Y.B. (2012). The important turning points during evolution of Cenozoic basin offshore the Bohai Sea: Evidence and regional dynamics analysis. Sci. China: Earth Sci. 55, 476-487. |
[87] | Shinn, Y.J., Chough, S.K., and Hwang, I.G. (2010). Structural development and tectonic evolution of Gunsan Basin (Cretaceous-Tertiary) in the central Yellow Sea. Mar. Petrol. Geol. 27, 500-514. |
[88] | Yi, S., Yi, S., Batten, D.J., et al. (2003). Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and palaeoenvironments. Palaeogeogr., Palaeoclimatol., Palaeoecol. 191, 15-44. |
[89] | Zhu, W.L., Zhong, K., Fu, X.W., et al. (2019). The formation and evolution of the East China Sea Shelf Basin: A new view. Earth-Sci. Rev. 190, 89-111. |
[90] | Sun, Z., Jian, Z., Stock, J.M., et al. (2018). South China sea rifted margin. Proceedings of the International Ocean Discovery Program. 367 . |
[91] | Clemens, S.C., Kuhnt, W., LeVay, L.J., and the Expedition 353 Scientists. (2016). Indian monsoon rainfall. Proceedings of the International Ocean Discovery Program. |
[92] | France-Lanord, C., Spiess, V., Klaus, A., et al. (2016). Bengal Fan. Proceedings of the International Ocean Discovery Program. |
[93] | Pandey, D.K., Clift, P.D., Kulhanek, D.K., and the Expedition 355 Scientists. (2016). Arabian Sea Monsoon. International Ocean Discovery Program. |
[94] | Clift, P.D., Betzler, C., Clemens, S.C., et al. (2022). A synthesis of monsoon exploration in the Asian marginal seas. Sci. Drill. 31, 1-29. |
[95] | Allen, M.B., Macdonald, D.I.M., Xun, Z., et al. (1997). Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Mar. Petrol. Geol. 14, 951-972. |
[96] | Hall, R., Ali, J.R., Anderson, C.D., and Baker, S.J. (1995). Origin and motion history of the Philippine Sea Plate. Tectonophysics. 251, 229-250. |
[97] | Hall, R. (2012). Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics. 570-571 , 1-41. |
[98] | Hilde, T.W.C., and Chao-Shing, L. (1984). Origin and evolution of the West Philippine basin: A new interpretation. Tectonophysics. 102, 85-104. |
[99] | Kano, K., Uto, K., and Ohguchi, T. (2007). Stratigraphic review of Eocene to Oligocene successions along the eastern Japan Sea: Implication for early opening of the Japan Sea. J. Asian Earth Sci. 30, 20-32. |
[100] | Larsen, H.C., Mohn, G., Nirrengarten, M., et al. (2018). Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat. Geosci. 11, 782-789. |
[101] | Najman, Y.M.R. (2006). The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev. 74, 1-72. |
[102] | Najman, Y., and Garzanti, E. (2000). Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geol. Soc. Am. Bull. 112, 435-449. |
[103] | Otofuji, Y., Matsuda, T., and Nohda, S. (1985). Opening mode of the Japan Sea inferred from the palaeomagnetism of the Japan Arc. Nature. 317, 603-604. |
[104] | Ren, J.Y., Tamaki, K., Li, S.T., and Zhang, J.X. (2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics. 344, 175-205. |
[105] | Song, Z.H., Wan, S.M., Colin, C., et al. (2023). Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene. Sci. Bull. 68, 305-313. |
[106] | Xu, J.Y., Ben-Avraham, Z., Kelty, T., and Yu, H. (2014). Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions. Earth-Sci. Rev. 130, 154-196. |
[107] | Najman, Y., Bickle, M., Garzanti, E., et al. (2009). Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multitechnique provenance study of the foreland basin Siwalik Group. Tectonics. 28, TC5018. |
[108] | Clift, P.D., Zhou, P., Stockli, D.F., and Blusztajn, J. (2019). Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage. Solid Earth. 10, 647-661. |
[109] | Clift, P.D., and Blusztajn, J. (2005). Reorganization of the western Himalayan river system after five million years ago. Nature. 438, 1001-1003. |
[110] | Jin, H.L., Wan, S.M., Clift, P.D., et al. (2022). Birth of the Pearl River at 30 Ma: Evidence from sedimentary records in the northern South China Sea. Earth Planet. Sci. Lett. 600, 117872. |
[111] | Clift, P.D. (2006). Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571-580. |
[112] | Li, G.J., and Elderfield, H. (2013). Evolution of carbon cycle over the past 100 million years. Geochim. Cosmochim. Acta. 103, 11-25. |
[113] | Chen, Y., Hedding, D.W., Li, X.M., et al. (2020). Weathering dynamics of Large Igneous Provinces (LIPs): A case study from the Lesotho Highlands. Earth Planet. Sci. Lett. 530, 115871. |
[114] | Boos, W.R., and Kuang, Z. (2010). Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature. 463, 218-222. |
[115] | Wu, G.X., Liu, Y.M., He, B., et al. (2012). Thermal Controls on the Asian Summer Monsoon. Sci. Rep. 2, 404. |
[116] | Shi, Z.G., Liu, X.D., Liu, Y.M., et al. (2015). Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Clim. Dynam. 44, 3067-3076. |
[117] | Wu, G.X., Liu, Y.M., He, B., et al. (2018). Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon (in Chinese). Chinese Journal of Atmospheric Sciences. 42, 488-504. |
[118] | Zhang, R., Jiang, D.B., Zhang, J., et al. (2023). Impact of the uplift of the Central Asian Orogenic Belt and NE Tibetan Plateau on the East Asian climate since the late Miocene. Palaeogeogr., Palaeoclimatol., Palaeoecol. 615, 111451. |
[119] | Chen, W.C., Chen, J.X., and Yun, Q.Y. (1977). Geological results report of petroleum survey stage in Fen-Wei Basin (in Chinese), Xianyang, Section 301 of the Third Survey Group. |
[120] | Fan, S.H., Zhang, T.Y., Chen, S.E., and Li, R.X. (2020). New findings regarding the Fen‐Wei Graben on the southeastern margin of the Ordos Block: Evidence from the Cenozoic sedimentary record from the borehole. Geol. J. 55, 7581-7593. |
[121] | Li, Z.Y., Li, Y.X., Li, W.H., et al. (2021). Sedimentary characteristics of Paleogene-Neogene in Fenwei Basin. Chinese Journal of Geology. 56, 1120-1133. |
[122] | Zhang, Y.P., Huang, W.B., Tang, Y.J., et al. (1978). Cenozoic of the Lantian Region, Shaanxi Province. Science Press, Beijing, 60. |
[123] | Jia, L.P., Zhang, Y.P., Huang, W.B., et al. (1966). Symposium of the field conference on the Cenozoic group of Lantian, Shaanxi Province. Science Press, Beijing, 311. |
[124] | Kaakinen, A. (2005). A long terrestrial sequence in Lantian-a window into the late Neogene palaeoenvironments of northern China. Department of Earth Sciences. University of Helsinki. |
[125] | Kaakinen, A., and Lunkka, J.P. (2003). Sedimentation of the Late Miocene Bahe Formation and its implications for stable environments adjacent to Qinling mountains in Shaanxi, China. J. Asian Earth Sci. 22, 67-78. |
[126] | Liu, T.S., Ding, M.L., and Gao, F.Q. (1960). Cenozoic stratigraphic section in the Lantian Region, Xi' an. Chinese Journal of Geology (Scientia Geologica Sinica). 3, 199-208. |
[127] | Lyu, H.Z., Lu, H.Y., Wang, Y.C., et al. (2021). East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis. Sci. China: Earth Sci. 64, 1285-1304. |
[128] | Rits, D.S., Prins, M.A., Troelstra, S.R., et al. (2016). Facies analysis of the Middle and Late Quaternary sediment infill of the northern Weihe Basin, Central China. J. Quaternary Sci. 31, 152-165. |
[129] | Rits, D.S., van Balen, R.T., Prins, M.A., and Zheng, H. (2017). Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change - A reevaluation of the paleogeographical setting of Dali Man site. Quat. Sci. Rev. 166, 339-351. |
[130] | Sun, W.F., Lu, H.Y.,Wang, Y.C., et al. (2017). Deposits and Palaeoenvironmental Record of the Eocene Honghe Formation in Lantian, Weihe Basin, Central China. Geol. J. China Univ. 23, 533-544. |
[131] | Wang, B., Zheng, H.B., He, Z., et al. (2014). Middle Miocene eolian sediments on the southern Chinese Loess Plateau dated by magnetostratigraphy. Palaeogeogr., Palaeoclimatol., Palaeoecol. 411, 257-266. |
[132] | Ding, Y.H. (2013). Monsoons over China. 16 . Springer Science & Business Media, 420. |
[133] | Ye, D.Z., Luo, S.W., and Zhu, B.Z. (1957). The wind structure and heat balance in the lower troposphere over the Tibetan Plateau and its surrounding. Acta Meteorol. Sin. 28, 108-121. |
[134] | Lu, H.Y., Wang, X.Y., and Li, L.P. (2010). Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. Geological Society, London, Special Publications. 342, 29-44. |
[135] | Caves Rugenstein, J.K., and Chamberlain, C.P. (2018). The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective. Earth-Sci. Rev. 185, 1129-1156. |
[136] | Tierney, J.E., Poulsen, C.J., Montañez, I.P., et al. (2020). Past climates inform our future. Science. 370, eaay3701. |
[137] | Zachos, J.C., Dickens, G.R., and Zeebe, R.E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 451, 279-283. |
[138] | Ao, H., Dupont-Nivet, G., Rohling, E.J., et al. (2020). Orbital climate variability on the northeastern Tibetan Plateau across the Eocene-Oligocene transition. Nat. Commun. 11, 5249. |
[139] | Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., et al. (2007). Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature. 445, 635-638. |
[140] | Sun, J.M., and Windley, B.F. (2015). Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology. 43, 1015-1018. |
[141] | Lu, H.Y., Wang, X.Y., Wang, X.Y., et al. (2019). Formation and evolution of Gobi Desert in central and eastern Asia. Earth-Sci. Rev. 194, 251-263. |
[142] | Lu, H.Y., Xu, Z.W., Zhang, W.C., et al. (2023). Formation of dune field landscape in north and north-west China during Plio-Pleistocene transition (4-2 Ma) and the long-term evolution. In: Qi L., Gaur M.K. and Squires V.R., Sand Dunes of the Northern Hemisphere: Distribution, Formation, Migration and Management. CRC Press, Boca Raton, 91. |
[143] | Passey, B.H., Ayliffe, L.K., Kaakinen, A., et al. (2009). Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth Planet. Sci. Lett. 277, 443-452. |
[144] | Wang, K.X., Lu, H.Y., Garzione, C.N., et al. (2022). Enhanced soil respiration, vegetation and monsoon precipitation at Lantian, East Asia during Pliocene warmth. Clim. Dynam. 59, 2683-2697. |
[145] | Yang, F., Guo, Z., Zhang, C., et al. (2019). High‐resolution Eocene magnetostratigraphy of the Xijigou Section: Implications for the infilling process of Xining Basin, northeastern Tibetan Plateau. J. Geophys. Res.: Solid Earth. 124, 7588-7603. |
[146] | Wang, P.X., Zhao, Q.H., Jian, Z.M., et al. (2003). Thirty million year deep-sea records in the South China Sea. Chin. Sci. Bull. 48, 2524-2535. |
[147] | Wang, P.X., and Li, Q.Y. (2009). The South China Sea: Paleoceanography and Sedimentology. 13 . Springer Science & Business Media, 506. |
[148] | Quan, C., Liu, Z.H., Utescher, T., et al. (2014). Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth-Sci. Rev. 139, 213-230. |
[149] | Quan, C., Liu, Y.C., and Utescher, T. (2012). Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 313-314 , 150-161. |
[150] | Quan, C., Liu, Y.C., and Utescher, T. (2012). Eocene monsoon prevalence over China: A paleobotanical perspective. Palaeogeogr., Palaeoclimatol., Palaeoecol. 365-366 , 302-311. |
[151] | Williams, D.F., Kuzmin, M.I., Prokopenko, A.A., et al. (2001). The Lake Baikal drilling project in the context of a global lake drilling initiative. Quatern. Int. 80-81 , 3-18. |
[152] | Sapota, T., Aldahan, A., Possnert, G., et al. (2004). A late Cenozoic Earth's crust and climate dynamics record from Lake Baikal. J. Paleolimnol. 32, 341-349. |
[153] | Kashiwaya, K. (2003). Long continental records from Lake Baikal. Springer Science & Business Media, 370. |
[154] | Kashiwaya, K., Ochiai, S., Sakai, H., and Kawai, T. (2002). Age of long sediment cores from Lake Baikal - Reply. Nature. 415, 976-976. |
[155] | Cao, K., Bernet, M., Wang, G., et al. (2013). Focused Pliocene-Quaternary exhumation of the Eastern Pamir domes, western China. Earth Planet. Sci. Lett. 363, 16-26. |
[156] | Carrapa, B., DeCelles, P.G., Wang, X., et al. (2015). Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia. Earth Planet. Sci. Lett. 424, 168-178. |
[157] | Sun, J.M., Xiao, W.J., Windley, B.F., et al. (2016). Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47 Ma. Tectonics. 35, 315-338. |
[158] | Sun, J.M., Zhang, Z.L., Cao, M.M., et al. (2020). Timing of seawater retreat from proto-Paratethys, sedimentary provenance, and tectonic rotations in the late Eocene-early Oligocene in the Tajik Basin, Central Asia. Palaeogeogr., Palaeoclimatol., Palaeoecol. 545, 109657. |
[159] | Sun, J.M., Sheykh, M., Ahmadi, N., et al. (2021). Permanent closure of the Tethyan Seaway in the northwestern Iranian Plateau driven by cyclic sea-level fluctuations in the late Middle Miocene. Palaeogeogr., Palaeoclimatol., Palaeoecol. 564, 110172. |
[160] | Wang, X., Kraatz, B., Meng, J., et al. (2016). Central Asian aridification during the late Eocene to early Miocene inferred from preliminary study of shallow marine-eolian sedimentary rocks from northeastern Tajik Basin. Sci. China: Earth Sci. 59, 1242-1257. |
[161] | Li, J.X., Yue, L.P., Roberts, A.P., et al. (2018). Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nat. Commun. 9, 3026. |
[162] | Qiang, X.K., An, Z.S., Song, Y.G., et al. (2011). New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China: Earth Sci. 54, 136-144. |
[163] | Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., et al. (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature. 416, 159-163. |
[164] | Sun, D.H., An, Z.S., Shaw, J., et al. (1998). Magnetostratigraphy and palaeoclimatic significance of late Tertiary aeolian sequences in the Chinese Loess Plateau. Geophys. J. Int. 134, 207-212. |
[165] | Kukla, G., An, Z.S., Melice, J.L., et al. (1990). Magnetic susceptibility record of Chinese loess. Trans. R. Soc. Edinburgh: Earth Sci. 81, 263-288. |
[166] | Rea, D.K., and Janecek, T.R. (1982). Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Mar. Geol. 49, 149-167. |
[167] | Zhang, W.F., Chen, J., Ji, J.F., Li, G.J. (2016). Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene. Aeolian Res. 23, 11-20. |
[168] | Deng, T., Hou, S.K., and Wang, S.Q. (2019). Neogene integrative stratigraphy and timescale of China. Sci. China: Earth Sci. 62, 310-323. |
[169] | Qiu, Z.X., and Qiu, Z.D. (1990). Neogene Local Mammalian Faunas:Succession and Ages. Journal of Stratigraphy. 14, 241-260. |
[170] | Yang, L.R., Yue, L.P., Wang, H.L., et al. (2016). Quaternary stratigraphic realm and sedimentary sequence of the Qilian Mountain and adjacent areas. Geology in China. 43, 1041-1054. |
[171] | Licht, A., van Cappelle, M., Abels, H.A., et al. (2014). Asian monsoons in a late Eocene greenhouse world. Nature. 513, 501-506. |
[172] | Lu, H.Y., Wang, X.Y., An, Z.S., et al. (2004). Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago. Sci. China: Earth Sci. 47, 822-833. |
[173] | Xiao, G.Q., Abels, H.A., Yao, Z.Q., et al. (2010). Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China). Clim. Past. 6, 501-513. |
[174] | Xiao, G.Q., Guo, Z.T., Dupont-Nivet, G., et al. (2012). Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth Planet. Sci. Lett. 317-318 , 185-195. |
[175] | Meijer, N., Dupont Nivet, G., Barbolini, N., et al. (2021). Loess - like dust appearance at 40 Ma in Central China. Paleoceanogr. Paleocl. 36, e2020PA003993. |
[176] | Wang, W.T., Zhang, P.Z., Liu, C.C., et al. (2016). Pulsed growth of the West Qinling at ~30 Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance. J. Geophys. Res.: Solid Earth. 121, 7754-7774. |
[177] | Yue, L.P., F., H., Qiu, Z.X., et al. (2000). Magnetostratigraphy and palaeo-environmental record of Tertiary deposits of Lanzhou Basin. Chin. Sci. Bull. 45, 1998-2003. |
[178] | Zhang, P., Ao, H., Dekkers, M.J., et al. (2018). Magnetochronology of the Oligocene mammalian faunas in the Lanzhou Basin, Northwest China. J. Asian Earth Sci. 159, 24-33. |
[179] | Zhang, J., Li, J.J., Guo, B.H., et al. (2016). Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau. Quat. Sci. Rev. 139, 17-29. |
[180] | Fang, X.M., Yan, M.D., Van der Voo, R., et al. (2005). Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geol. Soc. Am. Bull. 117, 1208-1225. |
[181] | Song, C.H., Fang, X.M., Gao, J.P., et al. (2001). Tectonic uplift and sedimentary evolution of the Guide Basin in the northeast margin of Tibetan Plateau in Cenozoic era. Acta Sedimentol. Sin. 19, 493-500. |
[182] | Zheng, H.B., Wei, X.C., Tada, R., et al. (2015). Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc. Natl. Acad. Sci. U. S. A. 112, 7662-7667. |
[183] | Wang, X., Sun, D.H., Wang, F., et al. (2010). Palaeomagnetic study of the late Cenozic strata in the central Tarim Basin: implication on the evolution of Takelimakan desert. Journal of Geomechanics. 16, 412-422. |
[184] | Fang, X.M., Zhang, W.L., Meng, Q.Q., et al. (2007). High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 258, 293-306. |
[185] | Fu, C.F., An, Z.S., Qiang, X.K., et al. (2013). Magnetostratigraphic determination of the age of ancient Lake Qinghai, and record of the east Asian monsoon since 4.63 Ma. Geology. 41 , 875-878. |
[186] | Ke, X., Ji, J.L., Zhang, K.X., et al. (2013). Magnetostratigraphy and Anisotropy of Magnetic Susceptibility of the Lulehe Formation in the Northeastern Qaidam Basin. Acta Geol. Sin. (Engl. Ed.). 87, 576-587. |
[187] | Lu, H.J., and Xiong, S.F. (2009). Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet. Sci. Lett. 288, 539-550. |
[188] | Song, B.W., Zhang, K.X., Lu, J.F., et al. (2013). The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Can. J. Earth Sci. 50, 183-196. |
[189] | Wang, W.T., Zheng, W.J., Zhang, P.Z., et al. (2017). Expansion of the Tibetan Plateau during the Neogene. Nat. Commun. 8, 15887. |
[190] | Zan, J.B., Fang, X.M., Zhang, W.L., et al. (2018). A new record of late Pliocene-early Pleistocene aeolian loess-red clay deposits from the western Chinese Loess Plateau and its palaeoenvironmental implications. Quat. Sci. Rev. 186, 17-26. |
[191] | Fang, X.M., Xu, X.H., Song, C.H., et al. (2007). High resolution rock magnetic records of Cenozoic sediments in the Linxia Basin and their implications on drying of Asian inland. Quat. Sci. 27, 989-1000. |
[192] | Yuan, B.Y., Guo, Z.T., Hao, Q.Z., et al. (2007). Cenozoic evolution of geomorphic and sedimentary environments in the Tianshui-Qinan regions. Quat. Sci. 27, 161-171. |
[193] | Li, J.J., Zhang, J., Song, C.H., et al. (2007). The discovery and significance of the Bahe strata in Longzhong Basin. Sci. China, Ser. D: Earth Sci. 37, 52-60. |
[194] | Huang, X.F., Shi, W., Li, H.Q., et al. (2013). Cenozoic tectonic evolution of the Yinchuan Basin: Constraints from the deformation of its boundary faults. Earth Sci. Front. 20, 199-210. |
[195] | Wang, W.T., Zhang, P.Z., Kirby, E., et al. (2011). A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau. Tectonophysics. 505, 100-114. |
[196] | Jiang, H.C., Ding, Z.L., and Xiong, S.F. (2007). Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 243, 223-234. |
[197] | Li, Z.J., Sun, D.H., Chen, F.H., et al. (2014). Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quat. Sci. Rev. 85, 85-98. |
[198] | Li, B.F., Sun, D.H., Xu, W.H., et al. (2017). Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River. Quat. Sci. Rev. 156, 69-89. |
[199] | Zhang, X.J. (1983). The Cenozoic stratigraphical sequence of Linhe region in Neimeng Autonomous Region (in Chinese). Pet. Explor. Dev. 4, 1-8. |
[200] | Wang, Q., Li, C.G., Tian, G.Q., et al. (2002). Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma. Sci. China, Ser. D: Earth Sci. 45 , 110-122. |
[201] | Wang, S.B., Jiang, F.C., Wu, X.H., et al. (2004). The connotation and significance of Sanmen Formation. Quat. Sci. 24, 116-123. |
[202] | Molnar, P., Boos, W.R., and Battisti, D.S. (2010). Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77-102. |
[203] | Roe, G.H., Ding, Q.H., Battisti, D.S., et al. (2016). A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma. J. Geophys. Res.: Atmos. 121, 5453-5470. |
[204] | Zheng, H.B., Yang, Q., Cao, S., et al. (2022). From desert to monsoon: irreversible climatic transition at ~ 36 Ma in southeastern Tibetan Plateau. Prog. Earth Planet. Sci. 9, 12. |
[205] | Zhao, L., Lu, H.Y., and Tang, L.Y. (2018). Cenozoic palynological records and vegetation evolution in the Weihe Basin, Central China. Quat. Sci. 38, 1083-1093. |
[206] | Jiang, H.C., and Ding, Z.L. (2008). A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 265, 30-38. |
[207] | Jiang, H.C., and Ding, Z.L. (2009). Spatial and temporal characteristics of Neogene palynoflora in China and its implication for the spread of steppe vegetation. J. Arid Environ. 73, 765-772. |
[208] | Jia, Y.X., Wu, H.B., Zhu, S.Y., et al. (2020). Cenozoic aridification in northwest China evidenced by paleovegetation evolution. Palaeogeogr., Palaeoclimatol., Palaeoecol. 557, 109907. |
[209] | Ma, X.L., Jiang, H.C., Cheng, J., and Xu, H.Y. (2012). Spatio temporal evolution of Paleogene palynoflora in China and its implication for development of the extensional basins in East China. Rev. Palaeobot. Palyno. 184, 24-35. |
[210] | Miao, Y.F., Herrmann, M., Wu, F.L., et al. (2012). What controlled mid-late Miocene long-term aridification in Central Asia? — Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev. 112, 155-172. |
[211] | Li, X.R., Fang, X.M., Wu, F.L., and Miao, Y.F. (2011). Pollen evidence from Baode of the northern Loess Plateau of China and strong East Asian summer monsoons during the early Pliocene. Chin. Sci. Bull. 56, 64-69. |
[212] | Sun, X.J., and Wang, P.X. (2005). How old is the Asian monsoon system? — Palaeobotanical records from China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 222, 181-222. |
[213] | Ma, Y.Z., Fang, X.M., Li, J.J., et al. (2004). Late Tertiary-Early Quaternary vegetation and climate change in the Jiuxi Basin. Sci. China, Ser. D: Earth Sci. 34, 107-116. |
[214] | Ma, Y.Z., Li, J.J., and Fang, X.M. (1998). Pollen-spores in the red bed during 30.6-5 Ma in the Linxia Basin and climatic evolution. Chin. Sci. Bull. 43 , 301-304. |
[215] | Miao, Y.F., Fang, X.M., Song, Z.C., et al. (2008). Late Eocene pollen records and palaeoenvironmental changes in northern Tibetan Plateau. Sci. China: Earth Sci. 51, 1089-1098. |
[216] | Wang, J., Wang, Y.J., Liu, Z.C., et al. (1999). Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr., Palaeoclimatol., Palaeoecol. 152, 37-47. |
[217] | Lu, J.F. (2010). Palynological assemblage of Eocene-Oligocene pollen and their biostratigraphic correlation in Dahonggou, Daqaidam area, Qaidam Basin. Earth Science-Journal of China University of Geosciences. 35, 839-848. |
[218] | Wang, Q., Ferguson, D.K., Feng, G., et al. (2010). Climatic change during the Palaeocene to Eocene based on fossil plants from Fushun, China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 295, 323-331. |
[219] | Yuan, H.R., Nie, Z., Liu, J.Y., and Wang, M. (2007). Paleogene sedimentary characteristics and their paleoclimatic implications in the Baise Basin, Guangxi. Acta Geol. Sin. (Engl. Ed.). 81, 1692-1697. |
[220] | Wu, G.X., Qin, J.G., and Mao, S.Z. (2003). Deep-water Oligocene pollen record from South China Sea. Chin. Sci. Bull. 48, 2511-2515. |
[221] | Tong, G.B., Liu, Z.M., Zheng, M.P., and Wang, W.M. (2002). Primary study on quantitative reconstruction of middle-late Eocene climate in Jianghan Basin. J. Earth Sci-China. 12, 252-259. |
[222] | Zhao, C.B., Ye, D.Q., Wei, D.E., et al. (1994). The Northeast Region of China, Tertiary in petroliferous regions of China. Petroleum Industry Press, Beijing, 1-156. |
[223] | Zhang, S.B., Shen, H., Qu, X.G., and Gao, Q.Q. (1994). The Hubei-Henan-Anhui Region, Tertiary in petroliferous regions of China. Petroleum Industry Press, Beijing, 1-265. |
[224] | Wang, M. (2005). A study on ecological and environment process of Cenozoic Qinghai-Tibet Plateau hinterland. Chengdu University of Technology, Chengdu, China. |
[225] | Wang, X.M. (2003). Palynology, paleovegetation and paleoclimate of middle and late Paleogene of Northern China. Shandong University of Science and Technology, Tai'an, China. |
[226] | Miao, Y.F., Fang, X.M., Herrmann, M., et al. (2011). Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr., Palaeoclimatol., Palaeoecol. 299, 30-38. |
[227] | Miao, Y.F., Fang, X.M., Sun, J.M., et al. (2022). A new biologic paleoaltimetry indicating late Miocene rapid uplift of northern Tibet Plateau. Science. 378, 1074-1079. |
[228] | Sun, X.Y., Zhao, Y.N., and He, Z.S. (1984). The Oligocene-Miocene palynological assemblages from the Xining-Minhe Basin, Qinghai Province. Geol. Rev. 30, 207-216. |
[229] | Li, J.G., Jiang, L., Y, Z.Y., and Wang, J.P. (2003). Neogene palynofloral successions from Taibei Depression in southwestern continent shelf of the East China Sea. Acta Palaeontol. Sin. 42, 239-256. |
[230] | Li, J.G., and Zhang, Y.Y. (1998). Neogene palynofloras from east offshore, Hainan Island. Acta Micropalaeontol. Sin. 15, 323-330. |
[231] | Yu, Z.J., and Huang, D.C. (1993). Neogene stratigraphy and its pollen sequences from the Huaibei Plain, China. Journal of Stratigraphy. 17, 202-209. |
[232] | Sun, X.J., Li, M.X., Zhang, Y.Y., et al. (1981). Tertiary Palaeontology of North Continental Shelf of South China Sea, Spore and Pollen. Guangdong Science Technology Press, Guangzhou, 1-30. |
[233] | Song, Z.C. (1959). Miocene sporo-pollen complex of Shanwang, Shandong. Acta Palaeontol. Sin. 7, 99-109. |
[234] | Ma, Y.Z. (1991). Tertiary spore-pollen assemblages from southern Dunhuang Basin, Gansu Province. Acta Micropalaeontolo. Sin. 8, 207-225. |
[235] | Sun, X.Y., Fan, Y.X., Deng, C.L., and Yu, Z.Q. (1980). Cenozoic sporo-pollen assemblages of the Weihe Basin, Shaaxi. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences. 1, 81-109. |
[236] | Wang, W.M., Li, J.R., Wang, J.D., and He, Z.J. (2002). Palynofloras from Pliocene balouhe formation and Pleistocene in Zhangqiu county, Shandong province. Acta Palaeontol. Sin. 41, 72-76. |
[237] | Wu, Y.S. (2001). Palynoflora at Late Miocene-early Pliocene from Leijiahe of Lingtai, Gansu Province, China. Acta Bot. Sin. 43, 750-756. |
[238] | Han, J., Fyfe, W.S., Longstaffe, F.J., et al. (1997). Pliocene-Pleistocene climatic change recorded in fluviolacustrine sediments in central China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 135, 27-39. |
[239] | Liu, G.W., Leopold, E.B., Liu, Y., et al. (2002). Palynological record of Pliocene climate events in North China. Rev. Palaeobot. Palyno. 119, 335-340. |
[240] | Li, Z.C., Li, Y.X., Zhang, Y.X., et al. (2016). Nanpoping fauna of the Lanzhou Basin and its environmental significance. Sci. China: Earth Sci. 59, 1258-1266. |
[241] | Meng, J., and McKenna, M.C. (1998). Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature. 394, 364-367. |
[242] | Ni, X.J., Wang, Y.Q., Hu, Y.M., and Li, C.K. (2004). A euprimate skull from the early Eocene of China. Nature. 427, 65-68. |
[243] | Wang, Y.Q., Meng, J., Beard, C.K., et al. (2010). Early Paleogene stratigraphic sequences, mammalian evolution and its response to environmental changes in Erlian Basin, Inner Mongolia, China. Sci. China: Earth Sci. 53, 1918-1926. |
[244] | Wang, X.M., Flynn, L.J., and Fortelius, M. (2013). Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press. |
[245] | Zhang, Z.Q., Liu, Y., Wang, L.H., et al. (2016). Lithostratigraphic context of Oligocene mammalian faunas from Ulantatal, Nei Mongol, China. Cr. Palevol. 15, 903-910. |
[246] | Wang, S.Q., Ye, J., Meng, J., et al. (2022). Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science. 376, eabl8316. |
[247] | Wang, Y.Q., Meng, J., Ni, X.J., and Li, C.K. (2007). Major events of Paleogene mammal radiation in China. Geol. J. 42, 415-430. |
[248] | Tong, Y.S., Zheng, S.H., and Qiu, Z.D. (1996). Evolution of Cenozoic mammalian faunal regions of China. Vertebr. Palasiat. 34, 215-227. |
[249] | Meng, J. (2002). Mammalian phylogeny and evolution. Chin. Sci. Bull. 47, 561-568. |
[250] | Deng, T., Wang, W.M., and Yue, L.P. (2006). Xiejia stage, a Miocene Chinese land mammal age. Journal of Stratigraphy. 4, 315-322. |
[251] | Qiu, Z.X., Qiu, Z.D., and Deng, T. (2013). Neogene land mammal Stages/Ages of China-Toward the goal to establish an Asian land mammal stage/agescheme. In: Wang Xiao Ming F.J.F., Fossil mammals of Asia: Neogene Biostratigraphy and Chronology. Columbia University Press, New York, 29-90. |
[252] | Sun, J.M., Li, J.G., Liu, W.G., et al. (2023). Middle Miocene paleoenvironmental change and paleoelevation of the Lunpola Basin, Central Tibet. Global Planet. Change. 220, 104009. |
[253] | Xue, X.X., Zhang, Y.X., and Yue, L.P. (2006). Paleoenvironments indicated by the fossil mammalian assemblages from red clay-loess sequence in the Chinese Loess Plateau since 8.0 Ma B.P. Sci. China, Ser. D: Earth Sci. 49 , 518-530. |
[254] | Deng, T., Wang, X., Fortelius, M., et al. (2011). Out of Tibet: Pliocene Woolly Rhino Suggests High-Plateau Origin of Ice Age Megaherbivores. Science. 333, 1285-1288. |
[255] | Wang, Y.Q., Li, Q., Bai, B., et al. (2019). Paleogene integrative stratigraphy and timescale of China. Sci. China: Earth Sci. 62, 287-309. |
[256] | Chen, J., and Li, G.J. (2011). Geochemical studies on the source region of Asian dust. Sci. China: Earth Sci. 54, 1279-1301. |
[257] | Rea, D.K., Snoeckx, H., and Joseph, L.H. (1998). Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography. 13, 215-224. |
[258] | Rea, D.K., and Janecek, T.R. (1980). Grain size and accumulation rate of the eolian component of some North Pacific sediments. Trans. Am. Geophys. Union. 61, 257. |
[259] | Li, G.J., Thomas, P., and Chen, J. (2011). Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology. 39, 199-202. |
[260] | Abell, J.T., Winckler, G., Anderson, R.F., and Herbert, T.D. (2021). Poleward and weakened westerlies during Pliocene warmth. Nature. 589, 70-75. |
[261] | Zhang, W.F., Li, G.J., and Chen, J. (2019). The abrupt change of aeolian dust in North Pacific sediments during major Northern Hemisphere glaciation at ca. 2.73 Ma. Quat. Sci. 39 , 525-534. |
[262] | Clift, P.D., Wan, S.M., and Blusztajn, J. (2014). Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth-Sci. Rev. 130, 86-102. |
[263] | Prell, W.L., Niitsuma, N., Emeis, K.C., et al. (1989). Oman margin/Neogene package, Proceedings of the Ocean Drilling Program. Citeseer, 1-1235. |
[264] | Prell, W.L., Murray, D.W., Clemens, S.C., and Anderson, D.M. (1992). Evolution and variability of the Indian Ocean summer monsoon: evidence from the western Arabian Sea drilling program. Washington Dc American Geophysical Union Geophysical Monograph Series. 70, 447-469. |
[265] | Wan, S.M., Sun, Y.B., and Nagashima, K. (2020). Asian dust from land to sea: processes, history and effect from modern observation to geological records. Geol. Mag. 157, 701-706. |
[266] | Guo, Z.T., Sun, B., Zhang, Z.S., et al. (2008). A major reorganization of Asian climate by the early Miocene. Clim. Past. 4, 153-174. |
[267] | He, S.L., Ding, L., Xiong, Z.Y., et al. (2022). A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet. Sci. Bull. 67, 2245-2258. |
[268] | Kroon, D., Kroon, D., Steens, T.N.F., et al. (1991). Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proceedings of the Ocean Drilling Program. Scientific Results. 117, 257-263. |
[269] | Li, Q.J., Utescher, T., Liu, Y.S., et al. (2022). Monsoonal climate of East Asia in Eocene times inferred from an analysis of plant functional types. Palaeogeogr., Palaeoclimatol., Palaeoecol. 601, 111138. |
[270] | Wang, P.X. (1990). Neogene stratigraphy and paleoenvironments of China. Palaeogeogr., Palaeoclimatol., Palaeoecol. 77, 315-334. |
[271] | Webster, P.J., Magaña, V.O., Palmer, T.N., et al. (1998). Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res.: Oceans. 103, 14451-14510. |
[272] | Geen, R., Bordoni, S., Battisti, D.S., and Hui, K. (2020). Monsoons, ITCZs, and the concept of the global monsoon. Rev. Geophys. 58, e2020RG000700. |
[273] | An, Z.S., Kutzbach, J.E., Prell, W.L., and Porter, S.C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature. 411, 62-66. |
[274] | Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F., and Prell, W.L. (1989). Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: Numerical experiments. J. Geophys. Res. 94, 18393-18407. |
[275] | Harris, N. (2006). The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr., Palaeoclimatol., Palaeoecol. 241, 4-15. |
[276] | Clift, P.D., and Webb, A.A.G. (2018). A history of the Asian monsoon and its interactions with solid Earth tectonics in Cenozoic South Asia. Geological Society, London, Special Publications. 483, 631-652. |
[277] | Sun, D.H., Shaw, J., An, Z.S., et al. (1998). Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2Ma late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophys. Res. Lett. 25 , 85-88. |
[278] | Ding, Z.L., Sun, J.M., Yang, S.L., and Liu, T.S. (1998). Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophys. Res. Lett. 25, 1225-1228. |
[279] | Clift, P.D., Hodges, K.V., Heslop, D., et al. (2008). Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 1, 875-880. |
[280] | Zhang, H.P., Oskin, M.E., Liu-Zeng, J., et al. (2016). Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces. Earth Planet. Sci. Lett. 449, 176-185. |
[281] | Zheng, D.W., Zhang, P.Z., Wan, J.L., et al. (2006). Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet. Sci. Lett. 248, 198-208. |
[282] | Feng, R., Bhattacharya, T., Otto-Bliesner, B.L., et al. (2022). Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306. |
[283] | Botsyun, S., Sepulchre, P., Donnadieu, Y., et al. (2019). Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science. 363, eaaq1436. |
[284] | Huber, M., and Goldner, A. (2012). Eocene monsoons. J. Asian Earth Sci. 44, 3-23. |
[285] | Zhu, J., Poulsen, C.J., and Tierney, J.E. (2019). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Sci Adv. 5, eaax1874. |
[286] | Farnsworth, A., Lunt, D.J., Robinson, S.A., et al. (2019). Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697. |
[287] | Kutzbach, J.E., Prell, W.L., and Ruddiman, W.F. (1993). Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol. 101, 177-190. |
[288] | Liu, X.D., Dong, B.W., Yin, Z., et al. (2019). Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic. Sci. China: Earth Sci. 62, 1053-1075. |
[289] | Liu, X.D., and Dong, B.W. (2013). Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin. Sci. Bull. 58, 4277-4291. |
[290] | Manabe, S., and Broccoli, A.J. (1990). Mountains and arid climates of middle latitudes. Science. 247, 192-195. |
[291] | Ramstein, G., Fluteau, F., Besse, J., and Joussaume, S. (1997). Effect of orogeny, plate motion and land sea distribution on Eurasian climate change over the past 30 million years. Nature. 386, 788-795. |
[292] | Zhang, R., Jiang, D.B., Zhang, Z.S., and Zhang, C.X. (2021). Effects of Tibetan Plateau Growth, Paratethys Sea Retreat and Global Cooling on the East Asian Climate by the Early Miocene. Geochem., Geophys., Geosyst. 22, e2021GC009655. |
[293] | Wang, H.L., Lu, H.Y., Zhao, L., et al. (2019). Asian monsoon rainfall variation during the Pliocene forced by global temperature change. Nat. Commun. 10, 5272. |
[294] | Zhang, H.Z., Lu, H.Y., He, J., et al. (2022). Large-number detrital zircon U-Pb ages reveal global cooling caused the formation of the Chinese Loess Plateau during Late Miocene. Sci. Adv. 8, eabq2007. |
[295] | Zhang, P.Z., Molnar, P., and Downs, W.R. (2001). Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature. 410, 891-897. |
[296] | Li, X., Hu, Y.Y., Guo, J.Q., et al. (2022). A high-resolution climate simulation dataset for the past 540 million years. Sci. Data. 9, 371. |
[297] | Baatsen, M.L.J., von der Heydt, A.S., Kliphuis, M.A., et al. (2022). Warm mid-Pliocene conditions without high climate sensitivity: the CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2. Clim. Past. 18 , 657-679. |
[298] | Scotese, C.R., and Wright, N. (2018). PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic. Paleomap Proj, 1-26. |
Lu H., Feng H., Lyu H., et al., (2023). Formation and evolution of the Asian landscape during the Cenozoic. The Innovation Geoscience 1(2), 100020. https://doi.org/10.59717/j.xinn-geo.2023.100020 |
The Asian landscape and climate
Stratigraphy of deposit sequences in the Weihe Basin, central China
The marginal sea records around Asia since ~50 Ma
Palaeoclimate variations over the past ~50 million years in Asia: eolian silt sequence records
Cenozoic depositional sequence records of palaeoclimate evolution in central and north-east Asia-- a reinterpreted synthesis.
Palaeoclimate variations over the past 50 million years in Asia: stable oxygen and carbon isotopic composition records
Pollen records over the past ~50 Ma in East Asia (modified from.207,209 Pollen data from.205,213-227,229-239
Mammal fossils records over the past ~50 myr
Numerical simulation of global temperature and precipitation during the past ~50 million years
Cartoons show the evolution of the Asian landscape since the middle Eocene