We present a high-resolution speleothem δ18O record from southeastern Alaska covering the past 13,500 years.
The record shows an equatorial Pacific climate pattern and is at odds with North Atlantic climate patterns, questioning the bipolar seesaw mechanism as the source of global climate variability.
We propose a new climate mechanism originating in the equatorial Pacific that could explain millennial-scale climate variability on Earth.
[1] | Denton, G.H., Toucanne, S., Putnam, A.E., et al. (2022). Heinrich summers. Quat. Sci. Rev. 295, 107750. |
[2] | Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142−152. |
[3] | Stocker, T.F. (1998). The seesaw effect. Science 282, 61−62. |
[4] | Marino, G., Rohling, E.J., Rodríguez-Sanz, L., et al. (2015). Bipolar seesaw control on last interglacial sea level. Nature 522, 197−201. |
[5] | Wolff, E.W., Chappellaz, J., Blunier, T., et al. (2010). Millennial-scale variability during the last glacial: The ice core record. Quat. Sci. Rev. 29, 2828−2838. |
[6] | Davis, C.V., Myhre, S.E., Deutsch, C., et al. (2020). Sea surface temperature across the Subarctic North Pacific and marginal seas through the past 20,000 years: A paleoceanographic synthesis. Quat. Sci. Rev. 246, 106519. |
[7] | Praetorius, S.K., and Mix, A.C. (2014). Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444−448. |
[8] | Davies, M.H., Mix, A.C., Stoner, J.S., et al. (2011). The deglacial transition on the southeastern Alaska Margin: Meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223. |
[9] | Praetorius, S.K., Condron, A., Mix, A.C., et al. (2020). The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 6, eaay2915. |
[10] | Wilcox, P.S., Mundelsee, M., Spötl, C., et al. (2023). Anthropogenically forced shift in ENSO mean state after 1970 CE. Authorea. 10.22541/essoar.168882026.60869658/v1. |
[11] | Liu, Z., and Alexander, M. (2007). Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45, RG2005. |
[12] | Clement, A.C., Seager, R., Cane, M.A., and Zebiak, S.E. (1996). An ocean dynamical thermostat. J. Clim. 9, 2190−2196. |
[13] | Koutavas, A., and Joanides, S. (2012). El Niño–Southern oscillation extrema in the Holocene and last glacial maximum. Paleoceanography 27, PA4208. |
[14] | Sadekov, A.Y., Ganeshram, R., Pichevin, L., et al. (2013). Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nat. Commun. 4, 2692. |
[15] | Cane, M.A. (1998). A role for the tropical Pacific. Science 282, 59−61. |
[16] | Kubota, K., Yokoyama, Y., Ishikawa, T., et al. (2014). Larger CO2 source at the equatorial Pacific during the last deglaciation. Sci. Rep. 4, 5261. |
[17] | Feely, R.A., Wanninkhof, R., Takahashi, T., and Tans, P. (1999). Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398, 597−601. |
[18] | Chatterjee, A., Gierach, M.M., Sutton, A.J., et al. (2017). Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission. Science 358, eaam5776. |
[19] | Takahashi, T., Sutherland, S.C., Wanninkhof, R., et al. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56, 554−577. |
[20] | Vecchi, G.A., and Soden, B.J. (2007). Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316−4340. |
[21] | Misios, S., Gray, L.J., Knudsen, M.F., et al. (2019). Slowdown of the Walker circulation at solar cycle maximum. Proc. Natl. Acad. Sci. U.S.A. 116, 7186−7191. |
[22] | Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162−165. |
[23] | Conroy, J.L., Overpeck, J.T., Cole, J.E., et al. (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27, 1166−1180. |
[24] | Haug, G.H., Hughen, K.A., Sigman, D.M., et al. (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304−1308. |
[25] | Walczak, M.H., Mix, A.C., Cowan, E.A., et al. (2020). Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science 370, 716−720. |
[26] | Tarasov, L., and Peltier, W.R. (2005). Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662−665. |
[27] | Kokorowski, H.D., Anderson, P.M., Mock, C.J., and Lozhkin, A.V. (2008). A re-evaluation and spatial analysis of evidence for a Younger Dryas climatic reversal in Beringia. Quat. Sci. Rev. 27, 1710−1722. |
[28] | Kielhofer, J.R., Tierney, J.E., Reuther, J.D., et al. (2023). BrGDGT temperature reconstruction from interior Alaska: Assessing 14,000 years of deglacial to Holocene temperature variability and potential effects on early human settlement. Quat. Sci. Rev. 303, 107979. |
[29] | Vecchi, G.A., Soden, B.J., Wittenberg, A.T., et al. (2006). Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73−76. |
[30] | Bereiter, B., Eggleston, S., Schmitt, J., et al. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542−549. |
[31] | Berger, A. (1978). Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362−2367. |
[32] | Jouzel, J., Masson-Delmotte, V., Cattani, O., et al. (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793−796. |
[33] | Cheng, H., Edwards, R.L., Sinha, A., et al. (2016). The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640−646. |
Wilcox P., Spötl C., Honkonen J., et al., (2023). A Walker switch mechanism driving millennial-scale climate variability. The Innovation Geoscience 1(2), 100026. https://doi.org/10.59717/j.xinn-geo.2023.100026 |
Proxy comparisons between
Schematic illustrating the concept of the Walker switch mechanism
Proxy comparisons between