Earthquake-triggered turbidites bring allochthonous microbes into the hadal trenches.
Evidences of vertical microbial redistribution are observed in the trench sediments.
Earthquake introduce large amount of microbial biomass carbon into the subduction zones.
[1] | Fang, J. S., and Zhang, L. (2011). Exploring the deep biosphere. Sci. China Earth Sci. 54, 157−165. |
[2] | Orcutt, B. N., Sylvan, J. B., Knab, N. J., and Edwards, K. J. (2011). Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75, 361−422. |
[3] | Nunoura, T., Takaki, Y., Hirai, M., et al. (2015). Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl. Acad. Sci. U. S. A. 112 , E1230–E1236. |
[4] | D’Hondt, S., Pockalny, R., Fulfer, V. M., and Spivack, A. J. (2019). Subseafloor life and its biogeochemical impacts. Nat. Commun. 10, 1−13. |
[5] | Fullerton, K. M., Schrenk, M.O., Yucel, M., et al. (2021). Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin. Nat. Geosci. 14 , 301–306. |
[6] | Drake, H., and Reiners, P. W. (2021). Thermochronologic perspectives on the deep-time evolution of the deep biosphere. Proc. Natl. Acad. Sci. 118, e2109609118. |
[7] | Clift, P., and Vannucchi, P. (2004). Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001. |
[8] | Kodaira, S., Nakamura, Y., Yamamoto, Y., et al. (2017). Depth-varying structural characters in the rupture zone of the 2011 Tohoku-oki earthquake. Geosphere 13 , 1408–1424. |
[9] | Tsuru, T., Park, J.O., Miura, S., et al. (2002). Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling. J. Geophys. Res. Solid Earth 107 , ESE 11-1-ESE 11-15. |
[10] | McHugh, C. M., Seeber, L., Rasbury, T., et al. (2020). Isotopic and sedimentary signature of megathrust ruptures along the Japan subduction margin. Mar. Geol. 428 , 106283. |
[11] | Kioka, A., Schwestermann, T., Moernaut, J., et al. (2019). Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci. Rep. 9 , 1553. |
[12] | Bao, R., Strasser, M., McNichol, A.P., et al. (2018). Tectonically-triggered sediment and carbon export to the Hadal zone. Nat. Commun. 9 , 121. |
[13] | Xu, Y.P., Li, X.X., Luo, M., et al. (2021). Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama Trenches. J. Geophys. Res. Biogeosciences 126, e2020JG006189. |
[14] | Glud, R. N., Berg, P., Thamdrup, B., et al. (2021). Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2 , 21. |
[15] | Glud, R. N., Wenzhofer, F., Middelboe, M., et al. (2013). High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6 , 284–288. |
[16] | Hiraoka, S., Hirai, M., Matsui, Y., et al. (2020). Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14 , 740–756. |
[17] | Schauberger, C., Middelboe, M., Larsen, M., et al. (2021). Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. Limnol. Oceanogr. 66 , 2095–2109. |
[18] | Kioka, A., Schwestermann, T., Moernaut, J., et al. (2019). Event stratigraphy in a hadal oceanic trench: The Japan Trench as sedimentary archive recording recurrent giant subduction zone earthquakes and their role in organic carbon export to the deep sea. Front. Earth Sci. 7 , 319. |
[19] | Jamieson, A. J., and Stewart, H. A. (2021). Hadal zones of the northwest Pacific Ocean. Prog. Oceanogr. 190, 102477. |
[20] | Iwamori, H. (2007). Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem. Geol. 239, 182−198. |
[21] | Ikehara, K., Kanamatsu, T., Nagahashi, Y., et al. (2016). Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years. Earth Planet. Sci. Lett. 445 , 48–56. |
[22] | Kallmeyer, J., Pockalny, R., Adhikari, R. R., et al. (2012). Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl. Acad. Sci. U. S. A. 109, 16213−16216. |
[23] | Clift, P. D. (2017). A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97−125. |
[24] | Giuliani, A., Drysdale, R. N., Woodhead, J.D., et al. (2022). Perturbation of the deep-Earth carbon cycle in response to the Cambrian Explosion. Sci. Adv. 8 , eabj1325. |
[25] | Ikehara, K., Usami, K., Kanamatsu, T., et al. (2018). Spatial variability in sediment lithology and sedimentary processes along the Japan Trench: Use of deep-sea turbidite records to reconstruct past large earthquakes. Geol. Soc. Spec. Publ. 456 , 75–89. |
[26] | Levin, L. A., Etter, R. J., Rex, M. A., et al. (2001). Environmental influences on regional deep-sea species diversity. Annu. Rev. Ecol. Evol. Syst. 22 , 309–335. |
[27] | Liu, J. W., Zhu, S. Q., Liu, X. Y., et al. (2020). Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME J. 14 , 1463–1478. |
[28] | Lazar, C. S., Schmidt, F., Elvert, M., et al. (2022). Microbial diversity gradients in the geothermal mud volcano underlying the hypersaline Urania Basin. Front. Microbiol. 13 , 1–18. |
[29] | Schwestermann, T., Eglinton, T. I., Haghipour, N., et al. (2021). Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench. Earth Planet. Sci. Lett. 563 , 116870. |
[30] | Xu, Y. P., Wu, W. C., Xiao, W. J., et al. (2020). Intact ether lipids in trench sediments related to archaeal community and environmental conditions in the deepest ocean. J. Geophys. Res. Biogeosciences 125 , 1–16. |
[31] | Usami, K., Ikehara, K., Kanamatsu, T., and McHugh, C. M. (2018). Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years. Geosci. Lett. 5, 11. |
[32] | Magnabosco, C., Lin, L. H., Dong, H., et al. (2018). The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11 , 707–717. |
[33] | Lipp, J. S., Morono, Y., Inagaki, F., and Hinrichs, K. U. (2008). Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454, 991−994. |
[34] | Biddle, J. F., Lipp, J. S., Lever, M. A., et al. (2006). Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. 103 , 3846–3851. |
[35] | Scheckenbach, F., Hausmann, K., Wylezich, C., et al. (2010). Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl. Acad. Sci. U. S. A. 107, 115−120. |
[36] | Zhang, Y., Liang, P., Xie, X. B., et al. (2017). Succession of bacterial community structure and potential significance along a sediment core from site U1433 of IODP expedition 349, South China Sea. Mar. Geol. 394 , 125–132. |
[37] | Zhang, Y., Yao, P., Sun, C., et al. (2021). Vertical diversity and association pattern of total, abundant and rare microbial communities in deep‐sea sediments. Mol. Ecol. 30 , 2800–2816. |
[38] | Inagaki, F., Hinrichs, K. U., Kubo, Y., et al. (2015). Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science. 349 , 420–424. |
[39] | Gittins, D. A., Desiage, P. A., Morrison, N., et al. (2022). Geological processes mediate a microbial dispersal loop in the deep biosphere. Sci. Adv. 8 , eabn3485. |
[40] | Flemings, P., Long, H., Dugan, B., et al. (2008). Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet. Sci. Lett. 269 , 309–325. |
[41] | Sawyer, D. E., and Devore, J. R. (2015). Elevated shear strength of sediments on active margins: Evidence for seismic strengthening. Geophys. Res. Lett. 42, 10216−10221. |
[42] | Qin, W., Martens‐Habbena, W., Kobelt, J. N., and Stahl, D. A. (2016). Candidatus Nitrosopumilus. Bergey’s Man. Syst. Archaea Bact. 1–9. |
[43] | Kikuchi, K., Galera-Laporta, L., Weatherwax, C., et al. (2022). Electrochemical potential enables dormant spores to integrate environmental signals. Science. 378 , 43–49. |
[44] | Ishiwatari, R., Yamada. K., Matsumoto. K., et al. (2000). Source of organic matter in sinking particles in the Japan Trench: Molecular composition and carbon isotopic analyses. in Dynamics and Characterization of Marine Organic Matter 141–168. |
[45] | Zhou, Z., Zhang, C. J., Liu, P. F., et al. (2022). Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature 601 , 257–262. |
[46] | Luo, M., Glud, R. N., Pan, B. B., et al. (2018). Benthic carbon mineralization in hadal trenches: Insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45 , 2752–2760. |
[47] | Molenaar, A., Moernaut, J., Wiemer, G., et al. (2019). Earthquake impact on active margins: Tracing surficial remobilization and seismic strengthening in a slope sedimentary sequence. Geophys. Res. Lett. 46, 6015−6023. |
[48] | Mountjoy, J. J., Howarth, J. D., Orpin, A. R., et al. (2018). Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins. Sci. Adv. 4 , 1–9. |
[49] | Shan, S., Qi, Y. Z., Tian, J. W., et al. (2020). Carbon cycling in the deep Mariana Trench in the western north Pacific Ocean: Insights from radiocarbon proxy data. Deep. Res. Part I Oceanogr. Res. Pap. 164 , 103370. |
[50] | Tian, J. W., Fan, L., Liu, H. D., et al. (2018). A nearly uniform distributional pattern of heterotrophic bacteria in the Mariana Trench interior. Deep. Res. Part I Oceanogr. Res. Pap. 142 , 116–126. |
[51] | Kioka, A., and Strasser, M. Oceanic trenches. in Treatise on Geomorphology 882–900 (Elsevier, 2022). |
[52] | Zinger, L., Amaral-Zettler, L. A., Fuhrman, J. A., et al. (2011). Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6 , 1–11. |
[53] | Heuret, A., Lallemand, S., Funiciello, F., et al. (2011). Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophys. Geosystems 12, 1−26. |
[54] | McCaffrey, R. (2008). Global frequency of magnitude 9 earthquakes. Geology 36, 263−266. |
[55] | Becraft, E. D., Vetter, M. C. Y. L., Bezuidt, O. K. I., et al. (2021). Evolutionary stasis of a deep subsurface microbial lineage. ISME J. 15 , 2830–2842. |
[56] | Campanaro, S., Vezzi, A., Vitulo, N., et al. (2005). Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6 , 1–15. |
[57] | Liu, R. l., Wei, X., Song, W. Z, et al. (2022). Novel Chloroflexi genomes from the deepest ocean reveal metabolic strategies for the adaptation to deep-sea habitats. Microbiome 10 , 1–17. |
Chu M., Liu J., Li H., et al., (2023). Earthquake-induced redistribution and reburial of microbes in the hadal trenches. The Innovation Geoscience 1(2), 100027. https://doi.org/10.59717/j.xinn-geo.2023.100027 |
Variations of archaeal community structures and species richness in cores GeoB16431 and GeoB21804
Comparisons of archaeal β-diversity and OC characteristics between the turbidite and background deposits
Result of archaeal Bray-Curtis Dissimilarity analysis on OTU level of GeoB16431
Estimation of the earthquake-induced MBC burial into the subduction zones around the Pacific Ocean