[1] | Dalla Mura, M., Prasad, S., Pacifici, F., et al. (2015). Challenges and opportunities of multimodality and data fusion in remote sensing. Proceedings of the IEEE, 103(9): 1585−1601. DOI: 10.1109/JPROC.2015.2462751. |
[2] | Hong, D., Zhang, B., Li, H., et al. (2023). Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks. Remote Sensing of Environment, 299: 113856. DOI:10.1016/j.rse.2023.113856. |
[3] | Xu, Y., Liu, X., Cao, X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2(4): 100179. DOI: 10.1016/j.xinn.2021.100179. |
[4] | Zhang, B., Wu, Y., Zhao, B., et al. (2022). Progress and challenges in intelligent remote sensing satellite systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 1814−1822. DOI: 10.1109/JSTARS.2022.3148139. |
[5] | Hong, D., Zhang, B., Li, X., et al. (2024). SpectralGPT: Spectral remote sensing foundation model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. DOI: 10.1109/TPAMI.2024.3362475. |
Hong D., Li C., Zhang B., et al., (2024). Multimodal artificial intelligence foundation models: Unleashing the power of remote sensing big data in earth observation. The Innovation Geoscience 2(1): 100055. https://doi.org/10.59717/j.xinn-geo.2024.100055 |
A cycle-chain RS intelligent interpretation system enabled by multimodal AI foundation models for RS big data in EO