[1] | Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A., et al. (2019). Restoring natural forests is the best way to remove atmospheric carbon. Nature 568: 25−28. DOI: 10.1038/d41586-019-01026-8. |
[2] | Rohatyn, S., Yakir, D., Rotenberg, E., et al. (2022). Limited climate change mitigation potential through forestation of the vast dryland regions. Science 377(6613): 1436−1439. DOI: 10.1126/science.abm9684. |
[3] | Wang, L., Jiao, W., MacBean, N., et al. (2022). Dryland productivity under a changing climate. Nat. Clim. Chang. 12: 981−994. DOI: 10.1038/s41558-022-01499-y. |
[4] | Danabasoglu, G., Lamarque, J.F., Bacmeister, J., et al. (2020). The Community Earth System Model Version 2 (CESM2). J. Adv. Model 12: e2019MS001916. DOI: 10.1029/2019MS001916. |
[5] | Bastin, J-F., Finegold, Y., Garcia, C., et al. (2019). The global tree restoration potential. Science 365(6448): 76−79. DOI: 10.1126/science.aax0848. |
Liang S, Liang L., Wang D., et al., (2024). Dryland forestation: Uncovering the carbon sequestration potential. The Innovation Geoscience 2(1): 100058. https://doi.org/10.59717/j.xinn-geo.2024.100058 |
Carbon sequestration potential for dryland forestation