[1] | Li, Z.-L., Tang, B.-H., Wu, H., et al. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 131: 14−37. DOI: 10.1016/j.rse.2012.12.008. |
[2] | Himeur, Y., Rimal, B., Tiwary, A., et al. (2022). Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion. 86-87: 44−75. DOI: 10.1016/j.inffus.2022.06.003. |
[3] | Li, Z.-L., Wu, H., Duan, S.-B., et al. (2023). Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Reviews of Geophysics. 61: e2022RG000777. DOI: 10.1029/2022RG000777. |
[4] | Christensen, P.R., Bandfield, J.L., Bell Iii, J.F., et al. (2003). Morphology and composition of the surface of mars: Mars odyssey themis results. Science. 300: 2056−2061. DOI: 10.1126/science.1080885. |
[5] | Anand, A. and Deb, C. (2024). The potential of remote sensing and gis in urban building energy modelling. Energy and Built Environment. 5: 957−969. DOI: 10.1016/j.enbenv.2023.07.008. |
Li Z.-L., Liu X., Zhao E., et al., (2024). Reflections on developments and opportunities of thermal infrared remote sensing. The Innovation Geoscience 2(4): 100104. https://doi.org/10.59717/j.xinn-geo.2024.100104 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Schematic diagram of thermal infrared remote sensing and its applications.