ARTICLE   Open Access     Cite

Direct evidence of carnivory in the early-diverging Alvarezsaurian Bannykus

    Show all affliationsShow less
More Information
    1. Direct evidence of carnivory in Bannykus wulatensis is presented through analyzing its intestinal contents.

      Bone fragments suggests an efficient chemical digestion of Bannykus wulatensis.

      The evolution of manual digits and diets may have been decoupled in alvarezsaurians.

  • A dietary shift from carnivory to insectivory has been proposed to explain the morphological evolution of alvarezsaurians, particularly the adaptive manual digital reduction and body size miniaturization. However, based solely on morphological shifts, this hypothesis lacks direct dietary evidence to support either carnivory or insectivory. Here, we present the first dietary evidence for alvarezsaurians, derived from the intestinal contents of the Early Cretaceous Bannykus wulatensis. Our analysis revealed significantly higher levels of calcium and phosphorus in the intestinal contents compared to the surrounding sandstone. Scanning electron microscopy identified hard tissue debris and possible soft tissues surrounded by phosphatized bacteria and tightly packed hollow microspheres, suggesting that the intestinal contents were strongly pseudomorphed by phosphatized microbes during fossilization. Raman spectroscopy showed characteristic peaks indicative of bone-derived material, consistent with the hard tissue debris in the intestinal contents. Our results suggest that Bannykus had a carnivorous diet with strong chemical digestion, which likely compensated for its delicate cranial structures and small teeth. These results imply that if a dietary shift to insectivory occurred, it likely took place later in alvarezsaurian evolution, probably coinciding with a reduction in body size.
  • 加载中
  • [1] O'Connor J.K. (2019). The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513:178−195. DOI:10.1016/j.palaeo.2018.03.006

    View in Article CrossRef Google Scholar

    [2] Dal Sasso C. and Maganuco S. (2011). Scipionyx samniticus (Theropoda: Compsognathidae) from the Lower Cretaceous of Italy—osteology, ontogenetic assessment, phylogeny, soft tissue anatomy, taphonomy, and palaeobiology. Mem. Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 37:1−281. DOI:10.1080/08912963.2012.654705

    View in Article CrossRef Google Scholar

    [3] O’Connor J., Zhou Z. and Xu X. (2011). Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc. Natl. Acad. Sci. 108:19662−19665. DOI:10.1073/pnas.1117727108

    View in Article CrossRef Google Scholar

    [4] O’Connor J., Zheng X., Dong L., et al. (2019). Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29:2423−2429. DOI:10.1016/j.cub.2019.06.020

    View in Article CrossRef Google Scholar

    [5] Wang M., Zhou Z. and Sullivan C. (2016). A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Curr. Biol. 26:1170−1176. DOI:10.1016/j.cub.2016.02.055

    View in Article CrossRef Google Scholar

    [6] Zheng X., Wang X., Sullivan C., et al. (2018). Exceptional dinosaur fossils reveal early origin of avian-style digestion. Sci. Rep. 8:14217. DOI:10.1038/s41598-018-32202-x

    View in Article CrossRef Google Scholar

    [7] Chin K. (2007). The paleobiological implications of herbivorous dinosaur coprolites from the upper cretaceous two medicine formation of Montana: Why eat wood. Palaios. 22:554−566. DOI:10.2110/palo.2006.p06-087r

    View in Article CrossRef Google Scholar

    [8] Chin K., Tokaryk T.T., Erickson G.M. and Calk L.C. (1998). A king-sized theropod coprolite. Nature 393:680−682. DOI:10.1038/31461

    View in Article CrossRef Google Scholar

    [9] Qvarnström M., Ahlberg P.E. and Niedźwiedzki G. (2019). Tyrannosaurid-like osteophagy by a Triassic archosaur. Sci. Rep. 9:925. DOI:10.1038/s41598-018-37540-4

    View in Article CrossRef Google Scholar

    [10] Zhou Z. and Zhang F. (2002). A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418:405−409. DOI:10.1038/nature00930

    View in Article CrossRef Google Scholar

    [11] Mayr G., Kaye T.G., Pittman M., et al. (2020). Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding. Sci. Rep. 10:19035. DOI:10.1038/s41598-020-76078-2

    View in Article CrossRef Google Scholar

    [12] Briggs D.E.G. and Wilby P.R. (1996). The role of the calcium carbonate–calcium phosphate switch in the mineralization of soft-bodied fossils. J. Geol. Soc. 153:665−668. DOI:10.1144/gsjgs.153.5.0665

    View in Article CrossRef Google Scholar

    [13] Wilby P.R. and Briggs D.E.G. (1997). Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios. 30:493−502. DOI:10.1016/S0016-6995(97)80056-3

    View in Article CrossRef Google Scholar

    [14] Hu H., Wang Y., McDonald P.G., et al. (2022). Earliest evidence for fruit consumption and potential seed dispersal by birds. eLife 11:e74751. DOI:10.7554/eLife.74751

    View in Article CrossRef Google Scholar

    [15] O’Connor J., Clark A., Herrera F., et al. (2024). Direct evidence of frugivory in the Mesozoic bird Longipteryx contradicts morphological proxies for diet. Curr. Biol. 34:4559-4566. DOI:10.1016/j.cub.2024.08.012

    View in Article Google Scholar

    [16] Wang S., Stiegler J., Amiot R., et al. (2017). Extreme ontogenetic changes in a ceratosaurian theropod. Curr. Biol. 27:144−147. DOI:10.1016/j.cub.2016.10.043

    View in Article CrossRef Google Scholar

    [17] Adams N.F., Gray T. and Purnell M.A. (2020). Dietary signals in dental microwear of predatory small mammals appear unaffected by extremes in environmental abrasive load. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545:109929. DOI:10.1016/j.palaeo.2020.109929

    View in Article CrossRef Google Scholar

    [18] Chiappe L.M., Norell M.A. and Clark J.M. (1998). The skull of a relative of the stem-group bird Mononykus. Nature 392:275−278. DOI:10.1038/32642

    View in Article CrossRef Google Scholar

    [19] Altangerel P., Norell M.A., Chiappe L.M. and Clark J.M. (1993). Flightless bird from the Cretaceous of Mongolia. Nature 362:623−626. DOI:10.1038/362623a0

    View in Article CrossRef Google Scholar

    [20] Senter P. (2005). Function in the stunted forelimbs of Mononykus olecranus (Theropoda), a dinosaurian anteater. Paleobiology 31:373−381. DOI:10.1666/0094-8373(2005)031[0373:FITSFO]2.0.CO;2

    View in Article CrossRef Google Scholar

    [21] Zhou Z. (1995). Is Mononykus a bird. Auk 112:958−963. DOI:10.2307/4089026

    View in Article CrossRef Google Scholar

    [22] Longrich N.R. and Currie P.J. (2009). Albertonykus borealis, a new alvarezsaur (Dinosauria: Theropoda) from the Early Maastrichtian of Alberta, Canada: Implications for the systematics and ecology of the Alvarezsauridae. Cret. Res. 30:239−252. DOI:10.1016/j.cretres.2008.07.005

    View in Article CrossRef Google Scholar

    [23] Novas F.E. (1997). Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the Late Cretaceous of Patagonia. J. Vert. Paleontol. 17:137−166. DOI:10.1080/02724634.1997.10010959

    View in Article CrossRef Google Scholar

    [24] Altangarel P., Chiappe L.M., Barsbold R., et al. (1994). Skeletal morphology of Mononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. Am. Mus. Novit. 3105:1-29. http://hdl.handle.net/2246/4936

    View in Article Google Scholar

    [25] Choiniere J.N., Xu X., Clark J.M., et al. (2010). A basal alvarezsauroid theropod from the early Late Jurassic of Xinjiang, China. Science 327:571−574. DOI:10.1126/science.1182143

    View in Article CrossRef Google Scholar

    [26] Qin, Z., Zhao, Q., Choiniere, J.N., et al. (2021). Growth and miniaturization among alvarezsauroid dinosaurs. Curr. Biol. 31:3687-3693 DOI: 10.1016/j.cub.2021.06.013.

    View in Article Google Scholar

    [27] Xu X., Choiniere J., Tan Q., et al. (2018). Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr. Biol. 28:2853-2860. DOI: 10.1016/j.cub.2018.07.057.

    View in Article Google Scholar

    [28] Lautenschlager S. (2016). Reconstructing the past: methods and techniques for the digital restoration of fossils. R. Soc. Open Sci. 3:160342. DOI:10.1098/rsos.160342

    View in Article CrossRef Google Scholar

    [29] Meade L.E. and Ma W. (2022). Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria. Sci. Rep. 12:1−15. DOI:10.1038/s41598-022-06910-4

    View in Article CrossRef Google Scholar

    [30] Cuff A.R. and Rayfield E.J. (2015). Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania. PeerJ 3:e1093. DOI:10.7717/peerj.1093

    View in Article CrossRef Google Scholar

    [31] Zapata U., Metzger K., Wang Q., et al. (2010). Material properties of mandibular cortical bone in the American alligator, Alligator mississippiensis. Bone 46:860−867. DOI:10.1016/j.bone.2009.11.010

    View in Article CrossRef Google Scholar

    [32] Lautenschlager S., Witmer L.M., Altangerel P., and Rayfield E.J. (2013). Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Curr. Biol. 110:20657−20662. DOI:10.1073/pnas.1310711110

    View in Article CrossRef Google Scholar

    [33] Ma W., Pittman M., Butler R.J., and Lautenschlager S. (2022). Macroevolutionary trends in theropod dinosaur feeding mechanics. Curr. Biol. 32:677−686.e673. DOI:10.1016/j.cub.2021.11.060

    View in Article CrossRef Google Scholar

    [34] Holliday C.M. (2009). New insights into dinosaur jaw muscle anatomy. Anat. Rec. 292:1246−1265. DOI:10.1002/ar.20982

    View in Article CrossRef Google Scholar

    [35] Lautenschlager S. (2013). Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions. J. Anat. 222:260−272. DOI:10.1111/joa.12000

    View in Article CrossRef Google Scholar

    [36] Thomason J. (1991). Cranial strength in relation to estimated biting forces in some mammals. Can. J. Zool. 69:2326−2333. DOI:10.1139/z91-327

    View in Article CrossRef Google Scholar

    [37] Law C.J., and Mehta R.S. (2019). Dry versus wet and gross: Comparisons between the dry skull method and gross dissection in estimations of jaw muscle cross‐sectional area and bite forces in sea otters. J. Morphol. 280:1706−1713. DOI:10.1002/jmor.21061

    View in Article CrossRef Google Scholar

    [38] Rayfield E.J., Norman D.B., Horner C.C., et al. (2001). Cranial design and function in a large theropod dinosaur. Nature 409:1033−1037. DOI:10.1038/35059070

    View in Article CrossRef Google Scholar

    [39] Sakamoto M. (2010). Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc. R. Soc. B 277:3327−3333. DOI:10.1098/rspb.2010.0794

    View in Article CrossRef Google Scholar

    [40] Sakamoto M. (2022). Estimating bite force in extinct dinosaurs using phylogenetically predicted physiological cross-sectional areas of jaw adductor muscles. PeerJ 10:e13731. DOI:10.7717/peerj.13731

    View in Article CrossRef Google Scholar

    [41] Schneider C.A., Rasband W.S., and Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671−675. DOI:10.1038/nmeth.2089

    View in Article CrossRef Google Scholar

    [42] Xing L., Bell P.R., Persons W.S.I.V., et al. (2012). Abdominal contents from two large Early Cretaceous compsognathids (Dinosauria: Theropoda) demonstrate feeding on confuciusornithids and dromaeosaurids. PLOS ONE 7:e44012. DOI:10.1371/journal.pone.0044012

    View in Article CrossRef Google Scholar

    [43] Chin K., Eberth D.A., Schweitzer M.H., et al. (2003). Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios 18:286−294. DOI:2.0.CO;2">10.1669/0883-1351(2003)018<0286:RPOUMT>2.0.CO;2

    View in Article CrossRef Google Scholar

    [44] Martill D.M., Frey E., Sues H.-D., and Cruickshank A.R. (2000). Skeletal remains of a small theropod dinosaur with associated soft structures from the Lower Cretaceous Santana Formation of northeastern Brazil. Can. J. Earth Sci. 37:891−900. DOI:10.1139/e00-001

    View in Article CrossRef Google Scholar

    [45] Briggs D.E.G. (2003). the role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31:275−301. DOI:10.1146/annurev.earth.31.100901.144746

    View in Article CrossRef Google Scholar

    [46] Zhang X.-M., Sun C.-Y., Xu W.-L., et al. (2021). Geochemistry of apatites from Mesozoic granitoids in the northeastern North China Craton and their petrogenetic implications. Lithos 402-403:106198. DOI:10.1016/j.lithos.2021.106198

    View in Article CrossRef Google Scholar

    [47] Jurašeková Z., Fabriciová G., Silveira L.F., et al. (2022). Raman spectra and ancient life: Vibrational ID profiles of fossilized (bone) tissues. Int. J. Mol. Sci. 23:10689. DOI:10.3390/ijms231810689

    View in Article CrossRef Google Scholar

    [48] Briggs D.E.G., and Kear A.J. (1993). Fossilization of soft tissue in the laboratory. Science 259:1439−1442. DOI:10.1126/science.259.5100.1439

    View in Article CrossRef Google Scholar

    [49] Tse Y.T., Miller C.V., and Pittman M. (2024). Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history. BMC Ecol. Evol. 24:39. DOI:10.1186/s12862-024-02222-5

    View in Article CrossRef Google Scholar

    [50] Stienstra P. (1991). Sedimentary petrology, origin and mining history of the phosphate rocks of Klein Curaçao, Curaçao and Aruba, Netherlands West Indies (Secretariat, Foundation for Scientific Research, Inst. Tax. Zoology). https://books.google.com/books?id=ZlUSAQAAIAAJ.

    View in Article Google Scholar

    [51] Hunt A.P., Chin K. and Lockley M.G. (1994). The paleobiology of vertebrate coprolites. In: Donovan S.K. (ed). The Palaeobiology of Trace Fossils (Wiley), pp:221–240. https://www.wiley-vch.de/en/areas-interest/natural-sciences/earth-science-11es/geology-geophysics-11es1/the-palaeobiology-of-trace-fossils-978-0-471-94843-8.

    View in Article Google Scholar

    [52] Osés G.L., Petri S., Becker-Kerber B., et al. (2016). Deciphering the preservation of fossil insects: A case study from the Crato Member, Early Cretaceous of Brazil. PeerJ 4:e2756. DOI:10.7717/peerj.2756

    View in Article CrossRef Google Scholar

    [53] Kopittke P.M., Lombi E., van der Ent A., et al. (2020). Methods to Visualize Elements in Plants. Plant Physiol 182:1869−1882. DOI:10.1104/pp.19.01306

    View in Article CrossRef Google Scholar

    [54] Briggs D.E.G. and Kear A.J. (1993). Decay and preservation of polychaetes: Taphonomic thresholds in soft-bodied organisms. Paleobiology 19:107−135. DOI:10.1017/S0094837300012343

    View in Article CrossRef Google Scholar

    [55] Parry L.A., Smithwick F., Nordén K.K., et al. (2018). Soft-bodied fossils are not simply rotten carcasses – Toward a holistic understanding of exceptional fossil preservation. BioEssays 40:1700167. DOI:10.1002/bies.201700167

    View in Article CrossRef Google Scholar

    [56] Janes D. and Gutzke W.H.N. (2002). Factors affecting retention time of turtle scutes in stomachs of american alligators, Alligator mississippiensis. Am. Midl. Nat. 148:115−119,115. DOI:10.1674/0003-0031(2002)148[0115:FARTOT]2.0.CO;2

    View in Article CrossRef Google Scholar

    [57] Skoczylas R. (1978). Physiology of the digestive tract. Gans C. (ed). Biology of the Reptilia (Academic Press), pp: 589–717. https://carlgans.org/biology-reptilia-online/

    View in Article Google Scholar

    [58] Bury S. and Drohobycka-Wawryka A. (2020). Pellet egestion in modern carnivorous snakes. Curr. Zool. 66:593−595. DOI:10.1093/cz/zoaa009

    View in Article CrossRef Google Scholar

    [59] Denbow D.M. (2015). Gastrointestinal anatomy and physiology. Scanes C.G. (ed). Sturkie's Avian Physiology (Sixth Edition) (Academic Press), pp:337–366. DOI:10.1016/B978-0-12-407160-5.00014-2

    View in Article Google Scholar

    [60] O'Connor J.K. and Zhou Z. (2019). The evolution of the modern avian digestive system: Insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 63:13−27. DOI:10.1111/pala.12453

    View in Article CrossRef Google Scholar

    [61] Estes R.D. (2012). The behavior guide to african mammals: Including hoofed mammals, carnivores, primates (University of California Press). https://archive.org/details/isbn_0520080858.

    View in Article Google Scholar

    [62] Freimuth W.J., Varricchio D.J., Brannick A.L., et al. (2021). Mammal-bearing gastric pellets potentially attributable to Troodon formosus at the Cretaceous Egg Mountain locality, Two Medicine Formation, Montana, USA. Palaeontology 64:699−725. DOI:10.1111/pala.12546

    View in Article CrossRef Google Scholar

    [63] Duke G.E., Jegers A.A., Loff G., et al. (1975). Gastric digestion in some raptors. Comp. Biochem. Physiol. 50:649−656. DOI:10.1016/0300-9629(75)90121-8

    View in Article CrossRef Google Scholar

    [64] Xing L., Persons W.S., IV, Bell, P.R., et al. (2013). Piscivory in the feathered dinosaur Microraptor. Evolution 67:2441−2445. DOI:10.1111/evo.12119

    View in Article CrossRef Google Scholar

    [65] Larsson H.C.E., Hone D.W.E., Dececchi T.A., et al. (2010). The winged non-avian dinosaur Microraptor fed on mammals: Implications for the Jehol Biota ecosystems. J. Vertebr. Paleontol. 20:39A. https://scholar.google.com/scholar_lookup?hl=en&volume=30&publication_year=2010&pages=39A&journal=Journal+of+Vertebrate+Paleontology&author=H.+C.+E.+Larsson&author=D.+W.+Hone&author=T.+A.+Dececchi&author=C.+Sullivan&author=X.+Xu&title=The+winged+non%E2%80%90avian+dinosaur+Microraptor+fed+on+mammals%3A+implications+for+the+Jehol+Biota+ecosystems.

    View in Article Google Scholar

    [66] Qvarnström M., Fikáček M., Vikberg Wernström, J., et al. (2021). Exceptionally preserved beetles in a Triassic coprolite of putative dinosauriform origin. Curr. Biol. 31:3374−3381. DOI:10.1016/j.cub.2021.05.015

    View in Article CrossRef Google Scholar

    [67] Qvarnström M., Wernström J.V., Piechowski R., et al. (2019). Beetle-bearing coprolites possibly reveal the diet of a Late Triassic dinosauriform. R. Soc. Open Sci. 6:181042. DOI:10.1098/rsos.181042

    View in Article CrossRef Google Scholar

    [68] Qvarnström M., Vikberg Wernström J., Wawrzyniak Z., et al. (2024). Digestive contents and food webs record the advent of dinosaur supremacy. Nature 636:397-403. DOI: 10.1038/s41586-024-08265-4.

    View in Article Google Scholar

    [69] Meso J.G., Pol D., Chiappe L., et al. (2025). Body size and evolutionary rate analyses reveal complex evolutionary history of Alvarezsauria. Cladistics 41:135−155. DOI:10.1111/cla.12600

    View in Article CrossRef Google Scholar

    [70] Kubo K., Kobayashi Y., Chinzorig T., and Tsogtbaatar K. (2023). A new alvarezsaurid dinosaur (Theropoda, Alvarezsauria) from the Upper Cretaceous Baruungoyot Formation of Mongolia provides insights for bird-like sleeping behavior in non-avian dinosaurs. PLOS ONE 18:e0293801. DOI:10.1371/journal.pone.0293801

    View in Article CrossRef Google Scholar

    [71] Meso J.G., Qin Z., Pittman M., et al. (2021). Tail anatomy of the Alvarezsauria (Theropoda, Coelurosauria), and its functional and behavioural implications. Cretac. Res. 124:104830. DOI:10.1016/j.cretres.2021.104830

    View in Article CrossRef Google Scholar

    [72] Guinard G. (2022). The forelimbs of Alvarezsauroidea (Dinosauria: Theropoda): Insight from evolutionary teratology. J. Morphol. 283:1257−1272. DOI:10.1002/jmor.21500

    View in Article CrossRef Google Scholar

  • Cite this article:

    Wang S., Ding N., Ma W., et al. (2025). Direct evidence of carnivory in the early-diverging Alvarezsaurian Bannykus. The Innovation Geoscience 3:100143. https://doi.org/10.59717/j.xinn-geo.2025.100143
    Wang S., Ding N., Ma W., et al. (2025). Direct evidence of carnivory in the early-diverging Alvarezsaurian Bannykus. The Innovation Geoscience 3:100143. https://doi.org/10.59717/j.xinn-geo.2025.100143

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(7)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2930) PDF downloads(1038) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint