Direct evidence of carnivory in Bannykus wulatensis is presented through analyzing its intestinal contents.
Bone fragments suggests an efficient chemical digestion of Bannykus wulatensis.
The evolution of manual digits and diets may have been decoupled in alvarezsaurians.
[1] | O'Connor J.K. (2019). The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513:178−195. DOI:10.1016/j.palaeo.2018.03.006 |
[2] | Dal Sasso C. and Maganuco S. (2011). Scipionyx samniticus (Theropoda: Compsognathidae) from the Lower Cretaceous of Italy—osteology, ontogenetic assessment, phylogeny, soft tissue anatomy, taphonomy, and palaeobiology. Mem. Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 37:1−281. DOI:10.1080/08912963.2012.654705 |
[3] | O’Connor J., Zhou Z. and Xu X. (2011). Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc. Natl. Acad. Sci. 108:19662−19665. DOI:10.1073/pnas.1117727108 |
[4] | O’Connor J., Zheng X., Dong L., et al. (2019). Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29:2423−2429. DOI:10.1016/j.cub.2019.06.020 |
[5] | Wang M., Zhou Z. and Sullivan C. (2016). A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Curr. Biol. 26:1170−1176. DOI:10.1016/j.cub.2016.02.055 |
[6] | Zheng X., Wang X., Sullivan C., et al. (2018). Exceptional dinosaur fossils reveal early origin of avian-style digestion. Sci. Rep. 8:14217. DOI:10.1038/s41598-018-32202-x |
[7] | Chin K. (2007). The paleobiological implications of herbivorous dinosaur coprolites from the upper cretaceous two medicine formation of Montana: Why eat wood. Palaios. 22:554−566. DOI:10.2110/palo.2006.p06-087r |
[8] | Chin K., Tokaryk T.T., Erickson G.M. and Calk L.C. (1998). A king-sized theropod coprolite. Nature 393:680−682. DOI:10.1038/31461 |
[9] | Qvarnström M., Ahlberg P.E. and Niedźwiedzki G. (2019). Tyrannosaurid-like osteophagy by a Triassic archosaur. Sci. Rep. 9:925. DOI:10.1038/s41598-018-37540-4 |
[10] | Zhou Z. and Zhang F. (2002). A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418:405−409. DOI:10.1038/nature00930 |
[11] | Mayr G., Kaye T.G., Pittman M., et al. (2020). Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding. Sci. Rep. 10:19035. DOI:10.1038/s41598-020-76078-2 |
[12] | Briggs D.E.G. and Wilby P.R. (1996). The role of the calcium carbonate–calcium phosphate switch in the mineralization of soft-bodied fossils. J. Geol. Soc. 153:665−668. DOI:10.1144/gsjgs.153.5.0665 |
[13] | Wilby P.R. and Briggs D.E.G. (1997). Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios. 30:493−502. DOI:10.1016/S0016-6995(97)80056-3 |
[14] | Hu H., Wang Y., McDonald P.G., et al. (2022). Earliest evidence for fruit consumption and potential seed dispersal by birds. eLife 11:e74751. DOI:10.7554/eLife.74751 |
[15] | O’Connor J., Clark A., Herrera F., et al. (2024). Direct evidence of frugivory in the Mesozoic bird Longipteryx contradicts morphological proxies for diet. Curr. Biol. 34:4559-4566. DOI:10.1016/j.cub.2024.08.012 |
[16] | Wang S., Stiegler J., Amiot R., et al. (2017). Extreme ontogenetic changes in a ceratosaurian theropod. Curr. Biol. 27:144−147. DOI:10.1016/j.cub.2016.10.043 |
[17] | Adams N.F., Gray T. and Purnell M.A. (2020). Dietary signals in dental microwear of predatory small mammals appear unaffected by extremes in environmental abrasive load. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545:109929. DOI:10.1016/j.palaeo.2020.109929 |
[18] | Chiappe L.M., Norell M.A. and Clark J.M. (1998). The skull of a relative of the stem-group bird Mononykus. Nature 392:275−278. DOI:10.1038/32642 |
[19] | Altangerel P., Norell M.A., Chiappe L.M. and Clark J.M. (1993). Flightless bird from the Cretaceous of Mongolia. Nature 362:623−626. DOI:10.1038/362623a0 |
[20] | Senter P. (2005). Function in the stunted forelimbs of Mononykus olecranus (Theropoda), a dinosaurian anteater. Paleobiology 31:373−381. DOI:10.1666/0094-8373(2005)031[0373:FITSFO]2.0.CO;2 |
[21] | Zhou Z. (1995). Is Mononykus a bird. Auk 112:958−963. DOI:10.2307/4089026 |
[22] | Longrich N.R. and Currie P.J. (2009). Albertonykus borealis, a new alvarezsaur (Dinosauria: Theropoda) from the Early Maastrichtian of Alberta, Canada: Implications for the systematics and ecology of the Alvarezsauridae. Cret. Res. 30:239−252. DOI:10.1016/j.cretres.2008.07.005 |
[23] | Novas F.E. (1997). Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the Late Cretaceous of Patagonia. J. Vert. Paleontol. 17:137−166. DOI:10.1080/02724634.1997.10010959 |
[24] | Altangarel P., Chiappe L.M., Barsbold R., et al. (1994). Skeletal morphology of Mononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. Am. Mus. Novit. 3105:1-29. http://hdl.handle.net/2246/4936 |
[25] | Choiniere J.N., Xu X., Clark J.M., et al. (2010). A basal alvarezsauroid theropod from the early Late Jurassic of Xinjiang, China. Science 327:571−574. DOI:10.1126/science.1182143 |
[26] | Qin, Z., Zhao, Q., Choiniere, J.N., et al. (2021). Growth and miniaturization among alvarezsauroid dinosaurs. Curr. Biol. 31:3687-3693 DOI: 10.1016/j.cub.2021.06.013. |
[27] | Xu X., Choiniere J., Tan Q., et al. (2018). Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr. Biol. 28:2853-2860. DOI: 10.1016/j.cub.2018.07.057. |
[28] | Lautenschlager S. (2016). Reconstructing the past: methods and techniques for the digital restoration of fossils. R. Soc. Open Sci. 3:160342. DOI:10.1098/rsos.160342 |
[29] | Meade L.E. and Ma W. (2022). Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria. Sci. Rep. 12:1−15. DOI:10.1038/s41598-022-06910-4 |
[30] | Cuff A.R. and Rayfield E.J. (2015). Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania. PeerJ 3:e1093. DOI:10.7717/peerj.1093 |
[31] | Zapata U., Metzger K., Wang Q., et al. (2010). Material properties of mandibular cortical bone in the American alligator, Alligator mississippiensis. Bone 46:860−867. DOI:10.1016/j.bone.2009.11.010 |
[32] | Lautenschlager S., Witmer L.M., Altangerel P., and Rayfield E.J. (2013). Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Curr. Biol. 110:20657−20662. DOI:10.1073/pnas.1310711110 |
[33] | Ma W., Pittman M., Butler R.J., and Lautenschlager S. (2022). Macroevolutionary trends in theropod dinosaur feeding mechanics. Curr. Biol. 32:677−686.e673. DOI:10.1016/j.cub.2021.11.060 |
[34] | Holliday C.M. (2009). New insights into dinosaur jaw muscle anatomy. Anat. Rec. 292:1246−1265. DOI:10.1002/ar.20982 |
[35] | Lautenschlager S. (2013). Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions. J. Anat. 222:260−272. DOI:10.1111/joa.12000 |
[36] | Thomason J. (1991). Cranial strength in relation to estimated biting forces in some mammals. Can. J. Zool. 69:2326−2333. DOI:10.1139/z91-327 |
[37] | Law C.J., and Mehta R.S. (2019). Dry versus wet and gross: Comparisons between the dry skull method and gross dissection in estimations of jaw muscle cross‐sectional area and bite forces in sea otters. J. Morphol. 280:1706−1713. DOI:10.1002/jmor.21061 |
[38] | Rayfield E.J., Norman D.B., Horner C.C., et al. (2001). Cranial design and function in a large theropod dinosaur. Nature 409:1033−1037. DOI:10.1038/35059070 |
[39] | Sakamoto M. (2010). Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc. R. Soc. B 277:3327−3333. DOI:10.1098/rspb.2010.0794 |
[40] | Sakamoto M. (2022). Estimating bite force in extinct dinosaurs using phylogenetically predicted physiological cross-sectional areas of jaw adductor muscles. PeerJ 10:e13731. DOI:10.7717/peerj.13731 |
[41] | Schneider C.A., Rasband W.S., and Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671−675. DOI:10.1038/nmeth.2089 |
[42] | Xing L., Bell P.R., Persons W.S.I.V., et al. (2012). Abdominal contents from two large Early Cretaceous compsognathids (Dinosauria: Theropoda) demonstrate feeding on confuciusornithids and dromaeosaurids. PLOS ONE 7:e44012. DOI:10.1371/journal.pone.0044012 |
[43] | Chin K., Eberth D.A., Schweitzer M.H., et al. (2003). Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios 18:286−294. DOI:2.0.CO;2">10.1669/0883-1351(2003)018<0286:RPOUMT>2.0.CO;2 |
[44] | Martill D.M., Frey E., Sues H.-D., and Cruickshank A.R. (2000). Skeletal remains of a small theropod dinosaur with associated soft structures from the Lower Cretaceous Santana Formation of northeastern Brazil. Can. J. Earth Sci. 37:891−900. DOI:10.1139/e00-001 |
[45] | Briggs D.E.G. (2003). the role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31:275−301. DOI:10.1146/annurev.earth.31.100901.144746 |
[46] | Zhang X.-M., Sun C.-Y., Xu W.-L., et al. (2021). Geochemistry of apatites from Mesozoic granitoids in the northeastern North China Craton and their petrogenetic implications. Lithos 402-403:106198. DOI:10.1016/j.lithos.2021.106198 |
[47] | Jurašeková Z., Fabriciová G., Silveira L.F., et al. (2022). Raman spectra and ancient life: Vibrational ID profiles of fossilized (bone) tissues. Int. J. Mol. Sci. 23:10689. DOI:10.3390/ijms231810689 |
[48] | Briggs D.E.G., and Kear A.J. (1993). Fossilization of soft tissue in the laboratory. Science 259:1439−1442. DOI:10.1126/science.259.5100.1439 |
[49] | Tse Y.T., Miller C.V., and Pittman M. (2024). Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history. BMC Ecol. Evol. 24:39. DOI:10.1186/s12862-024-02222-5 |
[50] | Stienstra P. (1991). Sedimentary petrology, origin and mining history of the phosphate rocks of Klein Curaçao, Curaçao and Aruba, Netherlands West Indies (Secretariat, Foundation for Scientific Research, Inst. Tax. Zoology). https://books.google.com/books?id=ZlUSAQAAIAAJ. |
[51] | Hunt A.P., Chin K. and Lockley M.G. (1994). The paleobiology of vertebrate coprolites. In: Donovan S.K. (ed). The Palaeobiology of Trace Fossils (Wiley), pp:221–240. https://www.wiley-vch.de/en/areas-interest/natural-sciences/earth-science-11es/geology-geophysics-11es1/the-palaeobiology-of-trace-fossils-978-0-471-94843-8. |
[52] | Osés G.L., Petri S., Becker-Kerber B., et al. (2016). Deciphering the preservation of fossil insects: A case study from the Crato Member, Early Cretaceous of Brazil. PeerJ 4:e2756. DOI:10.7717/peerj.2756 |
[53] | Kopittke P.M., Lombi E., van der Ent A., et al. (2020). Methods to Visualize Elements in Plants. Plant Physiol 182:1869−1882. DOI:10.1104/pp.19.01306 |
[54] | Briggs D.E.G. and Kear A.J. (1993). Decay and preservation of polychaetes: Taphonomic thresholds in soft-bodied organisms. Paleobiology 19:107−135. DOI:10.1017/S0094837300012343 |
[55] | Parry L.A., Smithwick F., Nordén K.K., et al. (2018). Soft-bodied fossils are not simply rotten carcasses – Toward a holistic understanding of exceptional fossil preservation. BioEssays 40:1700167. DOI:10.1002/bies.201700167 |
[56] | Janes D. and Gutzke W.H.N. (2002). Factors affecting retention time of turtle scutes in stomachs of american alligators, Alligator mississippiensis. Am. Midl. Nat. 148:115−119,115. DOI:10.1674/0003-0031(2002)148[0115:FARTOT]2.0.CO;2 |
[57] | Skoczylas R. (1978). Physiology of the digestive tract. Gans C. (ed). Biology of the Reptilia (Academic Press), pp: 589–717. https://carlgans.org/biology-reptilia-online/ |
[58] | Bury S. and Drohobycka-Wawryka A. (2020). Pellet egestion in modern carnivorous snakes. Curr. Zool. 66:593−595. DOI:10.1093/cz/zoaa009 |
[59] | Denbow D.M. (2015). Gastrointestinal anatomy and physiology. Scanes C.G. (ed). Sturkie's Avian Physiology (Sixth Edition) (Academic Press), pp:337–366. DOI:10.1016/B978-0-12-407160-5.00014-2 |
[60] | O'Connor J.K. and Zhou Z. (2019). The evolution of the modern avian digestive system: Insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 63:13−27. DOI:10.1111/pala.12453 |
[61] | Estes R.D. (2012). The behavior guide to african mammals: Including hoofed mammals, carnivores, primates (University of California Press). https://archive.org/details/isbn_0520080858. |
[62] | Freimuth W.J., Varricchio D.J., Brannick A.L., et al. (2021). Mammal-bearing gastric pellets potentially attributable to Troodon formosus at the Cretaceous Egg Mountain locality, Two Medicine Formation, Montana, USA. Palaeontology 64:699−725. DOI:10.1111/pala.12546 |
[63] | Duke G.E., Jegers A.A., Loff G., et al. (1975). Gastric digestion in some raptors. Comp. Biochem. Physiol. 50:649−656. DOI:10.1016/0300-9629(75)90121-8 |
[64] | Xing L., Persons W.S., IV, Bell, P.R., et al. (2013). Piscivory in the feathered dinosaur Microraptor. Evolution 67:2441−2445. DOI:10.1111/evo.12119 |
[65] | Larsson H.C.E., Hone D.W.E., Dececchi T.A., et al. (2010). The winged non-avian dinosaur Microraptor fed on mammals: Implications for the Jehol Biota ecosystems. J. Vertebr. Paleontol. 20:39A. https://scholar.google.com/scholar_lookup?hl=en&volume=30&publication_year=2010&pages=39A&journal=Journal+of+Vertebrate+Paleontology&author=H.+C.+E.+Larsson&author=D.+W.+Hone&author=T.+A.+Dececchi&author=C.+Sullivan&author=X.+Xu&title=The+winged+non%E2%80%90avian+dinosaur+Microraptor+fed+on+mammals%3A+implications+for+the+Jehol+Biota+ecosystems. |
[66] | Qvarnström M., Fikáček M., Vikberg Wernström, J., et al. (2021). Exceptionally preserved beetles in a Triassic coprolite of putative dinosauriform origin. Curr. Biol. 31:3374−3381. DOI:10.1016/j.cub.2021.05.015 |
[67] | Qvarnström M., Wernström J.V., Piechowski R., et al. (2019). Beetle-bearing coprolites possibly reveal the diet of a Late Triassic dinosauriform. R. Soc. Open Sci. 6:181042. DOI:10.1098/rsos.181042 |
[68] | Qvarnström M., Vikberg Wernström J., Wawrzyniak Z., et al. (2024). Digestive contents and food webs record the advent of dinosaur supremacy. Nature 636:397-403. DOI: 10.1038/s41586-024-08265-4. |
[69] | Meso J.G., Pol D., Chiappe L., et al. (2025). Body size and evolutionary rate analyses reveal complex evolutionary history of Alvarezsauria. Cladistics 41:135−155. DOI:10.1111/cla.12600 |
[70] | Kubo K., Kobayashi Y., Chinzorig T., and Tsogtbaatar K. (2023). A new alvarezsaurid dinosaur (Theropoda, Alvarezsauria) from the Upper Cretaceous Baruungoyot Formation of Mongolia provides insights for bird-like sleeping behavior in non-avian dinosaurs. PLOS ONE 18:e0293801. DOI:10.1371/journal.pone.0293801 |
[71] | Meso J.G., Qin Z., Pittman M., et al. (2021). Tail anatomy of the Alvarezsauria (Theropoda, Coelurosauria), and its functional and behavioural implications. Cretac. Res. 124:104830. DOI:10.1016/j.cretres.2021.104830 |
[72] | Guinard G. (2022). The forelimbs of Alvarezsauroidea (Dinosauria: Theropoda): Insight from evolutionary teratology. J. Morphol. 283:1257−1272. DOI:10.1002/jmor.21500 |
Wang S., Ding N., Ma W., et al. (2025). Direct evidence of carnivory in the early-diverging Alvarezsaurian Bannykus. The Innovation Geoscience 3:100143. https://doi.org/10.59717/j.xinn-geo.2025.100143 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Silhouette and photographs of Bannykus wulatensis holotype (IVPP V25026) showing the yellowish conglomerate enclosed by the partial gastralia ribcage
EDS results for the yellowish conglomerate enclosed by the partial gastralia ribcage
Ground sections and EMP results highlighting the differences in microstructures, chemical components, and roundness of the minerals cemented in the host sandstone and conglomerate samples
SEM images showing the phosphatized hollow microspheres (A-C), apatite crystals (D-F), and phosphatized microbes (G), illustrating the heterogeneous nature of the conglomerate (H-I)
SEM images showing the phosphatized soft tissues (A-I) and debris of hard tissues (J-L) within the intestinal contents
Raman spectrum results illustrating feature peaks indicative of bony substrates of the intestinal content
Time-calibrated simplified phylogeny showing the interrelationships of alvarezsaurians, along with the accompanying decreases in body size and the reduction of manual digits (not to scale)