Article Contents
REPORT   Open Access     Cite

Response of terrestrial ecosystems carbon budget to large-scale direct CO2 removal using Community Earth System Model

More Information
  • Corresponding author: zengzz@sustech.edu.cn 
  • DownLoad: Full size image
    1. Large-scale carbon dioxide removal (CDR) reshapes climate–ecosystem carbon balance.

      Land ecosystem may release CO2 after large-scale carbon removal.

      Boreal forests help restore global land carbon balance while tropics remain CO2 sources.

      Vegetation traits and post-CDR climate conditions drive divergent ecosystem responses.

  • The terrestrial ecosystem is a critical carbon reservoir that faces the risk of transitioning from a carbon sink to a source under large-scale carbon dioxide removal (CDR) strategies aimed at mitigating climate change. In this study, we use a fully coupled Earth system model to simulate an abrupt decline in atmospheric CO2 concentrations from near-current levels to the pre-industrial level of approximately 280 ppm. We find that the CDR-induced reductions in net primary productivity lead terrestrial ecosystems to emit carbon. It takes approximately 14 years after removal for the global land-atmosphere system to reach a new carbon equilibrium, with recovery times varying by region, particularly delayed in the tropics. Boreal ecosystems play a key compensatory role by absorbing the excess carbon released from other regions, thereby helping to restore the global carbon balance. These findings underscore the pressing need for improved land management and a holistic approach that combines natural and technological CDR to achieve net-zero emissions targets.
  • 加载中
  • [1] Pörtner H-O, Roberts D.C., Tignor M.M.B., et al. (2022). Climate change 2022: Impacts, adaptation and vulnerability working group II contribution to the sixth assessment report of the intergovernmental panel on climate change. (IPCC, Cambridge University Press), pp:3056. DOI:10.1017/9781009325844

    View in Article Google Scholar

    [2] Breyer C., Fasihi M., Bajamundi C., et al. (2019). Direct air capture of CO2: A key technology for ambitious climate change mitigation. Joule 3:2053−2057. DOI:10.1016/j.joule.2019.08.010

    View in Article CrossRef Google Scholar

    [3] Liu Z., Deng Z., He G., et al. (2022). Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3:141−155. DOI:10.1038/s43017-021-00244-x

    View in Article CrossRef Google Scholar

    [4] IEA (2023). CCUS Projects Database. https://www.iea.org/data-and-statistics/data-product/ccus-projects-database#overview

    View in Article Google Scholar

    [5] Albany O., Anchorage A., Morgantown W., et al. (2023). Fiscal year 2023 carbon dioxide removal peer review.

    View in Article Google Scholar

    [6] Rayner T., Szulecki K., Jordan A.J., et al. (2023). Handbook on European union climate change policy and politics (Edward Elgar Publishing). DOI:10.4337/9781789906981

    View in Article Google Scholar

    [7] Schenuit F., Colvin R., Fridahl M., et al. (2021). Carbon dioxide removal policy in the making: Assessing developments in 9 OECD cases. Front. Clim. 3:638805. DOI:10.3389/fclim.2021.638805

    View in Article Google Scholar

    [8] Climeworks (2024). From reality to scale-up: An order of magnitude closer to gigaton scale. https://climeworks.com/plant-mammoth (accessed October 2024

    View in Article Google Scholar

    [9] Sabatino F., Grimm A., Gallucci F., et al. (2021). A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 5:2047−2076. DOI:10.1016/j.joule.2021.05.023

    View in Article CrossRef Google Scholar

    [10] Young J., McQueen N., Charalambous C., et al. (2023). The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets. One Earth 6:899−917. DOI:10.1016/j.oneear.2023.06.004

    View in Article CrossRef Google Scholar

    [11] Canadell J.G., Monteiro P.M.S., Costa M.H., et al. (2021). 2021: Global carbon and other biogeochemical cycles and feedbacks. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. https://hal.science/hal-03336145

    View in Article Google Scholar

    [12] Lee J.-Y., Marotzke J., Bala G., et al. (2021). 2021: Future global climate: Scenario-based projections and near-term information. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-4/

    View in Article Google Scholar

    [13] Rickels W., Reith F., Keller D., et al. (2018). Integrated assessment of carbon dioxide removal. Earth's Future 6:565−582. DOI:10.1002/2017EF000724

    View in Article CrossRef Google Scholar

    [14] Zickfeld K., MacIsaac A.J., Canadell J.G., et al. (2023). Net-zero approaches must consider Earth system impacts to achieve climate goals. Nat. Clim. Change 13:1298−1305. DOI:10.1038/s41558-023-01862-7

    View in Article CrossRef Google Scholar

    [15] National Research Council. (2015). Climate intervention: Carbon dioxide removal and reliable sequestration (National Academies Press). DOI:10.17226/18805.

    View in Article Google Scholar

    [16] Griscom B.W., Adams J., Ellis P.W., et al. (2017). Natural climate solutions. P. Natl. Acad. Sci. USA 114:11645−11650. DOI:10.1073/pnas.1710465114

    View in Article CrossRef Google Scholar

    [17] Matthews H.D., Zickfeld K., Dickau M., et al. (2022). Temporary nature-based carbon removal can lower peak warming in a well-below 2°C scenario. Commun. Earth Environ. 3. DOI:10.1038/s43247-022-00391-z.

    View in Article Google Scholar

    [18] Keller D.P., Lenton A., Scott V., et al. (2018). The carbon dioxide removal model intercomparison project (CDRMIP): Rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11:1133−1160. DOI:10.5194/gmd-11-1133-2018

    View in Article CrossRef Google Scholar

    [19] Zickfeld K., Azevedo D., Mathesius S., et al. (2021). Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11:613−617. DOI:10.1038/s41558-021-01061-2

    View in Article CrossRef Google Scholar

    [20] Hwang J., Son S.-W., Garfinkel C.I., et al. (2024). Asymmetric hysteresis response of mid-latitude storm tracks to CO2 removal. Nat. Clim. Change 14:496−503. DOI:10.1038/s41558-024-01971-x

    View in Article CrossRef Google Scholar

    [21] MacDougall A.H., Frölicher T.L., Jones C.D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17:2987-3016. DOI:10.5194/bg-17-2987-2020.

    View in Article Google Scholar

    [22] Tokarska K.B. and Zickfeld K. (2015). The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environ. Res. Lett. 10:094013. DOI:10.1088/1748-9326/10/9/094013

    View in Article CrossRef Google Scholar

    [23] Keller D.P., Lenton A., Littleton E.W., et al. (2018). The Effects of Carbon Dioxide Removal on the Carbon Cycle. Curr. Clim. Change Rep. 4:250−265. DOI:10.1007/s40641-018-0104-3

    View in Article CrossRef Google Scholar

    [24] Steffen W., Rockström J., Richardson K., et al. (2018). Trajectories of the Earth System in the Anthropocene. P. Natl. Acad. Sci. USA 115:8252−8259. DOI:10.1073/pnas.1810141115

    View in Article CrossRef Google Scholar

    [25] Danabasoglu G., Lamarque J.F., Bacmeister J., et al. (2020). The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Sy. 12:e2019MS001916. DOI:10.1029/2019MS001916

    View in Article CrossRef Google Scholar

    [26] O'Neill B.C., Tebaldi C., Vuuren D.P., et al. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9:3461−3482. DOI:10.5194/gmd-9-3461-2016

    View in Article CrossRef Google Scholar

    [27] Fuhrman J., Bergero C., Weber M., et al. (2023). Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change 13:341−350. DOI:10.1038/s41558-023-01604-9

    View in Article CrossRef Google Scholar

    [28] Lawrence D.M., Fisher R.A., Koven C.D., et al. (2019). The Community Land Model Version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11:4245−4287. DOI:10.1029/2018MS001583

    View in Article CrossRef Google Scholar

    [29] Keller D.P., Feng E.Y. and Oschlies A. (2014). Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun. 5:3304. DOI:10.1038/ncomms4304

    View in Article CrossRef Google Scholar

    [30] Jones C., Ciais P., Davis S., et al. (2016). Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11:095012. DOI:10.1088/1748-9326/11/9/095012

    View in Article CrossRef Google Scholar

    [31] Brooks N. and Adger W.N. (2005). Assessing and enhancing adaptive capacity. Adaptation policy frameworks for climate change: Developing strategies, policies and measures. (Cambridge University Press), pp:165-181.

    View in Article Google Scholar

    [32] Yi C. and Jackson N. (2021). A review of measuring ecosystem resilience to disturbance. Environ. Res. Lett. 16:053008. DOI:10.1088/1748-9326/abdf09

    View in Article CrossRef Google Scholar

    [33] Forzieri G., Dakos V., McDowell N.G., et al. (2022). Emerging signals of declining forest resilience under climate change. Nature 608:534−539. DOI:10.1038/s41586-022-04959-9

    View in Article CrossRef Google Scholar

    [34] Liu X., Wang D., Chen A., et al. (2025). Asymmetric sensitivity of boreal forest resilience to forest gain and loss. Nat. Ecol. Evol. 9:505−514. DOI:10.1038/s41559-024-02631-1

    View in Article CrossRef Google Scholar

    [35] Turubanova S., Potapov P.V., Tyukavina A., et al. (2018). Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13:074028. DOI:10.1088/1748-9326/aacd1c

    View in Article CrossRef Google Scholar

    [36] Pugh T.A., Rademacher T., Shafer S.L., et al. (2020). Understanding the uncertainty in global forest carbon turnover. Biogeosciences 17:3961−3989. DOI:10.5194/bg-17-3961-2020

    View in Article CrossRef Google Scholar

    [37] Falk D.A., Mantgem P.J., Keeley J.E., et al. (2022). Mechanisms of forest resilience. Forest Ecol. Manag. 512:120129. DOI:10.1016/j.foreco.2022.120129

    View in Article CrossRef Google Scholar

    [38] Wigneron J.-P., Fan L., Ciais P., et al. (2020). Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6:eaay4603. DOI:10.1126/sciadv.aay4603

    View in Article CrossRef Google Scholar

    [39] McDowell N.G., Allen C.D., Anderson-Teixeira K., et al. (2020). Pervasive shifts in forest dynamics in a changing world. Science 368:eaaz9463. DOI:10.1126/science.aaz9463

    View in Article CrossRef Google Scholar

    [40] Boulton C.A., Lenton T.M. and Boers N. (2022). Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12:271−278. DOI:10.1038/s41558-022-01287-8

    View in Article CrossRef Google Scholar

    [41] Abbasi U.A., Mattsson E., Nissanka S.P., et al. (2022). Biological, structural and functional responses of tropical forests to environmental factors. Biol. Conserv. 276:109792. DOI:10.1016/j.biocon.2022.109792

    View in Article CrossRef Google Scholar

    [42] Schmitt S., Maréchaux I., Chave J., et al. (2020). Functional diversity improves tropical forest resilience: Insights from a long-term virtual experiment. J. Ecol. 108:831−843. DOI:10.1111/1365-2745.13320

    View in Article CrossRef Google Scholar

    [43] Walker A.P., De Kauwe M.G., Bastos A., et al. (2020). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229:2413−2445. DOI:10.1111/nph.16866

    View in Article CrossRef Google Scholar

    [44] Chimuka V.R., Nzotungicimpaye C.M. and Zickfeld K. (2023). Quantifying land carbon cycle feedbacks under negative CO2 emissions. Biogeosciences 20:2283−2299. DOI:10.5194/bg-20-2283-2023

    View in Article CrossRef Google Scholar

    [45] Friedlingstein P., O'Sullivan M., Jones M.W., et al. (2023). Global Carbon Budget 2023. Earth Syst. Sci. Data 15:5301−5369. DOI:10.5194/essd-15-5301-2023

    View in Article CrossRef Google Scholar

    [46] Liang L., Liang S. and Zeng Z. (2024). Extreme climate sparks record boreal wildfires and carbon surge in 2023. The Innovation 5:100631. DOI:10.1016/j.xinn.2024.100631

    View in Article CrossRef Google Scholar

    [47] Cole L.E.S., Bhagwat S.A. and Willis K.J. (2014). Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5:3906. DOI:10.1038/ncomms4906

    View in Article CrossRef Google Scholar

    [48] Ruseva T., Hedrick J., Marland G., et al. (2020). Rethinking standards of permanence for terrestrial and coastal carbon: Implications for governance and sustainability. Curr. Opin. Env. Sust. 45:69−77. DOI:10.1016/j.cosust.2020.09.009

    View in Article CrossRef Google Scholar

    [49] Anderegg W.R.L., Trugman A.T., Badgley G., et al. (2020). Climate-driven risks to the climate mitigation potential of forests. Science 368:eaaz7005. DOI:10.1126/science.aaz7005

    View in Article CrossRef Google Scholar

    [50] Udawatta R.P., Walter D. and Jose S. (2022). Carbon sequestration by forests and agroforests: A reality check for the United States. Carbon Footprints 2:2. DOI:10.20517/cf.2022.06

    View in Article CrossRef Google Scholar

    [51] Noon M.L., Goldstein A., Ledezma J.C., et al. (2022). Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 5:37−46. DOI:10.1038/s41893-021-00803-6

    View in Article CrossRef Google Scholar

    [52] Bonan G.B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444−1449. DOI:10.1126/science.1155121

    View in Article CrossRef Google Scholar

    [53] Jeltsch-Thömmes A., Stocker T.F. and Joos F. (2020). Hysteresis of the Earth system under positive and negative CO2 emissions. Environ. Res. Lett. 15:124026. DOI:10.1088/1748-9326/abc4af

    View in Article CrossRef Google Scholar

  • Cite this article:

    Liang L., Liang S., Zeng Z., et al. (2025). Response of terrestrial ecosystems carbon budget to large-scale direct CO2 removal using Community Earth System Model. The Innovation Geoscience 3:100150. https://doi.org/10.59717/j.xinn-geo.2025.100150
    Liang L., Liang S., Zeng Z., et al. (2025). Response of terrestrial ecosystems carbon budget to large-scale direct CO2 removal using Community Earth System Model. The Innovation Geoscience 3:100150. https://doi.org/10.59717/j.xinn-geo.2025.100150

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(6)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1589) PDF downloads(406)

Relative Articles

Cited by

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint