Large-scale carbon dioxide removal (CDR) reshapes climate–ecosystem carbon balance.
Land ecosystem may release CO2 after large-scale carbon removal.
Boreal forests help restore global land carbon balance while tropics remain CO2 sources.
Vegetation traits and post-CDR climate conditions drive divergent ecosystem responses.
| [1] | Pörtner H-O, Roberts D.C., Tignor M.M.B., et al. (2022). Climate change 2022: Impacts, adaptation and vulnerability working group II contribution to the sixth assessment report of the intergovernmental panel on climate change. (IPCC, Cambridge University Press), pp:3056. DOI:10.1017/9781009325844 |
| [2] | Breyer C., Fasihi M., Bajamundi C., et al. (2019). Direct air capture of CO2: A key technology for ambitious climate change mitigation. Joule 3:2053−2057. DOI:10.1016/j.joule.2019.08.010 |
| [3] | Liu Z., Deng Z., He G., et al. (2022). Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3:141−155. DOI:10.1038/s43017-021-00244-x |
| [4] | IEA (2023). CCUS Projects Database. https://www.iea.org/data-and-statistics/data-product/ccus-projects-database#overview |
| [5] | Albany O., Anchorage A., Morgantown W., et al. (2023). Fiscal year 2023 carbon dioxide removal peer review. |
| [6] | Rayner T., Szulecki K., Jordan A.J., et al. (2023). Handbook on European union climate change policy and politics (Edward Elgar Publishing). DOI:10.4337/9781789906981 |
| [7] | Schenuit F., Colvin R., Fridahl M., et al. (2021). Carbon dioxide removal policy in the making: Assessing developments in 9 OECD cases. Front. Clim. 3:638805. DOI:10.3389/fclim.2021.638805 |
| [8] | Climeworks (2024). From reality to scale-up: An order of magnitude closer to gigaton scale. https://climeworks.com/plant-mammoth (accessed October 2024 |
| [9] | Sabatino F., Grimm A., Gallucci F., et al. (2021). A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 5:2047−2076. DOI:10.1016/j.joule.2021.05.023 |
| [10] | Young J., McQueen N., Charalambous C., et al. (2023). The cost of direct air capture and storage can be reduced via strategic deployment but is unlikely to fall below stated cost targets. One Earth 6:899−917. DOI:10.1016/j.oneear.2023.06.004 |
| [11] | Canadell J.G., Monteiro P.M.S., Costa M.H., et al. (2021). 2021: Global carbon and other biogeochemical cycles and feedbacks. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. https://hal.science/hal-03336145 |
| [12] | Lee J.-Y., Marotzke J., Bala G., et al. (2021). 2021: Future global climate: Scenario-based projections and near-term information. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-4/ |
| [13] | Rickels W., Reith F., Keller D., et al. (2018). Integrated assessment of carbon dioxide removal. Earth's Future 6:565−582. DOI:10.1002/2017EF000724 |
| [14] | Zickfeld K., MacIsaac A.J., Canadell J.G., et al. (2023). Net-zero approaches must consider Earth system impacts to achieve climate goals. Nat. Clim. Change 13:1298−1305. DOI:10.1038/s41558-023-01862-7 |
| [15] | National Research Council. (2015). Climate intervention: Carbon dioxide removal and reliable sequestration (National Academies Press). DOI:10.17226/18805. |
| [16] | Griscom B.W., Adams J., Ellis P.W., et al. (2017). Natural climate solutions. P. Natl. Acad. Sci. USA 114:11645−11650. DOI:10.1073/pnas.1710465114 |
| [17] | Matthews H.D., Zickfeld K., Dickau M., et al. (2022). Temporary nature-based carbon removal can lower peak warming in a well-below 2°C scenario. Commun. Earth Environ. 3. DOI:10.1038/s43247-022-00391-z. |
| [18] | Keller D.P., Lenton A., Scott V., et al. (2018). The carbon dioxide removal model intercomparison project (CDRMIP): Rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11:1133−1160. DOI:10.5194/gmd-11-1133-2018 |
| [19] | Zickfeld K., Azevedo D., Mathesius S., et al. (2021). Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11:613−617. DOI:10.1038/s41558-021-01061-2 |
| [20] | Hwang J., Son S.-W., Garfinkel C.I., et al. (2024). Asymmetric hysteresis response of mid-latitude storm tracks to CO2 removal. Nat. Clim. Change 14:496−503. DOI:10.1038/s41558-024-01971-x |
| [21] | MacDougall A.H., Frölicher T.L., Jones C.D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17:2987-3016. DOI:10.5194/bg-17-2987-2020. |
| [22] | Tokarska K.B. and Zickfeld K. (2015). The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environ. Res. Lett. 10:094013. DOI:10.1088/1748-9326/10/9/094013 |
| [23] | Keller D.P., Lenton A., Littleton E.W., et al. (2018). The Effects of Carbon Dioxide Removal on the Carbon Cycle. Curr. Clim. Change Rep. 4:250−265. DOI:10.1007/s40641-018-0104-3 |
| [24] | Steffen W., Rockström J., Richardson K., et al. (2018). Trajectories of the Earth System in the Anthropocene. P. Natl. Acad. Sci. USA 115:8252−8259. DOI:10.1073/pnas.1810141115 |
| [25] | Danabasoglu G., Lamarque J.F., Bacmeister J., et al. (2020). The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Sy. 12:e2019MS001916. DOI:10.1029/2019MS001916 |
| [26] | O'Neill B.C., Tebaldi C., Vuuren D.P., et al. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9:3461−3482. DOI:10.5194/gmd-9-3461-2016 |
| [27] | Fuhrman J., Bergero C., Weber M., et al. (2023). Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change 13:341−350. DOI:10.1038/s41558-023-01604-9 |
| [28] | Lawrence D.M., Fisher R.A., Koven C.D., et al. (2019). The Community Land Model Version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11:4245−4287. DOI:10.1029/2018MS001583 |
| [29] | Keller D.P., Feng E.Y. and Oschlies A. (2014). Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun. 5:3304. DOI:10.1038/ncomms4304 |
| [30] | Jones C., Ciais P., Davis S., et al. (2016). Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11:095012. DOI:10.1088/1748-9326/11/9/095012 |
| [31] | Brooks N. and Adger W.N. (2005). Assessing and enhancing adaptive capacity. Adaptation policy frameworks for climate change: Developing strategies, policies and measures. (Cambridge University Press), pp:165-181. |
| [32] | Yi C. and Jackson N. (2021). A review of measuring ecosystem resilience to disturbance. Environ. Res. Lett. 16:053008. DOI:10.1088/1748-9326/abdf09 |
| [33] | Forzieri G., Dakos V., McDowell N.G., et al. (2022). Emerging signals of declining forest resilience under climate change. Nature 608:534−539. DOI:10.1038/s41586-022-04959-9 |
| [34] | Liu X., Wang D., Chen A., et al. (2025). Asymmetric sensitivity of boreal forest resilience to forest gain and loss. Nat. Ecol. Evol. 9:505−514. DOI:10.1038/s41559-024-02631-1 |
| [35] | Turubanova S., Potapov P.V., Tyukavina A., et al. (2018). Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13:074028. DOI:10.1088/1748-9326/aacd1c |
| [36] | Pugh T.A., Rademacher T., Shafer S.L., et al. (2020). Understanding the uncertainty in global forest carbon turnover. Biogeosciences 17:3961−3989. DOI:10.5194/bg-17-3961-2020 |
| [37] | Falk D.A., Mantgem P.J., Keeley J.E., et al. (2022). Mechanisms of forest resilience. Forest Ecol. Manag. 512:120129. DOI:10.1016/j.foreco.2022.120129 |
| [38] | Wigneron J.-P., Fan L., Ciais P., et al. (2020). Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6:eaay4603. DOI:10.1126/sciadv.aay4603 |
| [39] | McDowell N.G., Allen C.D., Anderson-Teixeira K., et al. (2020). Pervasive shifts in forest dynamics in a changing world. Science 368:eaaz9463. DOI:10.1126/science.aaz9463 |
| [40] | Boulton C.A., Lenton T.M. and Boers N. (2022). Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12:271−278. DOI:10.1038/s41558-022-01287-8 |
| [41] | Abbasi U.A., Mattsson E., Nissanka S.P., et al. (2022). Biological, structural and functional responses of tropical forests to environmental factors. Biol. Conserv. 276:109792. DOI:10.1016/j.biocon.2022.109792 |
| [42] | Schmitt S., Maréchaux I., Chave J., et al. (2020). Functional diversity improves tropical forest resilience: Insights from a long-term virtual experiment. J. Ecol. 108:831−843. DOI:10.1111/1365-2745.13320 |
| [43] | Walker A.P., De Kauwe M.G., Bastos A., et al. (2020). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229:2413−2445. DOI:10.1111/nph.16866 |
| [44] | Chimuka V.R., Nzotungicimpaye C.M. and Zickfeld K. (2023). Quantifying land carbon cycle feedbacks under negative CO2 emissions. Biogeosciences 20:2283−2299. DOI:10.5194/bg-20-2283-2023 |
| [45] | Friedlingstein P., O'Sullivan M., Jones M.W., et al. (2023). Global Carbon Budget 2023. Earth Syst. Sci. Data 15:5301−5369. DOI:10.5194/essd-15-5301-2023 |
| [46] | Liang L., Liang S. and Zeng Z. (2024). Extreme climate sparks record boreal wildfires and carbon surge in 2023. The Innovation 5:100631. DOI:10.1016/j.xinn.2024.100631 |
| [47] | Cole L.E.S., Bhagwat S.A. and Willis K.J. (2014). Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5:3906. DOI:10.1038/ncomms4906 |
| [48] | Ruseva T., Hedrick J., Marland G., et al. (2020). Rethinking standards of permanence for terrestrial and coastal carbon: Implications for governance and sustainability. Curr. Opin. Env. Sust. 45:69−77. DOI:10.1016/j.cosust.2020.09.009 |
| [49] | Anderegg W.R.L., Trugman A.T., Badgley G., et al. (2020). Climate-driven risks to the climate mitigation potential of forests. Science 368:eaaz7005. DOI:10.1126/science.aaz7005 |
| [50] | Udawatta R.P., Walter D. and Jose S. (2022). Carbon sequestration by forests and agroforests: A reality check for the United States. Carbon Footprints 2:2. DOI:10.20517/cf.2022.06 |
| [51] | Noon M.L., Goldstein A., Ledezma J.C., et al. (2022). Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 5:37−46. DOI:10.1038/s41893-021-00803-6 |
| [52] | Bonan G.B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444−1449. DOI:10.1126/science.1155121 |
| [53] | Jeltsch-Thömmes A., Stocker T.F. and Joos F. (2020). Hysteresis of the Earth system under positive and negative CO2 emissions. Environ. Res. Lett. 15:124026. DOI:10.1088/1748-9326/abc4af |
| Liang L., Liang S., Zeng Z., et al. (2025). Response of terrestrial ecosystems carbon budget to large-scale direct CO2 removal using Community Earth System Model. The Innovation Geoscience 3:100150. https://doi.org/10.59717/j.xinn-geo.2025.100150 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Land-air carbon fluxes and atmospheric CO2 response to CO2 removal (CDR) in 2024
Global Net Biome Productivity (NBP) responses to different CDR scenarios
The time when NBP reaches equilibrium and the cumulative NBP
Ecological and climatic factors associated with carbon fluxes changes
Schematic representation of ecological and climatic factors influencing NBP changes
NBP changes in relation to atmospheric CO2 concentrations