Article Contents
ARTICLE   Open Access     Cite

Simulating climatic responses of vegetation production with ecological optimality theories

More Information
  • Corresponding author: huzm@hainanu.edu.cn 
  • DownLoad: Full size image
    1. We developed an optimality-based (Opt) model for simulating gross primary productivity (GPP).

      The Opt model uses leaf area index (LAI) and climate factors with minimal parameter calibration.

      The Opt model captures GPP responses to changes in climatic factors and atmosphere CO2.

  • Ecosystem gross primary productivity (GPP) is a fundamental ecosystem function. Accurately predicting variations in GPP in response to environmental changes is a key task for the modelling community. Although sharing the same photosynthesis module, land models show divergent predictions of GPP in response to environmental changes. One reason causing the uncertainties is that key parameters of the photosynthesis module, e.g., stomatal conductance, maximum rate of Rubisco carboxylation (Vcmax), are fixed default values or estimated with empirical functions. To solve this issue, here we integrate three well-accepted optimality theories for plant photosynthesis, i.e., (1) plants maximize carbon gain for a unit of water loss through optimizing stomatal conductance, (2) plants minimize the summed cost of maintaining transpiration and carboxylation through optimizing partial pressure of CO2 in the intercellular space (Ci), and (3) vegetation allocates resources in a coordinated manner to operate close to the intersection of the light-limited and Rubisco-limited carbon assimilation rates. By bridging these theories, the key parameters of photosynthesis are estimated with analytical equations, without additional empirical constraining functions. Thereafter, an optimality-based model (Opt model) is developed to estimate GPP in this study. The Opt model is driven by leaf area index and easily accessible climate factors, with minimized number of parameters to be calibrated. Comparing with flux tower observations, widely-used GPP models and satellite products, the Opt model shows satisfactory performance in predicting GPP at both site level and global scale. Notably, it captures the sensitivity of GPP in response to climate variabilities and elevated atmospheric CO2, showing a great potential to be incorporated into land models for predicting ecosystem functioning and its feedback to climate under global changes.
  • 加载中
  • [1] Friedlingstein P., O'Sullivan M., Jones M. W., et al. (2023). Global carbon budget 2023. Earth Syst. Sci. Data 15:5301−5369. DOI:10.5194/essd-15-5301-2023

    View in Article CrossRef Google Scholar

    [2] Piao S., Wang X., Wang K., et al. (2020). Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Change Biol. 26:300-318. DOI:10.1111/gcb.14884

    View in Article Google Scholar

    [3] Hu Z., Dakos V. and Rietkerk M. (2022). Using functional indicators to detect state changes in terrestrial ecosystems. Trends Ecol. Evol. 37:1036-1045. DOI:10.1016/j.tree.2022.07.011

    View in Article Google Scholar

    [4] Hu Z., Shi H., Cheng K., et al. (2018). Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: A data-model comparison. Glob. Change Biol. 24:2965−2979. DOI:10.1111/gcb.14274

    View in Article CrossRef Google Scholar

    [5] Friedlingstein P., Cox P., Betts R., et al. (2006). Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 19:3337−3353. DOI:10.1175/JCLI3800.1

    View in Article CrossRef Google Scholar

    [6] Farquhar G. D., von Caemmerer S. and Berry J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78−90. DOI:10.1007/BF00386231

    View in Article CrossRef Google Scholar

    [7] von Caemmerer S. and Farquhar G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376−387. DOI:10.1007/BF00384257

    View in Article CrossRef Google Scholar

    [8] Rogers A., Medlyn B. E., Dukes J. S., et al. (2017). A roadmap for improving the representation of photosynthesis in earth system models. New Phytol. 213:22-42. DOI:10.1111/nph.14283

    View in Article Google Scholar

    [9] Li L., Wang Y., Arora V. K., et al. (2018). Evaluating global land surface models in CMIP5: Analysis of ecosystem water- and light-use efficiencies and rainfall partitioning. J. Clim. 31:2995−3008. DOI:10.1175/JCLI-D-16-0177.1

    View in Article CrossRef Google Scholar

    [10] Medlyn B. E., Zaehle S., De Kauwe M. G., et al. (2015). Using ecosystem experiments to improve vegetation models. Nat. Clim. Chang. 5:528-534. DOI:10.1038/nclimate2621

    View in Article Google Scholar

    [11] Harrison S. P., Cramer W., Franklin O., et al. (2021). Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytol. 231:2125−2141. DOI:10.1111/nph.17558

    View in Article CrossRef Google Scholar

    [12] Wright Ian J., Reich Peter B. and Westoby M. (2003). Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat. 161:98-111. DOI:10.1086/344920

    View in Article Google Scholar

    [13] Prentice I. C., Dong N., Gleason S. M., et al. (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17:82−91. DOI:10.1111/ele.12211

    View in Article CrossRef Google Scholar

    [14] Wang H., Prentice I. C., Keenan T. F., et al. (2017). Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3:734−741. DOI:10.1038/s41477-017-0006-8

    View in Article CrossRef Google Scholar

    [15] Stocker B. D., Wang H., Smith N. G., et al. (2020). P-model v1.0: An optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13:1545-1581. DOI:10.5194/gmd-13-1545-2020

    View in Article Google Scholar

    [16] Kolby Smith W., Reed S. C., Cleveland C. C., et al. (2016). Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Chang. 6:306-310. DOI:10.1038/nclimate2879

    View in Article Google Scholar

    [17] Wang S., Zhang Y., Ju W., et al. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370:1295−1300. DOI:10.1126/science.abb7772

    View in Article CrossRef Google Scholar

    [18] Chen C., Riley W. J., Prentice I. C., et al. (2022). CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl. Acad. Sci. USA 119:e2115627119. DOI:10.1073/pnas.2115627119

    View in Article CrossRef Google Scholar

    [19] Katul G., Manzoni S., Palmroth S., et al. (2010). A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 105:431-442. DOI:10.1093/aob/mcp292

    View in Article Google Scholar

    [20] Medlyn B. E., Duursma R. A., Eamus D., et al. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17:2134-2144. DOI:10.1111/j.1365-2486.2010.02375.x

    View in Article Google Scholar

    [21] Chen J.L., Reynolds J. F., Harley P. C., et al. (1993). Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93:63−69. DOI:10.1007/BF00321192

    View in Article CrossRef Google Scholar

    [22] Maire V., Martre P., Kattge J., et al. (2012). The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLOS ONE 7:e38345. DOI:10.1371/journal.pone.0038345

    View in Article CrossRef Google Scholar

    [23] Givnish T. J. and Vermeij G. J. (1976). Sizes and shapes of liane leaves. Am. Nat. 110:743−778. DOI:10.1086/283101

    View in Article CrossRef Google Scholar

    [24] Huber M. L., Perkins R. A., Laesecke A., et al. (2009). New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data 38:101-125. DOI:10.1063/1.3088050

    View in Article Google Scholar

    [25] Allen R. G., Pereira L. S., Raes D., et al. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. 300:D05109.

    View in Article Google Scholar

    [26] Smith N. G., Keenan T. F., Colin Prentice I., et al. (2019). Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22:506−517. DOI:10.1111/ele.13210

    View in Article CrossRef Google Scholar

    [27] Kong D., McVicar T. R., Xiao M., et al. (2022). Phenofit: An R package for extracting vegetation phenology from time series remote sensing. Methods Ecol. Evol. 13:1508-1527. DOI:10.1111/2041-210X.13870

    View in Article Google Scholar

    [28] Hu Z., Yu G., Zhou Y., et al. (2009). Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agric. For. Meteorol. 149:1410−1420. DOI:10.1016/j.agrformet.2009.03.014

    View in Article CrossRef Google Scholar

    [29] Hu Z., Li S., Yu G., et al. (2013). Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model. J. Hydrol. 501:186-192. DOI: 10.1016/j.jhydrol.2013.08.006

    View in Article Google Scholar

    [30] Papaioannou G., Papanikolaou N. and Retalis D. (1993). Relationships of photosynthetically active radiation and shortwave irradiance. Theor. Appl. Climatol. 48:23-27. DOI:10.1007/BF00864910

    View in Article Google Scholar

    [31] Lin W., Yuan H., Dong W., et al. (2023). Reprocessed MODIS version 6.1 leaf area index dataset and its evaluation for land surface and climate modeling. Remote Sens. 15:1780. DOI:10.3390/rs15071780

    View in Article Google Scholar

    [32] Jung M., Koirala S., Weber U., et al. (2019). The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6:74. DOI:10.1038/s41597-019-0076-8

    View in Article Google Scholar

    [33] Bacour C., Maignan F., MacBean N., et al. (2019). Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF Model. J. Geophys. Res. Biogeosci. 124:3281−3306. DOI:10.1029/2019JG005040

    View in Article CrossRef Google Scholar

    [34] Li X. and Xiao J. (2019). Mapping photosynthesis solely from solar-induced vhlorophyll fluorescence: A global, fine-tesolution dataset of gross primary production derived from OCO-2. Remote Sens. 11:2563. DOI:10.3390/rs11212563

    View in Article CrossRef Google Scholar

    [35] Running S., Mu Q. and Zhao M. (2021). MODIS/Aqua gross primary productivity 8-day L4 global 500m SIN grid v061. NASA land processes distributed active archive center. DOI:10.5067/MODIS/MYD17A2H.061

    View in Article Google Scholar

    [36] Zheng Y., Shen R., Wang Y., et al. (2020). Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12:2725−2746. DOI:10.5194/essd-12-2725-2020

    View in Article CrossRef Google Scholar

    [37] Zhang Y., Xiao X., Wu X., et al. (2017). A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4:170165. DOI:10.1038/sdata.2017.165

    View in Article CrossRef Google Scholar

    [38] Xiao J., Chevallier F., Gomez C., et al. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233:111383. DOI:10.1016/j.rse.2019.111383

    View in Article CrossRef Google Scholar

    [39] Zhang Y., Joiner J., Alemohammad S. H., et al. (2018). A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15:5779−5800. DOI:10.5194/bg-15-5779-2018

    View in Article CrossRef Google Scholar

    [40] Zhang W., Furtado K., Wu P., et al. (2021). Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7:eabf8021. DOI:10.1126/sciadv.abf8021

    View in Article Google Scholar

    [41] Maurer G. E., Hallmark A. J., Brown R. F., et al. (2020). Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23:527-536. DOI: 10.1111/ele.13455

    View in Article Google Scholar

    [42] Zeng X., Hu Z., Chen A., et al. (2022). The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018. Glob. Change Biol. 28:6823-6833. DOI: 10.1111/gcb.16403

    View in Article Google Scholar

    [43] Manzoni S., Vico G., Katul G., et al. (2011). Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Funct. Ecol. 25:456-467. DOI: 10.1111/j.1365-2435.2010.01822.x

    View in Article Google Scholar

    [44] Ainsworth E. A. and Rogers A. (2007). The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions. Plant Cell Environ. 30:258-270. DOI: 10.1111/j.1365-3040.2007.01641.x

    View in Article Google Scholar

    [45] Liang X., Wang D., Ye Q., et al. (2023). Stomatal responses of terrestrial plants to global change. Nat. Commun. 14:2188. DOI:10.1038/s41467-023-37934-7

    View in Article Google Scholar

    [46] Smith Nicholas G., Zhu Q., Keenan Trevor F., et al. (2024). Acclimation of photosynthesis to CO2 increases ecosystem carbon storage due to leaf nitrogen savings. Glob. Change Biol. 30:e17558. DOI: 10.1111/gcb.17558

    View in Article Google Scholar

    [47] Ren Y., Wang H., Harrison S. P., et al. (2025). Incorporating the acclimation of photosynthesis and leaf respiration in the Noah-MP land surface model: Model development and evaluation. J. Adv. Model. Earth Syst. 17:e2024MS004599 DOI:10.1029/2024MS004599

    View in Article CrossRef Google Scholar

    [48] Yan Y., Li B., Dechant B., et al. (2025). Plant traits shape global spatiotemporal variations in photosynthetic efficiency. Nat. Plants 11:924-934. DOI:10.1038/s41477-025-01958-2

    View in Article Google Scholar

    [49] Collatz G. J., Ribas-Carbo M. and Berry J. A. (1992). Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19:519-538. DOI:10.1071/PP9920519

    View in Article Google Scholar

    [50] Scott H. G. and Smith N. G. (2022). A model of C4 photosynthetic acclimation based on least-cost optimality theory suitable for earth system model incorporation. J. Adv. Model. Earth Syst. 14:e2021MS002470 DOI:10.1029/2021MS002470

    View in Article CrossRef Google Scholar

  • Cite this article:

    Hu Z., Jin C., Peng S., et al. (2025). Simulating climatic responses of vegetation production with ecological optimality theories. The Innovation Geoscience 3:100153. https://doi.org/10.59717/j.xinn-geo.2025.100153
    Hu Z., Jin C., Peng S., et al. (2025). Simulating climatic responses of vegetation production with ecological optimality theories. The Innovation Geoscience 3:100153. https://doi.org/10.59717/j.xinn-geo.2025.100153

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(8)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1547) PDF downloads(650)

Relative Articles

Cited by

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint