We developed an optimality-based (Opt) model for simulating gross primary productivity (GPP).
The Opt model uses leaf area index (LAI) and climate factors with minimal parameter calibration.
The Opt model captures GPP responses to changes in climatic factors and atmosphere CO2.
| [1] | Friedlingstein P., O'Sullivan M., Jones M. W., et al. (2023). Global carbon budget 2023. Earth Syst. Sci. Data 15:5301−5369. DOI:10.5194/essd-15-5301-2023 |
| [2] | Piao S., Wang X., Wang K., et al. (2020). Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Change Biol. 26:300-318. DOI:10.1111/gcb.14884 |
| [3] | Hu Z., Dakos V. and Rietkerk M. (2022). Using functional indicators to detect state changes in terrestrial ecosystems. Trends Ecol. Evol. 37:1036-1045. DOI:10.1016/j.tree.2022.07.011 |
| [4] | Hu Z., Shi H., Cheng K., et al. (2018). Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: A data-model comparison. Glob. Change Biol. 24:2965−2979. DOI:10.1111/gcb.14274 |
| [5] | Friedlingstein P., Cox P., Betts R., et al. (2006). Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 19:3337−3353. DOI:10.1175/JCLI3800.1 |
| [6] | Farquhar G. D., von Caemmerer S. and Berry J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78−90. DOI:10.1007/BF00386231 |
| [7] | von Caemmerer S. and Farquhar G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376−387. DOI:10.1007/BF00384257 |
| [8] | Rogers A., Medlyn B. E., Dukes J. S., et al. (2017). A roadmap for improving the representation of photosynthesis in earth system models. New Phytol. 213:22-42. DOI:10.1111/nph.14283 |
| [9] | Li L., Wang Y., Arora V. K., et al. (2018). Evaluating global land surface models in CMIP5: Analysis of ecosystem water- and light-use efficiencies and rainfall partitioning. J. Clim. 31:2995−3008. DOI:10.1175/JCLI-D-16-0177.1 |
| [10] | Medlyn B. E., Zaehle S., De Kauwe M. G., et al. (2015). Using ecosystem experiments to improve vegetation models. Nat. Clim. Chang. 5:528-534. DOI:10.1038/nclimate2621 |
| [11] | Harrison S. P., Cramer W., Franklin O., et al. (2021). Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytol. 231:2125−2141. DOI:10.1111/nph.17558 |
| [12] | Wright Ian J., Reich Peter B. and Westoby M. (2003). Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat. 161:98-111. DOI:10.1086/344920 |
| [13] | Prentice I. C., Dong N., Gleason S. M., et al. (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17:82−91. DOI:10.1111/ele.12211 |
| [14] | Wang H., Prentice I. C., Keenan T. F., et al. (2017). Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3:734−741. DOI:10.1038/s41477-017-0006-8 |
| [15] | Stocker B. D., Wang H., Smith N. G., et al. (2020). P-model v1.0: An optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13:1545-1581. DOI:10.5194/gmd-13-1545-2020 |
| [16] | Kolby Smith W., Reed S. C., Cleveland C. C., et al. (2016). Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Chang. 6:306-310. DOI:10.1038/nclimate2879 |
| [17] | Wang S., Zhang Y., Ju W., et al. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370:1295−1300. DOI:10.1126/science.abb7772 |
| [18] | Chen C., Riley W. J., Prentice I. C., et al. (2022). CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc. Natl. Acad. Sci. USA 119:e2115627119. DOI:10.1073/pnas.2115627119 |
| [19] | Katul G., Manzoni S., Palmroth S., et al. (2010). A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 105:431-442. DOI:10.1093/aob/mcp292 |
| [20] | Medlyn B. E., Duursma R. A., Eamus D., et al. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17:2134-2144. DOI:10.1111/j.1365-2486.2010.02375.x |
| [21] | Chen J.L., Reynolds J. F., Harley P. C., et al. (1993). Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93:63−69. DOI:10.1007/BF00321192 |
| [22] | Maire V., Martre P., Kattge J., et al. (2012). The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLOS ONE 7:e38345. DOI:10.1371/journal.pone.0038345 |
| [23] | Givnish T. J. and Vermeij G. J. (1976). Sizes and shapes of liane leaves. Am. Nat. 110:743−778. DOI:10.1086/283101 |
| [24] | Huber M. L., Perkins R. A., Laesecke A., et al. (2009). New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data 38:101-125. DOI:10.1063/1.3088050 |
| [25] | Allen R. G., Pereira L. S., Raes D., et al. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. 300:D05109. |
| [26] | Smith N. G., Keenan T. F., Colin Prentice I., et al. (2019). Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22:506−517. DOI:10.1111/ele.13210 |
| [27] | Kong D., McVicar T. R., Xiao M., et al. (2022). Phenofit: An R package for extracting vegetation phenology from time series remote sensing. Methods Ecol. Evol. 13:1508-1527. DOI:10.1111/2041-210X.13870 |
| [28] | Hu Z., Yu G., Zhou Y., et al. (2009). Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agric. For. Meteorol. 149:1410−1420. DOI:10.1016/j.agrformet.2009.03.014 |
| [29] | Hu Z., Li S., Yu G., et al. (2013). Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model. J. Hydrol. 501:186-192. DOI: 10.1016/j.jhydrol.2013.08.006 |
| [30] | Papaioannou G., Papanikolaou N. and Retalis D. (1993). Relationships of photosynthetically active radiation and shortwave irradiance. Theor. Appl. Climatol. 48:23-27. DOI:10.1007/BF00864910 |
| [31] | Lin W., Yuan H., Dong W., et al. (2023). Reprocessed MODIS version 6.1 leaf area index dataset and its evaluation for land surface and climate modeling. Remote Sens. 15:1780. DOI:10.3390/rs15071780 |
| [32] | Jung M., Koirala S., Weber U., et al. (2019). The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6:74. DOI:10.1038/s41597-019-0076-8 |
| [33] | Bacour C., Maignan F., MacBean N., et al. (2019). Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF Model. J. Geophys. Res. Biogeosci. 124:3281−3306. DOI:10.1029/2019JG005040 |
| [34] | Li X. and Xiao J. (2019). Mapping photosynthesis solely from solar-induced vhlorophyll fluorescence: A global, fine-tesolution dataset of gross primary production derived from OCO-2. Remote Sens. 11:2563. DOI:10.3390/rs11212563 |
| [35] | Running S., Mu Q. and Zhao M. (2021). MODIS/Aqua gross primary productivity 8-day L4 global 500m SIN grid v061. NASA land processes distributed active archive center. DOI:10.5067/MODIS/MYD17A2H.061 |
| [36] | Zheng Y., Shen R., Wang Y., et al. (2020). Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12:2725−2746. DOI:10.5194/essd-12-2725-2020 |
| [37] | Zhang Y., Xiao X., Wu X., et al. (2017). A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4:170165. DOI:10.1038/sdata.2017.165 |
| [38] | Xiao J., Chevallier F., Gomez C., et al. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233:111383. DOI:10.1016/j.rse.2019.111383 |
| [39] | Zhang Y., Joiner J., Alemohammad S. H., et al. (2018). A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15:5779−5800. DOI:10.5194/bg-15-5779-2018 |
| [40] | Zhang W., Furtado K., Wu P., et al. (2021). Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7:eabf8021. DOI:10.1126/sciadv.abf8021 |
| [41] | Maurer G. E., Hallmark A. J., Brown R. F., et al. (2020). Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23:527-536. DOI: 10.1111/ele.13455 |
| [42] | Zeng X., Hu Z., Chen A., et al. (2022). The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018. Glob. Change Biol. 28:6823-6833. DOI: 10.1111/gcb.16403 |
| [43] | Manzoni S., Vico G., Katul G., et al. (2011). Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Funct. Ecol. 25:456-467. DOI: 10.1111/j.1365-2435.2010.01822.x |
| [44] | Ainsworth E. A. and Rogers A. (2007). The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions. Plant Cell Environ. 30:258-270. DOI: 10.1111/j.1365-3040.2007.01641.x |
| [45] | Liang X., Wang D., Ye Q., et al. (2023). Stomatal responses of terrestrial plants to global change. Nat. Commun. 14:2188. DOI:10.1038/s41467-023-37934-7 |
| [46] | Smith Nicholas G., Zhu Q., Keenan Trevor F., et al. (2024). Acclimation of photosynthesis to CO2 increases ecosystem carbon storage due to leaf nitrogen savings. Glob. Change Biol. 30:e17558. DOI: 10.1111/gcb.17558 |
| [47] | Ren Y., Wang H., Harrison S. P., et al. (2025). Incorporating the acclimation of photosynthesis and leaf respiration in the Noah-MP land surface model: Model development and evaluation. J. Adv. Model. Earth Syst. 17:e2024MS004599 DOI:10.1029/2024MS004599 |
| [48] | Yan Y., Li B., Dechant B., et al. (2025). Plant traits shape global spatiotemporal variations in photosynthetic efficiency. Nat. Plants 11:924-934. DOI:10.1038/s41477-025-01958-2 |
| [49] | Collatz G. J., Ribas-Carbo M. and Berry J. A. (1992). Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19:519-538. DOI:10.1071/PP9920519 |
| [50] | Scott H. G. and Smith N. G. (2022). A model of C4 photosynthetic acclimation based on least-cost optimality theory suitable for earth system model incorporation. J. Adv. Model. Earth Syst. 14:e2021MS002470 DOI:10.1029/2021MS002470 |
| Hu Z., Jin C., Peng S., et al. (2025). Simulating climatic responses of vegetation production with ecological optimality theories. The Innovation Geoscience 3:100153. https://doi.org/10.59717/j.xinn-geo.2025.100153 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Spatial pattern and dominant controlling factors of the optimized parameter b
Comparisons of simulated GPP and observations across global flux tower sties for Opt model (A) and P-model (B)
Global distributions of modeled GPP
Spatial patterns of modeled GPP
Spatial patterns of GPP sensitivity (g C mm−1) to precipitation simulated
Spatial variations of GPP and SIF sensitivity to inter-annual variabilities
Spatial map of eCO2 fertilization effects (%)
Frequency distributions of the relative increase in GPP (A) and decrease in stomatal conductance (B) with elevated CO2 predicted by Opt model and P-model in global terrestrial ecosystems