ARTICLE   Open Access     Cite

Sequential production of secondary metabolites by one operon affects interspecies interactions in Enterobacter sp. CGMCC 5087

    Show all affliationsShow less
More Information
    1. KDC4427 is up-regulated and ADH4428 is down-regulated with bacteria growth.

      KDC4427 shows a higher kcat value for phenylpyruvate, and has higher affinity for indolepyruvate.

      KDC4427/ADH4428 ratio and enzymatic characteristics of KDC4427 mediate the fluxes of 2-PE and IAA.

      2-PE and IAA are produced sequentially in exponential growth phase and stationary phase.

      The process facilitates bacteria to orchestrate competition and cooperation for better survival.

  • Many bacteria secrete secondary metabolites to compete or cooperate with other microbes or hosts in diverse and dynamic ecological niches. 2-Phenylethanol (2-PE) and indole-3-acetic acid (IAA) are small metabolites that play important roles in biological and ecological functions, produced by microorganisms. They are synthesized via expanded shikimate pathways, and required the key enzyme α-ketoacid decarboxylase. Here we show an adaptive strategy driven by secondary metabolites in accordance with bacteria survival state. A soil derived Enterobacter strain CGMCC 5087 produces 2-PE in exponential growth phase whenever in nutrient rich or limited environments that suppresses microbial competitors, but produces IAA at the onset of stationary phase only in a tryptophann rich environment enabling plant growth promotion, which is in an α-ketoacid decarboxylase KDC4427 dependent manner. The metabolic fluxes of 2-PE and IAA are mediated by the ratio of KDC4427 and an L-glyceraldehyde 3-phosphate reductase gene ADH4428, which are transcribed divergently by a bidirectional promoter in one operon, and by the enzyme activity characteristics of KDC4427. The expression of KDC4427 is up-regulated with bacteria growth, while ADH4428 is down-regulated; simultaneously, KDC4427 shows a higher kcat value for phenylpyruvate, and has a higher affinity for indolepyruvate, thus making the reaction flow towards the production of 2-PE in exponential growth phase, however as the growth of bacteria enters the stationary phase, the production of IAA is increased. Additionally, we demonstrated that TyrR and RpoS activate and repress the expression of KDC4427 and ADH4428 through direct binding to the bidirectional promoter. These results reveal an ingenious control of competition and cooperation behaviours through fine-tuning the sequential synthesis of 2-PE and IAA in response to growth and environmental conditions.
  • 加载中
  • [1] West, S.A., Pen, I., and Griffin, A.S. (2002). Cooperation and competition between relatives. Science 296 : 72-75. DOI: 10.1126/science.1065507.

    View in Article Google Scholar

    [2] Griffin, A.S., West, S.A., and Buckling, A. (2004). Cooperation and competition in pathogenic bacteria. Nature 430 : 1024. DOI: 10.1038/nature02744.

    View in Article Google Scholar

    [3] Ågren, J.A., Davies, N.G., and Foster, K.R. (2019). Enforcement is central to the evolution of cooperation. Nat. Ecol. Evol. 3 : 1018-1029. DOI: 10.1038/s41559-019-0907-1.

    View in Article Google Scholar

    [4] Granato, E.T., Meiller-Legrand, T.A., and Foster, K.R. (2019). The evolution and ecology of bacterial warfare. Curr. Biol. 29 : R521-R537. DOI: 10.1016/j.cub.2019.04.024.

    View in Article Google Scholar

    [5] Schmidt, R., Cordovez, V., De Boer, W., et al. (2015). Volatile affairs in microbial interactions. ISME J. 9 : 2329. DOI: 10.1038/ismej.2015.42.

    View in Article Google Scholar

    [6] Effmert, U., Kalderás, J., Warnke, R., and Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38 : 665-703. DOI: 10.1007/s10886-012-0135-5.

    View in Article Google Scholar

    [7] Schulz, S. and Dickschat, J.S. (2007). Bacterial volatiles: The smell of small organisms. Nat. Prod. Rep. 24 : 814-842. DOI: 10.1039/b507392h.

    View in Article Google Scholar

    [8] Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63 : 541-556. DOI: 10.1146/annurev.micro.62.081307.162918.

    View in Article Google Scholar

    [9] Ravanbakhsh, M., Kowalchuk, G.A., and Jousset, A. (2019). Root-associated microorganisms reprogram plant life history along the growth–stress resistance tradeoff. ISME J. 13 : 3093-3101. DOI: 10.1038/s41396-019-0501-1.

    View in Article Google Scholar

    [10] Sexton, D.J. and Schuster, M. (2017). Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8 : 230. DOI: 10.1038/s41467-017-00222-2.

    View in Article Google Scholar

    [11] Zuñiga, C., Li, C.-T., Yu, G., et al. (2019). Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nat. Microbiol. 4 : 2184-2191. DOI: 10.1038/s41564-019-0567-6.

    View in Article Google Scholar

    [12] Purtschert-Montenegro, G., Cárcamo-Oyarce, G., Pinto-Carbó, M., et al. (2022). Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat. Microbiol. 7 : 1547-1557. DOI: 10.1038/s41564-022-01209-6.

    View in Article Google Scholar

    [13] Hansen, M.L., Wibowo, M., Jarmusch, S.A., et al. (2022). Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1. ISME J. 16 : 2680-2690. DOI: 10.1038/s41396-022-01322-8.

    View in Article Google Scholar

    [14] van der Heijden, M.G.A., Bruin, S.d., Luckerhoff, L., et al. (2016). A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 10 : 389-399. DOI: 10.1038/ismej.2015.120.

    View in Article Google Scholar

    [15] Haney, C.H., Samuel, B.S., Bush, J., and Ausubel, F.M. (2015). Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1 : 15051. DOI: 10.1038/nplants.2015.51.

    View in Article Google Scholar

    [16] Lugtenberg, B., Rozen, D.E., and Kamilova, F. (2017). Wars between microbes on roots and fruits. F1000Research 6 : 343. DOI: 10.12688/f1000research.10696.1.

    View in Article Google Scholar

    [17] Kai, M., Effmert, U., Berg, G., and Piechulla, B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187 : 351-360. DOI: 10.1007/s00203-006-0199-0.

    View in Article Google Scholar

    [18] Hua, S.S.T., Beck, J.J., Sarreal, S.B.L., and Gee, W. (2014). The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res. 30 : 71-78. DOI: 10.1007/s12550-014-0189-z.

    View in Article Google Scholar

    [19] Taghavi, S., van der Lelie, D., Hoffman, A., et al. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 6 : e1000943. DOI: 10.1371/journal.pgen.1000943.

    View in Article Google Scholar

    [20] Keswani, C., Singh, S.P., Cueto, L., et al. (2020). Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 104 : 8549-8565. DOI: 10.1007/s00253-020-10890-8.

    View in Article Google Scholar

    [21] Tieman, D., Taylor, M., Schauer, N., et al. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA 103 : 8287-8292. DOI: 10.1073/pnas.0602469103.

    View in Article Google Scholar

    [22] Schütz, A., Golbik, R., Tittmann, K., et al. (2003). Studies on structure–function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem. 270 : 2322-2331. DOI: 10.1046/j.1432-1033.2003.03602.x.

    View in Article Google Scholar

    [23] Spaepen, S., Versées, W., Gocke, D., et al. (2007). Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J. Bacteriol. 189 : 7626-7633. DOI: 10.1128/JB.00830-07.

    View in Article Google Scholar

    [24] Kneen, M.M., Stan, R., Yep, A., et al. (2011). Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J. 278 : 1842-1853. DOI: 10.1111/j.1742-4658.2011.08103.x.

    View in Article Google Scholar

    [25] Zhang, H., Cao, M., Jiang, X., et al. (2014). De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087. BMC Biotechnol. 14 : 30. DOI: 10.1186/1472-6750-14-30.

    View in Article Google Scholar

    [26] Liu, C., Zhang, K., Cao, W., et al. (2018). Genome mining of 2-phenylethanol biosynthetic genes from Enterobacter sp. CGMCC 5087 and heterologous overproduction in Escherichia coli. Biotechnol. Biofuels 11 : 305. DOI: 10.1186/s13068-018-1297-3.

    View in Article Google Scholar

    [27] Pittard, J., Camakaris, H., and Yang, J. (2005). The TyrR regulon. Mol. Microbiol. 55 : 16-26. DOI: 10.1111/j.1365-2958.2004.04385.x.

    View in Article Google Scholar

    [28] Landini, P., Egli, T., Wolf, J., and Lacour, S. (2014). sigmaS, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. Environ. Microbiol. Rep. 6 : 1-13. DOI: 10.1111/1758-2229.12112.

    View in Article Google Scholar

    [29] Bennett, M.R., Pang, W.L., Ostroff, N.A., et al. (2008). Metabolic gene regulation in a dynamically changing environment. Nature 454 : 1119-1122. DOI: 10.1038/nature07211.

    View in Article Google Scholar

    [30] Kussell, E. and Leibler, S. (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science 309 : 2075-2078. DOI: 10.1126/science.1114383.

    View in Article Google Scholar

    [31] Demain, A.L. and Fang, A. (2000). The natural functions of secondary metabolites. In History of Modern Biotechnology I, A. Fiechter, ed. (Springer Berlin Heidelberg), pp. 1-39. DOI: 10.1007/3-540-44964-7_1.

    View in Article Google Scholar

    [32] Patten, C.L., and Glick, B.R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42 : 207-220. DOI: 10.1139/m96-032.

    View in Article Google Scholar

    [33] Wehrmann, M., Billard, P., Martin-Meriadec, A., et al. (2017). Functional role of lanthanides in enzymatic activity and transcriptional regulation of pyrroloquinoline quinone-dependent alcohol dehydrogenases in Pseudomonas putida KT2440. mBio 8 : e00570-00517. DOI: 10.1128/mBio.00570-17.

    View in Article Google Scholar

    [34] Arias, S., Olivera, E.R., Arcos, M., et al. (2008). Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ. Microbiol. 10 : 413-432. DOI: 10.1111/j.1462-2920.2007.01464.x.

    View in Article Google Scholar

    [35] Akashi, H. and Gojobori, T. (2002). Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 99 : 3695-3700. DOI: 10.1073/pnas.062526999.

    View in Article Google Scholar

    [36] Ryu, R.J. and Patten, C.L. (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J. Bacteriol. 190 : 7200-7208. DOI: 10.1128/JB.00804-08.

    View in Article Google Scholar

    [37] Ahmad, F., Ahmad, I., and Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163 : 173-181. DOI: 10.1016/j.micres.2006.04.001.

    View in Article Google Scholar

    [38] Lemfack, M.C., Ravella, S.R., Lorenz, N., et al. (2016). Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria. Syst. Appl. Microbiol. 39 : 503-515. DOI: 10.1016/j.syapm.2016.08.008.

    View in Article Google Scholar

    [39] Liu, P., Cheng, Y., Yang, M., et al. (2014). Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol. 14 : 242. DOI: 10.1186/s12866-014-0242-2.

    View in Article Google Scholar

    [40] Sun, S.-L., Yang, W.-L., Fang, W.-W., et al. (2018). The plant growth-promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile. Appl. Environ. Microbiol. 84 : e00298-00218. DOI: 10.1128/AEM.00298-18.

    View in Article Google Scholar

    [41] Majeed, A., Kaleem Abbasi, M., Hameed, S., et al. (2018). Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiol. Res. 216 : 56-69. DOI: 10.1016/j.micres.2018.08.006.

    View in Article Google Scholar

    [42] Duca, D.R. and Glick, B.R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl. Microbiol. Biotechnol. 104 : 8607-8619. DOI: 10.1007/s00253-020-10869-5.

    View in Article Google Scholar

    [43] Koga, J., Adachi, T., and Hidaka, H. (1992). Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J. Biol. Chem. 267 : 15823-15828.

    View in Article Google Scholar

    [44] Bennett, B.D., Kimball, E.H., Gao, M., et al. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5 : 593-599. DOI: 10.1038/nchembio.186.

    View in Article Google Scholar

    [45] Thomas, D.D., Ridnour, L.A., Isenberg, J.S., et al. (2008). The chemical biology of nitric oxide: Implications in cellular signaling. Free Radical Bio. Med. 45 : 18-31. DOI: 10.1016/j.freeradbiomed.2008.03.020.

    View in Article Google Scholar

    [46] Zhang, K., Sawaya, M.R., Eisenberg, D.S.,et al. (2008). Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA 105 : 20653-20658. DOI: 10.1073/pnas.0807157106.

    View in Article Google Scholar

    [47] Miao, R., Liu, X., Englund, E., et al. (2017). Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab. Eng. Commun. 5 : 45-53. DOI: 10.1016/j.meteno.2017.07.003.

    View in Article Google Scholar

    [48] Mak, W.S., Tran, S., Marcheschi, R., et al. (2015). Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nat. Commun. 6 : 10005. DOI: 10.1038/ncomms10005.

    View in Article Google Scholar

    [49] Coulson, T.J. and Patten, C.L. (2015). The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. PLoS One 10 : e0121241. DOI: 10.1371/journal.pone.0121241.

    View in Article Google Scholar

    [50] Saleh, S.S. and Glick, B.R. (2001). Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can. J. Microbiol. 47 : 698-705. DOI: 10.1139/w01-072.

    View in Article Google Scholar

    [51] Patten, C.L. and Glick, B.R. (2002). Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can. J. Microbiol. 48 : 635-642. DOI: 10.1139/w02-053.

    View in Article Google Scholar

    [52] Oh, S.A., Kim, J.S., Park, J.Y., et al. (2013). The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29 : 323-329. DOI: 10.5423/PPJ.NT.01.2013.0013.

    View in Article Google Scholar

    [53] Liu, X., Wu, Y., Chen, Y., et al. (2016). RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res. Microbiol. 167 : 168-177. DOI: 10.1016/j.resmic.2015.11.003.

    View in Article Google Scholar

    [54] Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66 : 373-395. DOI: 10.1128/MMBR.66.3.373-395.2002.

    View in Article Google Scholar

    [55] Lawley, B., Fujita, N., Ishihama, A., and Pittard, A.J. (1995). The TyrR protein of Escherichia coli is a class I transcription activator. J. Bacteriol. 177 : 238-241. DOI: 10.1128/jb.177.1.238-241.1995.

    View in Article Google Scholar

    [56] Lacour, S., and Landini, P. (2004). SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of sigmaS-dependent genes and identification of their promoter sequences. J. Bacteriol. 186 : 7186-7195. DOI: 10.1128/JB.186.21.7186-7195.2004.

    View in Article Google Scholar

    [57] Hengge-Aronis, R. (1996). Back to log phase: σS as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol. 21 : 887-893. DOI: 10.1046/j.1365-2958.1996.511405.x.

    View in Article Google Scholar

    [58] Battesti, A., Majdalani, N., and Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65 : 189-213. DOI: 10.1146/annurev-micro-090110-102946.

    View in Article Google Scholar

    [59] Jez, J.M., Bennett, M.J., Schlegel, B.P., et al. (1997). Comparative anatomy of the aldo–keto reductase superfamily. Biochem. J. 326 : 625-636. DOI: 10.1042/bj3260625.

    View in Article Google Scholar

    [60] Mindnich, R.D. and Penning, T.M. (2009). Aldo-keto reductase (AKR) superfamily: Genomics and annotation. Hum. Genomics 3 : 362. DOI: 10.1186/1479-7364-3-4-362.

    View in Article Google Scholar

  • Cite this article:

    Liu L., Chen G., Liu J., et al., (2023). Sequential production of secondary metabolites by one operon affects interspecies interactions in Enterobacter sp. CGMCC 5087. The Innovation Life 1(2), 100023. https://doi.org/10.59717/j.xinn-life.2023.100023
    Liu L., Chen G., Liu J., et al., (2023). Sequential production of secondary metabolites by one operon affects interspecies interactions in Enterobacter sp. CGMCC 5087. The Innovation Life 1(2), 100023. https://doi.org/10.59717/j.xinn-life.2023.100023

Figures(5)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(3635) PDF downloads(651) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint