KDC4427 is up-regulated and ADH4428 is down-regulated with bacteria growth.
KDC4427 shows a higher kcat value for phenylpyruvate, and has higher affinity for indolepyruvate.
KDC4427/ADH4428 ratio and enzymatic characteristics of KDC4427 mediate the fluxes of 2-PE and IAA.
2-PE and IAA are produced sequentially in exponential growth phase and stationary phase.
The process facilitates bacteria to orchestrate competition and cooperation for better survival.
[1] | West, S.A., Pen, I., and Griffin, A.S. (2002). Cooperation and competition between relatives. Science 296 : 72-75. DOI: 10.1126/science.1065507. |
[2] | Griffin, A.S., West, S.A., and Buckling, A. (2004). Cooperation and competition in pathogenic bacteria. Nature 430 : 1024. DOI: 10.1038/nature02744. |
[3] | Ågren, J.A., Davies, N.G., and Foster, K.R. (2019). Enforcement is central to the evolution of cooperation. Nat. Ecol. Evol. 3 : 1018-1029. DOI: 10.1038/s41559-019-0907-1. |
[4] | Granato, E.T., Meiller-Legrand, T.A., and Foster, K.R. (2019). The evolution and ecology of bacterial warfare. Curr. Biol. 29 : R521-R537. DOI: 10.1016/j.cub.2019.04.024. |
[5] | Schmidt, R., Cordovez, V., De Boer, W., et al. (2015). Volatile affairs in microbial interactions. ISME J. 9 : 2329. DOI: 10.1038/ismej.2015.42. |
[6] | Effmert, U., Kalderás, J., Warnke, R., and Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38 : 665-703. DOI: 10.1007/s10886-012-0135-5. |
[7] | Schulz, S. and Dickschat, J.S. (2007). Bacterial volatiles: The smell of small organisms. Nat. Prod. Rep. 24 : 814-842. DOI: 10.1039/b507392h. |
[8] | Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63 : 541-556. DOI: 10.1146/annurev.micro.62.081307.162918. |
[9] | Ravanbakhsh, M., Kowalchuk, G.A., and Jousset, A. (2019). Root-associated microorganisms reprogram plant life history along the growth–stress resistance tradeoff. ISME J. 13 : 3093-3101. DOI: 10.1038/s41396-019-0501-1. |
[10] | Sexton, D.J. and Schuster, M. (2017). Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8 : 230. DOI: 10.1038/s41467-017-00222-2. |
[11] | Zuñiga, C., Li, C.-T., Yu, G., et al. (2019). Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nat. Microbiol. 4 : 2184-2191. DOI: 10.1038/s41564-019-0567-6. |
[12] | Purtschert-Montenegro, G., Cárcamo-Oyarce, G., Pinto-Carbó, M., et al. (2022). Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat. Microbiol. 7 : 1547-1557. DOI: 10.1038/s41564-022-01209-6. |
[13] | Hansen, M.L., Wibowo, M., Jarmusch, S.A., et al. (2022). Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1. ISME J. 16 : 2680-2690. DOI: 10.1038/s41396-022-01322-8. |
[14] | van der Heijden, M.G.A., Bruin, S.d., Luckerhoff, L., et al. (2016). A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J. 10 : 389-399. DOI: 10.1038/ismej.2015.120. |
[15] | Haney, C.H., Samuel, B.S., Bush, J., and Ausubel, F.M. (2015). Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1 : 15051. DOI: 10.1038/nplants.2015.51. |
[16] | Lugtenberg, B., Rozen, D.E., and Kamilova, F. (2017). Wars between microbes on roots and fruits. F1000Research 6 : 343. DOI: 10.12688/f1000research.10696.1. |
[17] | Kai, M., Effmert, U., Berg, G., and Piechulla, B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187 : 351-360. DOI: 10.1007/s00203-006-0199-0. |
[18] | Hua, S.S.T., Beck, J.J., Sarreal, S.B.L., and Gee, W. (2014). The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res. 30 : 71-78. DOI: 10.1007/s12550-014-0189-z. |
[19] | Taghavi, S., van der Lelie, D., Hoffman, A., et al. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 6 : e1000943. DOI: 10.1371/journal.pgen.1000943. |
[20] | Keswani, C., Singh, S.P., Cueto, L., et al. (2020). Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 104 : 8549-8565. DOI: 10.1007/s00253-020-10890-8. |
[21] | Tieman, D., Taylor, M., Schauer, N., et al. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA 103 : 8287-8292. DOI: 10.1073/pnas.0602469103. |
[22] | Schütz, A., Golbik, R., Tittmann, K., et al. (2003). Studies on structure–function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem. 270 : 2322-2331. DOI: 10.1046/j.1432-1033.2003.03602.x. |
[23] | Spaepen, S., Versées, W., Gocke, D., et al. (2007). Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J. Bacteriol. 189 : 7626-7633. DOI: 10.1128/JB.00830-07. |
[24] | Kneen, M.M., Stan, R., Yep, A., et al. (2011). Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J. 278 : 1842-1853. DOI: 10.1111/j.1742-4658.2011.08103.x. |
[25] | Zhang, H., Cao, M., Jiang, X., et al. (2014). De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087. BMC Biotechnol. 14 : 30. DOI: 10.1186/1472-6750-14-30. |
[26] | Liu, C., Zhang, K., Cao, W., et al. (2018). Genome mining of 2-phenylethanol biosynthetic genes from Enterobacter sp. CGMCC 5087 and heterologous overproduction in Escherichia coli. Biotechnol. Biofuels 11 : 305. DOI: 10.1186/s13068-018-1297-3. |
[27] | Pittard, J., Camakaris, H., and Yang, J. (2005). The TyrR regulon. Mol. Microbiol. 55 : 16-26. DOI: 10.1111/j.1365-2958.2004.04385.x. |
[28] | Landini, P., Egli, T., Wolf, J., and Lacour, S. (2014). sigmaS, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. Environ. Microbiol. Rep. 6 : 1-13. DOI: 10.1111/1758-2229.12112. |
[29] | Bennett, M.R., Pang, W.L., Ostroff, N.A., et al. (2008). Metabolic gene regulation in a dynamically changing environment. Nature 454 : 1119-1122. DOI: 10.1038/nature07211. |
[30] | Kussell, E. and Leibler, S. (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science 309 : 2075-2078. DOI: 10.1126/science.1114383. |
[31] | Demain, A.L. and Fang, A. (2000). The natural functions of secondary metabolites. In History of Modern Biotechnology I, A. Fiechter, ed. (Springer Berlin Heidelberg), pp. 1-39. DOI: 10.1007/3-540-44964-7_1. |
[32] | Patten, C.L., and Glick, B.R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42 : 207-220. DOI: 10.1139/m96-032. |
[33] | Wehrmann, M., Billard, P., Martin-Meriadec, A., et al. (2017). Functional role of lanthanides in enzymatic activity and transcriptional regulation of pyrroloquinoline quinone-dependent alcohol dehydrogenases in Pseudomonas putida KT2440. mBio 8 : e00570-00517. DOI: 10.1128/mBio.00570-17. |
[34] | Arias, S., Olivera, E.R., Arcos, M., et al. (2008). Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ. Microbiol. 10 : 413-432. DOI: 10.1111/j.1462-2920.2007.01464.x. |
[35] | Akashi, H. and Gojobori, T. (2002). Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 99 : 3695-3700. DOI: 10.1073/pnas.062526999. |
[36] | Ryu, R.J. and Patten, C.L. (2008). Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J. Bacteriol. 190 : 7200-7208. DOI: 10.1128/JB.00804-08. |
[37] | Ahmad, F., Ahmad, I., and Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163 : 173-181. DOI: 10.1016/j.micres.2006.04.001. |
[38] | Lemfack, M.C., Ravella, S.R., Lorenz, N., et al. (2016). Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria. Syst. Appl. Microbiol. 39 : 503-515. DOI: 10.1016/j.syapm.2016.08.008. |
[39] | Liu, P., Cheng, Y., Yang, M., et al. (2014). Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol. 14 : 242. DOI: 10.1186/s12866-014-0242-2. |
[40] | Sun, S.-L., Yang, W.-L., Fang, W.-W., et al. (2018). The plant growth-promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile. Appl. Environ. Microbiol. 84 : e00298-00218. DOI: 10.1128/AEM.00298-18. |
[41] | Majeed, A., Kaleem Abbasi, M., Hameed, S., et al. (2018). Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Microbiol. Res. 216 : 56-69. DOI: 10.1016/j.micres.2018.08.006. |
[42] | Duca, D.R. and Glick, B.R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl. Microbiol. Biotechnol. 104 : 8607-8619. DOI: 10.1007/s00253-020-10869-5. |
[43] | Koga, J., Adachi, T., and Hidaka, H. (1992). Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J. Biol. Chem. 267 : 15823-15828. |
[44] | Bennett, B.D., Kimball, E.H., Gao, M., et al. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5 : 593-599. DOI: 10.1038/nchembio.186. |
[45] | Thomas, D.D., Ridnour, L.A., Isenberg, J.S., et al. (2008). The chemical biology of nitric oxide: Implications in cellular signaling. Free Radical Bio. Med. 45 : 18-31. DOI: 10.1016/j.freeradbiomed.2008.03.020. |
[46] | Zhang, K., Sawaya, M.R., Eisenberg, D.S.,et al. (2008). Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA 105 : 20653-20658. DOI: 10.1073/pnas.0807157106. |
[47] | Miao, R., Liu, X., Englund, E., et al. (2017). Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab. Eng. Commun. 5 : 45-53. DOI: 10.1016/j.meteno.2017.07.003. |
[48] | Mak, W.S., Tran, S., Marcheschi, R., et al. (2015). Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nat. Commun. 6 : 10005. DOI: 10.1038/ncomms10005. |
[49] | Coulson, T.J. and Patten, C.L. (2015). The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. PLoS One 10 : e0121241. DOI: 10.1371/journal.pone.0121241. |
[50] | Saleh, S.S. and Glick, B.R. (2001). Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can. J. Microbiol. 47 : 698-705. DOI: 10.1139/w01-072. |
[51] | Patten, C.L. and Glick, B.R. (2002). Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can. J. Microbiol. 48 : 635-642. DOI: 10.1139/w02-053. |
[52] | Oh, S.A., Kim, J.S., Park, J.Y., et al. (2013). The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29 : 323-329. DOI: 10.5423/PPJ.NT.01.2013.0013. |
[53] | Liu, X., Wu, Y., Chen, Y., et al. (2016). RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res. Microbiol. 167 : 168-177. DOI: 10.1016/j.resmic.2015.11.003. |
[54] | Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66 : 373-395. DOI: 10.1128/MMBR.66.3.373-395.2002. |
[55] | Lawley, B., Fujita, N., Ishihama, A., and Pittard, A.J. (1995). The TyrR protein of Escherichia coli is a class I transcription activator. J. Bacteriol. 177 : 238-241. DOI: 10.1128/jb.177.1.238-241.1995. |
[56] | Lacour, S., and Landini, P. (2004). SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of sigmaS-dependent genes and identification of their promoter sequences. J. Bacteriol. 186 : 7186-7195. DOI: 10.1128/JB.186.21.7186-7195.2004. |
[57] | Hengge-Aronis, R. (1996). Back to log phase: σS as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol. 21 : 887-893. DOI: 10.1046/j.1365-2958.1996.511405.x. |
[58] | Battesti, A., Majdalani, N., and Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65 : 189-213. DOI: 10.1146/annurev-micro-090110-102946. |
[59] | Jez, J.M., Bennett, M.J., Schlegel, B.P., et al. (1997). Comparative anatomy of the aldo–keto reductase superfamily. Biochem. J. 326 : 625-636. DOI: 10.1042/bj3260625. |
[60] | Mindnich, R.D. and Penning, T.M. (2009). Aldo-keto reductase (AKR) superfamily: Genomics and annotation. Hum. Genomics 3 : 362. DOI: 10.1186/1479-7364-3-4-362. |
Liu L., Chen G., Liu J., et al., (2023). Sequential production of secondary metabolites by one operon affects interspecies interactions in Enterobacter sp. CGMCC 5087. The Innovation Life 1(2), 100023. https://doi.org/10.59717/j.xinn-life.2023.100023 |
2-PE and IAA are produced sequentially and depend on KDC4427
KDC4427 and ADH4428 expression patterns are different during the different growth phases and related to synthesis of 2-PE and IAA
TyrR and RpoS interact with the promoter of KDC4427-ADH4428 to regulate expression
TyrR and RpoS are required for production of 2-PE and IAA
Sequential production of 2-PE and IAA benefit interspecific competition and cooperation