[1] | Mani, D.R., Krug, K., Zhang, B., et al. (2022). Cancer proteogenomics: Current impact and future prospects. Nat. Rev. Cancer 22 : 298−313. DOI: 10.1038/s41568-022-00446-5. |
[2] | Rodriguez, H., Zenklusen, J.C., Staudt, L.M., et al. (2021). The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 184 : 1661−1670. DOI: 10.1016/j.cell.2021.02.055. |
[3] | Li, Y., Porta-Pardo, E., Tokheim, C., et al. (2023). Pan-cancer proteogenomics connects oncogenic drivers to functional states. Cell 186 : 3921-394410. DOI: 10.1016/j.cell.2023.07.014. |
[4] | Geffen, Y., Anand, S., Akiyama, Y., et al. (2023). Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 186 : 3945-3967. DOI: 10.1016/j.cell.2023.07.013. |
[5] | Li, Y., Dou, Y., Da Veiga Leprevost, F., et al. (2023). Proteogenomic data and resources for pan-cancer analysis. Cancer Cell 41 : 1397−1406. DOI: 10.1016/j.ccell.2023.06.009. |
Deng W. and Yin S. (2023). Decoding the Pan-Cancer regulatory landscape: Insights from proteogenomics and post-translational modifications. The Innovation Life 1(3), 100032. https://doi.org/10.59717/j.xinn-life.2023.100032 |
The panorama encompassing the CPTAC pan-cancer dataset