REVIEW   Open Access    

The application of ultrasound for skin and appendage regeneration: A comprehensive review

More Information
  • Corresponding author: stellarahuang@sina.com
    1. Ultrasound has important application prospects in skin regeneration.

      Ultrasound can affect cell behaviors by increasing DNA synthesis and inhibiting TNG signaling pathway.

      Ultrasound can promote skin regeneration by directly using or combining with ultrasound-responsive materials.

  • Ultrasound, an exogenous physical stimulus, has important application prospects in the field of regenerative medicine, especially in skin regeneration, due to its safety, controllability, and deep penetration depth. This review examines the potential of ultrasound therapy in promoting skin regeneration by exploring its effects on skin cells, mechanisms of action in regeneration, and responsive materials. With its deep tissue penetration and excellent biocompatibility, ultrasound presents an attractive option for enhancing wound healing and skin regeneration. By discussing current challenges and future prospects, this review offers insights to guide the development of innovative ultrasound-based approaches for clinical wound treatment.
  • 加载中
  • [1] Zhang, M., Zhang, C., Li, Z., et al. (2022). Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 10: rbac105. DOI: 10.1093/rb/rbac105.

    View in Article CrossRef Google Scholar

    [2] Metcalfe, A.D., and Ferguson, M.W. (2007). Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28(34): 5100−5113. DOI: 10.1016/j.biomaterials.2007.07.031.

    View in Article CrossRef Google Scholar

    [3] Weng, T., Wu, P., Zhang, W., et al. (2020). Regeneration of skin appendages and nerves: Current status and further challenges. J Transl Med 18(1): 53. DOI: 10.1186/s12967-020-02248-5.

    View in Article CrossRef Google Scholar

    [4] Huang, H., Banerjee, S., Qiu, K., et al. (2019). Targeted photoredox catalysis in cancer cells. Nat Chem 11(11): 1041−1048. DOI: 10.1038/s41557-019-0328-4.

    View in Article CrossRef Google Scholar

    [5] Li, M., Gebremedhin, K.H., Ma, D., et al. (2022). Conditionally activatable photoredox catalysis in living systems. J Am Chem Soc 4(1): 163−173. DOI: 10.1021/jacs.1c07372.

    View in Article CrossRef Google Scholar

    [6] Son, S., Kim, J., Kim, J., et al. (2022). Cancer therapeutics based on diverse energy sources. Chem Soc Rev 51: 8201−8215. DOI: 10.1039/d2cs00102k.

    View in Article CrossRef Google Scholar

    [7] Fu, C., Zhou, H., Tan, L., et al. (2018). Microwave-activated Mn-doped zirconium metal-organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer. ACS Nano 12(3): 2201−2210. DOI: 10.1021/acsnano.7b08868.

    View in Article CrossRef Google Scholar

    [8] Wu, Q., Xia, N., Long, D., et al. (2019). Dual-functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy. Nano Lett 19(8): 5277−5286. DOI: 10.1021/acs.nanolett.9b01735.

    View in Article CrossRef Google Scholar

    [9] Zhu, P., Chen, Y., and Shi, J. (2020). Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv Mater 32(29): e2001976. DOI: 10.1002/adma.202001976.

    View in Article CrossRef Google Scholar

    [10] Jiang, L., Yang, Y., Chen, Y., et al. (2020). Ultrasound-induced wireless energy harvesting: From materials strategies to functional applications. Nano Energy 77: 105131. DOI: 10.1016/j.nanoen.2020.105131.

    View in Article CrossRef Google Scholar

    [11] Qin, H., Du, L., Luo, Z., et al. (2022). The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 10: 1080430. DOI: 10.3389/fbioe.2022.1080430.

    View in Article CrossRef Google Scholar

    [12] Xia, B., Chen, G., Zou, Y., et al. (2019) Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery. J Tissue Eng Regen Med 13 (4): 625-636. DOI: 10.1002/term.2823.

    View in Article Google Scholar

    [13] Wang, Y., Li, J., Zhou, J., et al. (2022). Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies. Ultrasonics 121: 106678. DOI: 10.1016/j.ultras.2021.106678.

    View in Article CrossRef Google Scholar

    [14] Tsuang, Y.H., Liao, L.W., Chao, Y.H., et al. (2011). Effects of low intensity pulsed ultrasound on rat Schwann cells metabolism. Artif Organs 35(4): 373−383. DOI: 10.1111/j.1525-1594.2010.01086.x.

    View in Article CrossRef Google Scholar

    [15] Mitragotri, S. (2005). Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4(3): 255−260. DOI: 10.1038/nrd1662.

    View in Article CrossRef Google Scholar

    [16] Zhang, Y., Guo, L., Kong, F., et al. (2021). Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. Wires Nanomed Nanobi 13(6): e1733. DOI: 10.1002/wnan.1733.

    View in Article CrossRef Google Scholar

    [17] Chen. Y., Jiang. J., Zeng. Y., et al. (2018). Effects of a microbubble ultrasound contrast agent on high-intensity focused ultrasound for uterine fibroids: A randomised controlled trial. Int J Hyperthermia 34(8): 1311−1315. DOI: 10.1080/02656736.2017.1411620.

    View in Article CrossRef Google Scholar

    [18] Hsu, Y.C., Li, L. and Fuchs, E. (2014). Emerging interactions between skin stem cells and their niches. Nat Med 20 (8): 847-856. DOI: 10.1038/nm.3643.

    View in Article Google Scholar

    [19] Klar, A.S., Zimoch, J., and Biedermann, T. (2017). Skin tissue engineering: Application of adipose-derived stem cells. Biomed Res Int 2017: 9747010. DOI: 10.1155/2017/9747010.

    View in Article CrossRef Google Scholar

    [20] Kasza, I., Suh, Y., Wollny, D., et al. (2014). Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PLoS Genet 10(8): e1004514. DOI: 10.1371/journal.pgen.1004514.

    View in Article CrossRef Google Scholar

    [21] Sugihara, H., Toda, S., Yonemitsu, N., et al. (2001). Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. Br J Dermatol 144(2): 244−253. DOI: 10.1046/j.1365-2133.2001.04008.x.

    View in Article CrossRef Google Scholar

    [22] Schmidt, B.A., and Horsley, V. (2013). Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140(7): 1517−1527. DOI: 10.1242/dev.087593.

    View in Article CrossRef Google Scholar

    [23] Festa, E., Fretz, J., Berry, R., et al. (2011). Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146(5): 761−771. DOI: 10.1016/j.cell.2011.07.019.

    View in Article CrossRef Google Scholar

    [24] Barker, J.N., Mitra, R.S., Griffiths, C.E., et al. (1991). Keratinocytes as initiators of inflammation. Lancet 337(8735): 211−214. DOI: 10.1016/0140-6736(91)92168-2.

    View in Article CrossRef Google Scholar

    [25] Schauber, J., Dorschner, R.A., Coda, A.B., et al. (2007). Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117(3): 803−811. DOI: 10.1172/JCI30142.

    View in Article CrossRef Google Scholar

    [26] Gallo, R.L., Ono, M., Povsic, T., et al. (1994). Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91(23): 11035−11039. DOI: 10.1073/pnas.91.23.11035.

    View in Article CrossRef Google Scholar

    [27] Cheng, H.F., Chiu, W.T., Lai, Y.S., et al. (2023). High-frequency noncontact low-intensity pulsed ultrasound modulates Ca2+-dependent transcription factors contributing to cell migration. Ultrasonics 127: 106852. DOI: 10.1016/j.ultras.2022.106852.

    View in Article CrossRef Google Scholar

    [28] Hunter, C.A., and Jones, S.A. (2015). IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5): 448−457. DOI: 10.1038/ni.3153.

    View in Article CrossRef Google Scholar

    [29] Paquet, P., and Piérard, G.E. (1996). Interleukin-6 and the skin. Int Arch Allergy Immunol 109(4): 308−317. DOI: 10.1159/000237257.

    View in Article CrossRef Google Scholar

    [30] Xi, L., Han, Y., Liu, C., et al. (2022). Sonodynamic therapy by phase-transition nanodroplets for reducing epidermal hyperplasia in psoriasis. J Control Release 350: 435−447. DOI: 10.1016/j.jconrel.2022.08.038.

    View in Article CrossRef Google Scholar

    [31] Hanawa, K., Ito, K., Aizawa, K., et al. (2014). Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia. PLoS One 9(8): e104863. DOI: 10.1371/journal.pone.0104863.

    View in Article CrossRef Google Scholar

    [32] Kim, S.W., Ryu, H.A., Lee, Y.S., et al. (2019). Generation of directly reprogrammed human endothelial cells derived from fibroblast using ultrasound. J Mol Cell Cardiol 126: 118−128. DOI: 10.1016/j.yjmcc.2018.11.016.

    View in Article CrossRef Google Scholar

    [33] Webster, D.F., Harvey, W., Dyson, M., et al. (1980). The role of ultrasound-induced cavitation in the 'in vitro' stimulation of collagen synthesis in human fibroblasts. Ultrasonics 18(1): 33−37. DOI: 10.1016/0041-624x(80)90050-5.

    View in Article CrossRef Google Scholar

    [34] Zhou, S., Schmelz, A., Seufferlein, T., et al. (2004). Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279(52): 54463−54469. DOI: 10.1074/jbc.M404786200.

    View in Article CrossRef Google Scholar

    [35] Roper, J.A., Williamson, R.C., Bally, B., et al. (2015). Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1. J Invest Dermatol 135(11): 2842−2851. DOI: 10.1038/jid.2015.224.

    View in Article CrossRef Google Scholar

    [36] Franco, de Oliveira R., Pires Oliveira, D.A., and Soares, C.P. (2011). Effect of low-intensity pulsed ultrasound on l929 fibroblasts. Arch Med Sci 7(2): 224−229. DOI: 10.5114/aoms.2011.22071.

    View in Article CrossRef Google Scholar

    [37] Bertin, L.D., Poli-Frederico, R.C., Pires Oliveira, D.A.A., et al. (2019). Analysis of cell viability and gene expression after continuous ultrasound therapy in l929 fibroblast cells. Am J Phys Med Rehabil 98(5): 369−372. DOI: 10.1097/PHM.0000000000001103.

    View in Article CrossRef Google Scholar

    [38] Harvey, W., Dyson, M., Pond, J.B. et al. (1975). The stimulation of protein synthesis in human fibroblasts by therapeutic ultrasound. Rheumatol Rehabil 14(4): 237. DOI: 10.1093/rheumatology/14.4.237.

    View in Article CrossRef Google Scholar

    [39] Jiang, Z., Chen, Z., Xu, Y. et al. (2024). Low-frequency ultrasound sensitive Piezo1 channels regulate keloid-related characteristics of fibroblasts. Adv Sci (Weinh) 11(14): e2305489. DOI: 10.1002/advs.202305489.

    View in Article CrossRef Google Scholar

    [40] Qin, H., Luo, Z., Sun, Y., et al. (2023). Low-intensity pulsed ultrasound promotes skeletal muscle regeneration via modulating the inflammatory immune microenvironment. Int J Biol Sci 19(4): 1123−1145. DOI: 10.7150/ijbs.79685.

    View in Article CrossRef Google Scholar

    [41] Li, Y.P., Zhou, S.X., Andreas, S., et al. (2007). Effect of LIPUS on the cellular behavior of human primary macrophages. Chinese Journal of Cellular and Molecular Immunology 23 (12): 1113-1116. (In Chinese).

    View in Article Google Scholar

    [42] Sun, X., Xu, H., Shen, J., et al. (2015) Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy. Ultrason Sonochem 22 : 7-14. DOI: 10.1016/j.ultsonch.2014.06.016.

    View in Article Google Scholar

    [43] Young, R., and Dyson, M., (1990). Macrophage responsiveness to therapeutic ultrasound. Ultrasound Med Biol 16 (8): 809-816. DOI: 10.1016/0301-5629(90)90045-e.

    View in Article Google Scholar

    [44] Pittenger, M.F., Mackay, A.M., Beck, S.C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143−147. DOI: 10.1126/science.284.5411.143.

    View in Article CrossRef Google Scholar

    [45] Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893): 41−49. DOI: 10.1038/nature00870.

    View in Article CrossRef Google Scholar

    [46] Duscher, D., Barrera, J., Wong, V.W., et al. (2016). Stem cells in wound healing: The future of regenerative medicine. A mini-review. Gerontology 62(2): 216−225. DOI: 10.1159/000381877.

    View in Article CrossRef Google Scholar

    [47] Zhao, Y., Wang, M., Liang, F., et al. (2021). Recent strategies for enhancing the therapeutic efficacy of stem cells in wound healing. Stem Cell Res Ther 12(1): 588. DOI: 10.1186/s13287-021-02657-3.

    View in Article CrossRef Google Scholar

    [48] Ling, L., Wei, T., He, L., et al. (2017). Low-intensity pulsed ultrasound activates ERK1/2 and PI3K-Akt signalling pathways and promotes the proliferation of human amnion-derived mesenchymal stem cells. Cell Prolif 50(6): e12383. DOI: 10.1111/cpr.12383.

    View in Article CrossRef Google Scholar

    [49] Budhiraja, G., Sahu, N., and Subramanian, A. (2018). Low-intensity ultrasound upregulates the expression of cyclin-D1 and promotes cellular proliferation in human mesenchymal stem cells. Biotechnol J 13(4): e1700382. DOI: 10.1002/biot.201700382.

    View in Article CrossRef Google Scholar

    [50] Xiao, W., Xu, Q., Zhu, Z., et al. (2017). Different performances of CXCR4, integrin-1β and CCR-2 in bone marrow stromal cells (BMSCs) migration by low-intensity pulsed ultrasound stimulation. Biomed Tech (Berl). 62(1): 89−95. DOI: 10.1515/bmt-2015-0166.

    View in Article CrossRef Google Scholar

    [51] Wei, F.Y., Leung, K.S., Li, G., et al. (2014) Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing. PLoS One 9 (9): e106722. DOI: 10.1371/journal.pone.0106722.

    View in Article Google Scholar

    [52] Bhang, S.H., Gwak, S.J., Lee, T.J., et al. (2010). Cyclic mechanical strain promotes transforming-growth-factor-beta1-mediated cardiomyogenic marker expression in bone-marrow-derived mesenchymal stem cells in vitro. Biotechnol Appl Biochem 55(4): 191−197. DOI: 10.1042/BA20090307.

    View in Article CrossRef Google Scholar

    [53] Khayat, G., Rosenzweig, D.H., and Quinn, T.M. (2012). Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Differentiation 83(4): 179−184. DOI: 10.1016/j.diff.2011.12.004.

    View in Article CrossRef Google Scholar

    [54] Wang, X., Lin, Q., Zhang, T., et al. (2019). Low-intensity pulsed ultrasound promotes chondrogenesis of mesenchymal stem cells via regulation of autophagy. Stem Cell Res Ther 10(1): 41. DOI: 10.1186/s13287-019-1142-z.

    View in Article CrossRef Google Scholar

    [55] Xia, P., Wang, X., Wang, Q., et al. (2021). Low-intensity pulsed ultrasound promotes autophagy-mediated migration of mesenchymal stem cells and cartilage repair. Cell Transplant 30 : 963689720986142. DOI: 10.1177/0963689720986142.

    View in Article Google Scholar

    [56] Chen. Y., Yang, H., Wang, Z., et al. (2023). Low-intensity pulsed ultrasound promotes mesenchymal stem cell transplantation-based articular cartilage regeneration via inhibiting the TNF signaling pathway. Stem Cell Res Ther 14(1): 93. DOI: 10.1186/s13287-023-03296-6.

    View in Article CrossRef Google Scholar

    [57] Lorsung, R.M., Rosenblatt, R.B., Cohen, G., et al. (2020). Acoustic radiation or cavitation forces from therapeutic ultrasound generate prostaglandins and increase mesenchymal stromal cell homing to murine muscle. Front Bioeng Biotechnol 8: 870. DOI: 10.3389/fbioe.2020.00870.

    View in Article CrossRef Google Scholar

    [58] Burks, S.R., Nguyen, B.A., Tebebi, P.A., et al. (2015). Pulsed focused ultrasound pretreatment improves mesenchymal stromal cell efficacy in preventing and rescuing established acute kidney injury in mice. Stem Cells 33(4): 1241−1253. DOI: 10.1002/stem.1965.

    View in Article CrossRef Google Scholar

    [59] Ullah, M., Liu, D.D., Rai, S., et al. (2020). Reversing acute kidney injury using pulsed focused ultrasound and MSC therapy: A role for HSP-mediated PI3K/AKT signaling. Mol Ther Methods Clin Dev 17: 683−694. DOI: 10.1016/j.omtm.2020.03.023.

    View in Article CrossRef Google Scholar

    [60] Quinby, W.C., Jr, Burke, J.F., and Bondoc, C.C. (1981). Primary excision and immediate wound closure. Intensive Care Med 7(2): 71−76. DOI: 10.1007/BF01687263.

    View in Article CrossRef Google Scholar

    [61] Wang, Y., Beekman, J., Hew, J., et al. (2018). Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 123: 3−17. DOI: 10.1016/j.addr.2017.09.018.

    View in Article CrossRef Google Scholar

    [62] Kim, H.S., Sun, X., Lee, J.H., et al. (2019). Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 146: 209−239. DOI: 10.1016/j.addr.2018.12.014.

    View in Article CrossRef Google Scholar

    [63] Lindley, L.E., Stojadinovic, O., Pastar, I., et al. (2016). Biology and biomarkers for wound healing. Plast Reconstr Surg 138: 18S−28S. DOI: 10.1097/PRS.0000000000002682.

    View in Article CrossRef Google Scholar

    [64] Falanga, V., Isseroff, R.R., Soulika, A.M., et al. (2022). Chronic wounds. Nat Rev Dis Primers 8(1): 50. DOI: 10.1038/s41572-022-00377-3.

    View in Article CrossRef Google Scholar

    [65] Kaplani, K., Koutsi, S., Armenis, V., et al. (2018). Wound healing related agents: Ongoing research and perspectives. Adv Drug Deliv Rev 129: 242−253. DOI: 10.1016/j.addr.2018.02.007.

    View in Article CrossRef Google Scholar

    [66] Miguel, M.M.V., Mathias-Santamaria, I.F., Rossato, A., et al. (2021). Microcurrent electrotherapy improves palatal wound healing: Randomized clinical trial. J Periodontol 92(2): 244−253. DOI: 10.1002/JPER.20-0122.

    View in Article CrossRef Google Scholar

    [67] Roper, J.A., Williamson, R.C., Bally, B., et al. (2015). Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1. J Invest Dermatol 135(11): 2842−2851. DOI: 10.1038/jid.2015.224.

    View in Article CrossRef Google Scholar

    [68] Mahoney, C.M., Morgan, M.R., Harrison, A., et al. (2009). Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 284(13): 8898−8909. DOI: 10.1074/jbc.M804281200.

    View in Article CrossRef Google Scholar

    [69] Chan, Y.S., Hsu, K.Y., Kuo, C.H., et al. (2010). Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study. Ultrasound Med Biol 36(5): 743−751. DOI: 10.1016/j.ultrasmedbio.2010.02.010.

    View in Article CrossRef Google Scholar

    [70] Hu, J., Qu, J., Xu, D., et al. (2014). Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res 32(2): 204−209. DOI: 10.1002/jor.22505.

    View in Article CrossRef Google Scholar

    [71] Montalti, C.S., Souza, N.V., Rodrigues, N.C., et al. (2013). Effects of low-intensity pulsed ultrasound on injured skeletal muscle. Braz J Phys Ther 17(4): 343−350. DOI: 10.1590/S1413-35552012005000101.

    View in Article CrossRef Google Scholar

    [72] Zheng, C., Wu, S.M., Lian, H., et al. (2019). Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways. J Cell Mol Med 23(3): 1963−1975. DOI: 10.1111/jcmm.14098.

    View in Article CrossRef Google Scholar

    [73] Zhang, B., Chen, H., Ouyang, J., et al. (2020). SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy 16(7): 1262−1278. DOI: 10.1080/15548627.2019.1664705.

    View in Article CrossRef Google Scholar

    [74] Luu, Y., Han, J., Owji, S., et al. (2023). Accelerated healing from severe radiation dermatitis using noncontact, low-frequency ultrasound-assisted saline wash therapy. Adv Skin Wound Care 36(1): 41−43. DOI: 10.1097/01.ASW.0000897440.98255.e5.

    View in Article CrossRef Google Scholar

    [75] Fantinati, M.S., Mendonça, D.E., Fantinati, A.M., et al. (2016). Low intensity ultrasound therapy induces angiogenesis and persistent inflammation in the chronic phase of the healing process of third degree burn wounds experimentally induced in diabetic and non-diabetic rats. Acta Cir Bras 31(7): 463−471. DOI: 10.1590/S0102-865020160070000006.

    View in Article CrossRef Google Scholar

    [76] Young, S.R., and Dyson, M. (1990). Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions. Ultrasonics 28(3): 175−180. DOI: 10.1016/0041-624x(90)90082-y.

    View in Article CrossRef Google Scholar

    [77] Vander Horst, M.A., Raeman, C.H., Dalecki, D., et al. (2021). Time- and dose-dependent effects of pulsed ultrasound on dermal repair in diabetic mice. Ultrasound Med Biol 47(4): 1054−1066. DOI: 10.1016/j.ultrasmedbio.2020.12.024.

    View in Article CrossRef Google Scholar

    [78] Yang, S., Wang, Y., and Liang, X. (2023). Piezoelectric nanomaterials activated by ultrasound in disease treatment. Pharmaceutics 15(5): 1338. DOI: 10.3390/pharmaceutics15051338.

    View in Article CrossRef Google Scholar

    [79] Xia, G., Song, B., and Fang, J. (2022). Electrical stimulation enabled via electrospun piezoelectric polymeric nanofibers for tissue regeneration. Research (Wash D C). 2022: 9896274. DOI: 10.34133/2022/9896274.

    View in Article CrossRef Google Scholar

    [80] Vinikoor, T., Dzidotor, G.K., Le, T.T., et al. (2023). Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun 14(1): 6257. DOI: 10.1038/s41467-023-41594-y.

    View in Article CrossRef Google Scholar

    [81] Han, J., Zhang, Y., Wang, X., et al. (2023). Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for rate control in atrial fibrillation. Biomater Sci 11(2): 655−665. DOI: 10.1039/d2bm01733d.

    View in Article CrossRef Google Scholar

    [82] Kong, Y., Liu, F., Ma, B., et al. (2021). Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization. Adv Sci (Weinh) 8(13): 2100962. DOI: 10.1002/advs.202100962.

    View in Article CrossRef Google Scholar

    [83] Zhu, P., Chen, Y., and Shi, J. (2020). Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv Mater 32(29): e2001976. DOI: 10.1002/adma.202001976.

    View in Article CrossRef Google Scholar

    [84] Lyu, W., Ma, Y., Chen, S., et al. (2021). Flexible ultrasonic patch for accelerating chronic wound healing. Adv Healthc Mater 10(19): e2100785. DOI: 10.1002/adhm.202100785.

    View in Article CrossRef Google Scholar

    [85] Liu, D., Li, L., Shi, B.L., et al. (2022). Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing. Bioact Mater 24: 96−111. DOI: 10.1016/j.bioactmat.2022.11.023.

    View in Article CrossRef Google Scholar

    [86] Lei, C., Lei, J., Zhang, X., et al. (2023). Heterostructured piezocatalytic nanoparticles with enhanced ultrasound response for efficient repair of infectious bone defects. Acta Biomater 172: 343−354. DOI: 10.1016/j.actbio.2023.10.006.

    View in Article CrossRef Google Scholar

    [87] Zou, Y., Huang, B., Cao, L., et al. (2021). Tailored mesoporous inorganic biomaterials: Assembly, functionalization, and drug delivery engineering. Adv Mater 33(2): e2005215. DOI: 10.1002/adma.202005215.

    View in Article CrossRef Google Scholar

    [88] Ayana, G., Ryu, J., and Choe, S.W. (2022). Ultrasound-responsive nanocarriers for breast cancer chemotherapy. Micromachines 13(9): 1508. DOI: 10.3390/mi13091508.

    View in Article CrossRef Google Scholar

    [89] Cavalli, R., Soster, M., and Argenziano, M. (2016). Nanobubbles: A promising efficient tool for therapeutic delivery. Ther Deliv 7(2): 117−138. DOI: 10.4155/tde.15.92.

    View in Article CrossRef Google Scholar

    [90] Nittayacharn, P., Yuan, H.X., Hernandez, C., et al. (2019). Enhancing tumor drug distribution with ultrasound-triggered nanobubbles. J Pharm Sci 108(9): 3091−3098. DOI: 10.1016/j.xphs.2019.05.004.

    View in Article CrossRef Google Scholar

    [91] Carson, A.R., McTiernan, C.F., Lavery, L., et al. (2012). Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res 72(23): 6191−6199. DOI: 10.1158/0008-5472.CAN-11-4079.

    View in Article CrossRef Google Scholar

    [92] Huang, D., Wang, J., Song, C., et al. (2023). Ultrasound-responsive matters for biomedical applications. The Innovation 4(3): 100421. DOI: 10.1016/j.xinn.2023.100421.

    View in Article CrossRef Google Scholar

    [93] Wang, X., Wu, Y., Sun, Q., et al. (2023). Ultrasound and microbubble-mediated delivery of miR-424-5p has a therapeutic effect in preeclampsia. Biol Proced Online 25(1): 3. DOI: 10.1186/s12575-023-00191-5.

    View in Article CrossRef Google Scholar

    [94] Large, D.E., Abdelmessih, R.G., Fink, E.A., et al. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 176: 113851. DOI: 10.1016/j.addr.2021.113851.

    View in Article CrossRef Google Scholar

    [95] Unger, E., Shen, D.K., Fritz, T., et al. (1993). Gas-filled liposomes as echocardiographic contrast agents in rabbits with myocardial infarcts. Invest Radiol 28(12): 1155−1159. DOI: 10.1097/00004424-199312000-00015.

    View in Article CrossRef Google Scholar

    [96] Huang, S.L. (2008). Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60(10): 1167−1176. DOI: 10.1016/j.addr.2008.03.003.

    View in Article CrossRef Google Scholar

    [97] Geers, B., Dewitte, H., De Smedt, S.C., et al. (2012). Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release 164(3): 248−255. DOI: 10.1016/j.jconrel.2012.08.014.

    View in Article CrossRef Google Scholar

    [98] Zhou, Q., Cai, X., Huang, Y., et al. (2023). Pluronic F127-liposome-encapsulated curcumin activates Nrf2/Keap1 signaling pathway to promote cell migration of HaCaT cells. Mol Cell Biochem 478(2): 241−247. DOI: 10.1007/s11010-022-04481-6.

    View in Article CrossRef Google Scholar

    [99] Cheng, S., Qi, M., Li, W., et al. (2023). Dual-responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria-infected wound healing. Adv Healthc Mater 12(6): e2202652. DOI: 10.1002/adhm.202202652.

    View in Article CrossRef Google Scholar

    [100] Huang, D., Sun, M., Bu, Y., et al. (2019). Microcapsule-embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium. J Mater Chem B 7(14): 2330−2337. DOI: 10.1039/c8tb02928h.

    View in Article CrossRef Google Scholar

    [101] John, Ł., Janeta, M., and Szafert, S. (2017). Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe2O4 for potential cancer hyperthermia therapy. Mater Sci Eng C Mater Biol Appl 78: 901−911. DOI: 10.1016/j.msec.2017.04.133.

    View in Article CrossRef Google Scholar

    [102] Tashakori-Miyanroudi, M., Rakhshan, K., Ramez, M., et al. (2020). Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int J Biol Macromol 163: 1136−1146. DOI: 10.1016/j.ijbiomac.2020.06.259.

    View in Article CrossRef Google Scholar

    [103] Yang, W., Chen, Q., Xia, R., et al. (2018). A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 177: 52−66. DOI: 10.1016/j.biomaterials.2018.05.026.

    View in Article CrossRef Google Scholar

    [104] Yu, Y.L., Shao, Y.K., Ding, Y.Q., et al. (2014). Decellularized kidney scaffold-mediated renal regeneration. Biomaterials 35(25): 6822−6828. DOI: 10.1016/j.biomaterials.2014.04.074.

    View in Article CrossRef Google Scholar

    [105] Kim, H.S., Hwang, H.J., Kim, H.J., et al. (2022). Effect of decellularized extracellular matrix bioscaffolds derived from fibroblasts on skin wound healing and remodeling. Front Bioeng Biotechnol 10: 865545. DOI: 10.3389/fbioe.2022.865545.

    View in Article CrossRef Google Scholar

    [106] Timin, A.S., Muslimov, A.R., Zyuzin, M.V., et al. (2018). Multifunctional scaffolds with improved antimicrobial properties and osteogenicity based on piezoelectric electrospun fibers decorated with bioactive composite microcapsules. ACS Appl Mater Interfaces 10(41): 34849−34868. DOI: 10.1021/acsami.8b09810.

    View in Article CrossRef Google Scholar

    [107] Miszuk, J.M., Xu, T., Yao, Q., et al. (2018). Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Appl Mater Today 10: 194−202. DOI: 10.1016/j.apmt.2017.12.004.

    View in Article CrossRef Google Scholar

    [108] Li, S., Zhu, C., Zhou, X., et al. (2022). Engineering ROS-responsive bioscaffolds for disrupting myeloid cell-driven immunosuppressive niche to enhance PD-L1 blockade-based postablative immunotherapy. Adv Sci (Weinh) 9(11): e2104619. DOI: 10.1002/advs.202104619.

    View in Article CrossRef Google Scholar

    [109] Liu, C., Wang, Z., Wei, X., et al. (2021). 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater 131: 314−325. DOI: 10.1016/j.actbio.2021.07.011.

    View in Article CrossRef Google Scholar

    [110] Epstein-Barash, H., Orbey, G., Polat, B.E., et al. (2010). A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials 31(19): 5208−5217. DOI: 10.1016/j.biomaterials.2010.03.008.

    View in Article CrossRef Google Scholar

    [111] Fabiilli, M.L., Wilson, C.G., Padilla, F., et al. (2013). Acoustic droplet-hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness. Acta Biomater 9(7): 7399−7409. DOI: 10.1016/j.actbio.2013.03.027.

    View in Article CrossRef Google Scholar

    [112] Moncion, A., Arlotta, K.J., Kripfgans, O.D., et al. (2016). Design and characterization of fibrin-based acoustically responsive scaffolds for tissue engineering applications. Ultrasound Med Biol 42(1): 257−271. DOI: 10.1016/j.ultrasmedbio.2015.08.018.

    View in Article CrossRef Google Scholar

    [113] Moncion, A., Lin, M., O'Neill, E.G., et al. (2017). Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds. Biomaterials 140: 26−36. DOI: 10.1016/j.biomaterials.2017.06.012.

    View in Article CrossRef Google Scholar

    [114] Ahmad, T., McGrath, S., Sirafim, C., et al. (2021). Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles. Biomater Sci 9(12): 4278−4288. DOI: 10.1039/d0bm01277g.

    View in Article CrossRef Google Scholar

    [115] Zhang, F., Kang, Y., Feng, L., et al. (2023). Infected wound repair with an ultrasound-enhanced nanozyme hydrogel scaffold. Mater Horiz 10: 5474−5483. DOI: 10.1039/d3mh01054f.

    View in Article CrossRef Google Scholar

    [116] Willyard, C. (2018) Unlocking the secrets of scar-free skin healing. Nature 563 (7732): S86-S88. DOI: 10.1038/d41586-018-07430-w.

    View in Article Google Scholar

    [117] Ji, S., Zhu, Z., Sun, X., et al. (2021). Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther 6(1): 66. DOI: 10.1038/s41392-020-00441-y.

    View in Article CrossRef Google Scholar

    [118] Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19 (3): R132-142. DOI: 10.1016/j.cub.2008.12.005.

    View in Article Google Scholar

    [119] Stenn, K.S., and Paus, R. (2001) Controls of hair follicle cycling. Physiol Rev 81 (1): 449-494. DOI: 10.1152/physrev.2001.81.1.449.

    View in Article Google Scholar

    [120] Driskell, R.R., Clavel, C., Rendl, M., et al. (2011). Hair follicle dermal papilla cells at a glance. J Cell Sci 124: 1179−1182. DOI: 10.1242/jcs.082446.

    View in Article CrossRef Google Scholar

    [121] Greco, V., Chen T, Rendl M, et al. (2009). A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2): 155−169. DOI: 10.1016/j.stem.2008.12.009.

    View in Article CrossRef Google Scholar

    [122] Kishimoto, J., Burgeson, R.E., and Morgan, B.A. (2000). Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14(10): 1181−1185. DOI: 10.1006/dbio.2000.9690.

    View in Article CrossRef Google Scholar

    [123] Woo, W.M., Zhen, H.H., and Oro, A.E. (2012). Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev 26(11): 1235−1246. DOI: 10.1101/gad.187401.112.

    View in Article CrossRef Google Scholar

    [124] Yu, Z., Jiang, K., Xu, Z., et al. (2018). Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration. Cell Stem Cell 23(4): 487−500.e6. DOI: 10.1016/j.stem.2018.07.016.

    View in Article CrossRef Google Scholar

    [125] Zhao, B., Li, J., Liu, M., et al. (2022). DNA methylation mediates lncRNA2919 regulation of hair follicle regeneration. Int J Mol Sci 23(16): 9481. DOI: 10.3390/ijms23169481.

    View in Article CrossRef Google Scholar

    [126] Xing, M., Jiang, Y., Bi, W., et al. (2021). Strontium ions protect hearts against myocardial ischemia/reperfusion injury. Sci Adv 7(3): eabe0726. DOI: 10.1126/sciadv.abe0726.

    View in Article CrossRef Google Scholar

    [127] Huang, T., Zhang, T., Jiang, X., et al. (2021). Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci Adv 7(40): eabj0534. DOI: 10.1126/sciadv.abj0534.

    View in Article CrossRef Google Scholar

    [128] Wollina, U. (1997). Histochemistry of the human hair follicle. EXS 78 : 31-58. DOI: 10.1007/978-3-0348-9223-0_2.

    View in Article Google Scholar

    [129] Handjiski, B.K., Eichmüller, S., Hofmann, U., et al. (1994). Alkaline phosphatase activity and localization during the murine hair cycle. Br J Dermatol 131(3): 303−310. DOI: 10.1111/j.1365-2133.1994.tb08515.x.

    View in Article CrossRef Google Scholar

    [130] Solano, F., Martinez-Liarte, J.H., Jiménez-Cervantes, C., et al. (1994). Dopachrome tautomerase is a zinc-containing enzyme. Biochem Biophys Res Commun 204(3): 1243−1250. DOI: 10.1006/bbrc.1994.2596.

    View in Article CrossRef Google Scholar

    [131] Zhang, Z., Li, W., Liu, Y., et al. (2020). Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. Bioact Mater 6(7): 1910−1920. DOI: 10.1016/j.bioactmat.2020.12.006.

    View in Article CrossRef Google Scholar

    [132] Zhang, Y., Chang, M., Bao, F., et al. (2019). Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale 11(13): 6315−6333. DOI: 10.1039/c8nr09818b.

    View in Article CrossRef Google Scholar

    [133] Wang, X., Gao, L., Han, Y., et al. (2018). Silicon-enhanced adipogenesis and angiogenesis for vascularized adipose tissue engineering. Adv Sci 5(11): 1800776. DOI: 10.1002/advs.201800776.

    View in Article CrossRef Google Scholar

    [134] Li, H., He, J., Yu, H., et al. (2016). Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials 84: 64−75. DOI: 10.1016/j.biomaterials.2016.01.033.

    View in Article CrossRef Google Scholar

    [135] Zhang, F., Zhang, Z., Duan, X., et al. (2023). Integrating zinc/silicon dual ions with 3D-printed GelMA hydrogel promotes in situ hair follicle regeneration. Int J Bioprint 9(3): 703. DOI: 10.18063/ijb.703.

    View in Article CrossRef Google Scholar

    [136] Liao, A.H., Huang, Y.J., Chuang, H.C., et al. (2021). Minoxidil-coated lysozyme-shelled microbubbes combined with ultrasound for the enhancement of hair follicle growth: Efficacy in vitro and in vivo. Front Pharmacol 12: 668754. DOI: 10.3389/fphar.2021.668754.

    View in Article CrossRef Google Scholar

    [137] Liao, A.H., Lin, K.H., Chuang, H.C., et al. (2020). Low-frequency dual-frequency ultrasound-mediated microbubble cavitation for transdermal minoxidil delivery and hair growth enhancement. Sci Rep 10(1): 4338. DOI: 10.1038/s41598-020-61328-0.

    View in Article CrossRef Google Scholar

    [138] Yang, X., Xiong, M., Fu, X., et al. (2023). Bioactive materials for in vivo sweat gland regeneration. Bioact Mater 31: 247−271. DOI: 10.1016/j.bioactmat.2023.07.025.

    View in Article CrossRef Google Scholar

    [139] Lu, C.P., Polak, L., Rocha, A.S., et al. (2012). Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150(1): 136−150. DOI: 10.1016/j.cell.2012.04.045.

    View in Article CrossRef Google Scholar

    [140] Song, W., Yao, B., Zhu, D., et al. (2022). 3D-bioprinted microenvironments for sweat gland regeneration. Burns Trauma 10: tkab044. DOI: 10.1093/burnst/tkab044.

    View in Article CrossRef Google Scholar

    [141] Ma, J., Wu, J., Zhang, H., et al. (2022). 3D printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds. Int J Bioprint 8(3): 580. DOI: 10.18063/ijb.v8i3.580.

    View in Article CrossRef Google Scholar

    [142] Zhang, H., Ma, W., Ma, H., et al. (2022). Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Adv Healthc Mater 11(10): e2102359. DOI: 10.1002/adhm.202102359.

    View in Article CrossRef Google Scholar

    [143] Raso, V.V., Barbieri, C.H., Mazzer, N., et al. (2005). Can therapeutic ultrasound influence the regeneration of peripheral nerves. J Neurosci Methods 142(2): 185−192. DOI: 10.1016/j.jneumeth.2004.08.016.

    View in Article CrossRef Google Scholar

    [144] Yue, Y., Yang, X., Wei, X., et al. (2013). Osteogenic differentiation of adipose-derived stem cells prompted by low-intensity pulsed ultrasound. Cell Prolif 46(3): 320−327. DOI: 10.1111/cpr.12035.

    View in Article CrossRef Google Scholar

    [145] Angle, S.R., Sena, K., Sumner, D.R., et al. (2011). Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics 51(3): 281−288. DOI: 10.1016/j.ultras.2010.09.004.

    View in Article CrossRef Google Scholar

    [146] Yue, Y., Yang, X., Zhang, L., et al. (2016). Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells. Cell Prolif 49(6): 720−728. DOI: 10.1111/cpr.12298.

    View in Article CrossRef Google Scholar

    [147] Shang, L., Yu, Y., Jiang, Y., et al. (2023). Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17(16): 15962−15977. DOI: 10.1021/acsnano.3c04134.

    View in Article CrossRef Google Scholar

    [148] Kuang, X., Rong, Q., Belal, S., et al. (2023). Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science 382(6675): 1148−1155. DOI: 10.1126/science.adi1563.

    View in Article CrossRef Google Scholar

    [149] Zheng, Z., Lian, L., and Xie, M. (2024). Ultrasound volumetric bioprinting: Opportunities and challenges. The Innovation Life 2(1): 100053. DOI: 10.59717/j.xinn-life.2024.100053.

    View in Article CrossRef Google Scholar

    [150] ter Haar, G., Dyson, M., and Smith, S.P. (1979). Ultrastructural changes in the mouse uterus brought about by ultrasonic irradiation at therapeutic intensities in standing wave fields. Ultrasound Med Biol 5(2): 167−179. DOI: 10.1016/0301-5629(79)90085-1.

    View in Article CrossRef Google Scholar

    [151] Dyson, M., Pond, J.B., Woodward, B., et al. (1974). The production of blood cell stasis and endothelial damage in the blood vessels of chick embryos treated with ultrasound in a stationary wave field. Ultrasound Med Biol 1(2): 133−148. DOI: 10.1016/0301-5629(74)90003-9.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Yu B., Li Z., and Huang S. (2024). The application of ultrasound for skin and appendage regeneration: A comprehensive review. The Innovation Life 2(2): 100074. https://doi.org/10.59717/j.xinn-life.2024.100074
    Yu B., Li Z., and Huang S. (2024). The application of ultrasound for skin and appendage regeneration: A comprehensive review. The Innovation Life 2(2): 100074. https://doi.org/10.59717/j.xinn-life.2024.100074

Figures(5)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1510) PDF downloads(375) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint