Ultrasound has important application prospects in skin regeneration.
Ultrasound can affect cell behaviors by increasing DNA synthesis and inhibiting TNG signaling pathway.
Ultrasound can promote skin regeneration by directly using or combining with ultrasound-responsive materials.
[1] | Zhang, M., Zhang, C., Li, Z., et al. (2022). Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 10: rbac105. DOI: 10.1093/rb/rbac105. |
[2] | Metcalfe, A.D., and Ferguson, M.W. (2007). Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28(34): 5100−5113. DOI: 10.1016/j.biomaterials.2007.07.031. |
[3] | Weng, T., Wu, P., Zhang, W., et al. (2020). Regeneration of skin appendages and nerves: Current status and further challenges. J Transl Med 18(1): 53. DOI: 10.1186/s12967-020-02248-5. |
[4] | Huang, H., Banerjee, S., Qiu, K., et al. (2019). Targeted photoredox catalysis in cancer cells. Nat Chem 11(11): 1041−1048. DOI: 10.1038/s41557-019-0328-4. |
[5] | Li, M., Gebremedhin, K.H., Ma, D., et al. (2022). Conditionally activatable photoredox catalysis in living systems. J Am Chem Soc 4(1): 163−173. DOI: 10.1021/jacs.1c07372. |
[6] | Son, S., Kim, J., Kim, J., et al. (2022). Cancer therapeutics based on diverse energy sources. Chem Soc Rev 51: 8201−8215. DOI: 10.1039/d2cs00102k. |
[7] | Fu, C., Zhou, H., Tan, L., et al. (2018). Microwave-activated Mn-doped zirconium metal-organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer. ACS Nano 12(3): 2201−2210. DOI: 10.1021/acsnano.7b08868. |
[8] | Wu, Q., Xia, N., Long, D., et al. (2019). Dual-functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy. Nano Lett 19(8): 5277−5286. DOI: 10.1021/acs.nanolett.9b01735. |
[9] | Zhu, P., Chen, Y., and Shi, J. (2020). Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv Mater 32(29): e2001976. DOI: 10.1002/adma.202001976. |
[10] | Jiang, L., Yang, Y., Chen, Y., et al. (2020). Ultrasound-induced wireless energy harvesting: From materials strategies to functional applications. Nano Energy 77: 105131. DOI: 10.1016/j.nanoen.2020.105131. |
[11] | Qin, H., Du, L., Luo, Z., et al. (2022). The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 10: 1080430. DOI: 10.3389/fbioe.2022.1080430. |
[12] | Xia, B., Chen, G., Zou, Y., et al. (2019) Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery. J Tissue Eng Regen Med 13 (4): 625-636. DOI: 10.1002/term.2823. |
[13] | Wang, Y., Li, J., Zhou, J., et al. (2022). Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies. Ultrasonics 121: 106678. DOI: 10.1016/j.ultras.2021.106678. |
[14] | Tsuang, Y.H., Liao, L.W., Chao, Y.H., et al. (2011). Effects of low intensity pulsed ultrasound on rat Schwann cells metabolism. Artif Organs 35(4): 373−383. DOI: 10.1111/j.1525-1594.2010.01086.x. |
[15] | Mitragotri, S. (2005). Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4(3): 255−260. DOI: 10.1038/nrd1662. |
[16] | Zhang, Y., Guo, L., Kong, F., et al. (2021). Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. Wires Nanomed Nanobi 13(6): e1733. DOI: 10.1002/wnan.1733. |
[17] | Chen. Y., Jiang. J., Zeng. Y., et al. (2018). Effects of a microbubble ultrasound contrast agent on high-intensity focused ultrasound for uterine fibroids: A randomised controlled trial. Int J Hyperthermia 34(8): 1311−1315. DOI: 10.1080/02656736.2017.1411620. |
[18] | Hsu, Y.C., Li, L. and Fuchs, E. (2014). Emerging interactions between skin stem cells and their niches. Nat Med 20 (8): 847-856. DOI: 10.1038/nm.3643. |
[19] | Klar, A.S., Zimoch, J., and Biedermann, T. (2017). Skin tissue engineering: Application of adipose-derived stem cells. Biomed Res Int 2017: 9747010. DOI: 10.1155/2017/9747010. |
[20] | Kasza, I., Suh, Y., Wollny, D., et al. (2014). Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PLoS Genet 10(8): e1004514. DOI: 10.1371/journal.pgen.1004514. |
[21] | Sugihara, H., Toda, S., Yonemitsu, N., et al. (2001). Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. Br J Dermatol 144(2): 244−253. DOI: 10.1046/j.1365-2133.2001.04008.x. |
[22] | Schmidt, B.A., and Horsley, V. (2013). Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140(7): 1517−1527. DOI: 10.1242/dev.087593. |
[23] | Festa, E., Fretz, J., Berry, R., et al. (2011). Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146(5): 761−771. DOI: 10.1016/j.cell.2011.07.019. |
[24] | Barker, J.N., Mitra, R.S., Griffiths, C.E., et al. (1991). Keratinocytes as initiators of inflammation. Lancet 337(8735): 211−214. DOI: 10.1016/0140-6736(91)92168-2. |
[25] | Schauber, J., Dorschner, R.A., Coda, A.B., et al. (2007). Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117(3): 803−811. DOI: 10.1172/JCI30142. |
[26] | Gallo, R.L., Ono, M., Povsic, T., et al. (1994). Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91(23): 11035−11039. DOI: 10.1073/pnas.91.23.11035. |
[27] | Cheng, H.F., Chiu, W.T., Lai, Y.S., et al. (2023). High-frequency noncontact low-intensity pulsed ultrasound modulates Ca2+-dependent transcription factors contributing to cell migration. Ultrasonics 127: 106852. DOI: 10.1016/j.ultras.2022.106852. |
[28] | Hunter, C.A., and Jones, S.A. (2015). IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5): 448−457. DOI: 10.1038/ni.3153. |
[29] | Paquet, P., and Piérard, G.E. (1996). Interleukin-6 and the skin. Int Arch Allergy Immunol 109(4): 308−317. DOI: 10.1159/000237257. |
[30] | Xi, L., Han, Y., Liu, C., et al. (2022). Sonodynamic therapy by phase-transition nanodroplets for reducing epidermal hyperplasia in psoriasis. J Control Release 350: 435−447. DOI: 10.1016/j.jconrel.2022.08.038. |
[31] | Hanawa, K., Ito, K., Aizawa, K., et al. (2014). Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia. PLoS One 9(8): e104863. DOI: 10.1371/journal.pone.0104863. |
[32] | Kim, S.W., Ryu, H.A., Lee, Y.S., et al. (2019). Generation of directly reprogrammed human endothelial cells derived from fibroblast using ultrasound. J Mol Cell Cardiol 126: 118−128. DOI: 10.1016/j.yjmcc.2018.11.016. |
[33] | Webster, D.F., Harvey, W., Dyson, M., et al. (1980). The role of ultrasound-induced cavitation in the 'in vitro' stimulation of collagen synthesis in human fibroblasts. Ultrasonics 18(1): 33−37. DOI: 10.1016/0041-624x(80)90050-5. |
[34] | Zhou, S., Schmelz, A., Seufferlein, T., et al. (2004). Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279(52): 54463−54469. DOI: 10.1074/jbc.M404786200. |
[35] | Roper, J.A., Williamson, R.C., Bally, B., et al. (2015). Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1. J Invest Dermatol 135(11): 2842−2851. DOI: 10.1038/jid.2015.224. |
[36] | Franco, de Oliveira R., Pires Oliveira, D.A., and Soares, C.P. (2011). Effect of low-intensity pulsed ultrasound on l929 fibroblasts. Arch Med Sci 7(2): 224−229. DOI: 10.5114/aoms.2011.22071. |
[37] | Bertin, L.D., Poli-Frederico, R.C., Pires Oliveira, D.A.A., et al. (2019). Analysis of cell viability and gene expression after continuous ultrasound therapy in l929 fibroblast cells. Am J Phys Med Rehabil 98(5): 369−372. DOI: 10.1097/PHM.0000000000001103. |
[38] | Harvey, W., Dyson, M., Pond, J.B. et al. (1975). The stimulation of protein synthesis in human fibroblasts by therapeutic ultrasound. Rheumatol Rehabil 14(4): 237. DOI: 10.1093/rheumatology/14.4.237. |
[39] | Jiang, Z., Chen, Z., Xu, Y. et al. (2024). Low-frequency ultrasound sensitive Piezo1 channels regulate keloid-related characteristics of fibroblasts. Adv Sci (Weinh) 11(14): e2305489. DOI: 10.1002/advs.202305489. |
[40] | Qin, H., Luo, Z., Sun, Y., et al. (2023). Low-intensity pulsed ultrasound promotes skeletal muscle regeneration via modulating the inflammatory immune microenvironment. Int J Biol Sci 19(4): 1123−1145. DOI: 10.7150/ijbs.79685. |
[41] | Li, Y.P., Zhou, S.X., Andreas, S., et al. (2007). Effect of LIPUS on the cellular behavior of human primary macrophages. Chinese Journal of Cellular and Molecular Immunology 23 (12): 1113-1116. (In Chinese). |
[42] | Sun, X., Xu, H., Shen, J., et al. (2015) Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy. Ultrason Sonochem 22 : 7-14. DOI: 10.1016/j.ultsonch.2014.06.016. |
[43] | Young, R., and Dyson, M., (1990). Macrophage responsiveness to therapeutic ultrasound. Ultrasound Med Biol 16 (8): 809-816. DOI: 10.1016/0301-5629(90)90045-e. |
[44] | Pittenger, M.F., Mackay, A.M., Beck, S.C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143−147. DOI: 10.1126/science.284.5411.143. |
[45] | Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893): 41−49. DOI: 10.1038/nature00870. |
[46] | Duscher, D., Barrera, J., Wong, V.W., et al. (2016). Stem cells in wound healing: The future of regenerative medicine. A mini-review. Gerontology 62(2): 216−225. DOI: 10.1159/000381877. |
[47] | Zhao, Y., Wang, M., Liang, F., et al. (2021). Recent strategies for enhancing the therapeutic efficacy of stem cells in wound healing. Stem Cell Res Ther 12(1): 588. DOI: 10.1186/s13287-021-02657-3. |
[48] | Ling, L., Wei, T., He, L., et al. (2017). Low-intensity pulsed ultrasound activates ERK1/2 and PI3K-Akt signalling pathways and promotes the proliferation of human amnion-derived mesenchymal stem cells. Cell Prolif 50(6): e12383. DOI: 10.1111/cpr.12383. |
[49] | Budhiraja, G., Sahu, N., and Subramanian, A. (2018). Low-intensity ultrasound upregulates the expression of cyclin-D1 and promotes cellular proliferation in human mesenchymal stem cells. Biotechnol J 13(4): e1700382. DOI: 10.1002/biot.201700382. |
[50] | Xiao, W., Xu, Q., Zhu, Z., et al. (2017). Different performances of CXCR4, integrin-1β and CCR-2 in bone marrow stromal cells (BMSCs) migration by low-intensity pulsed ultrasound stimulation. Biomed Tech (Berl). 62(1): 89−95. DOI: 10.1515/bmt-2015-0166. |
[51] | Wei, F.Y., Leung, K.S., Li, G., et al. (2014) Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing. PLoS One 9 (9): e106722. DOI: 10.1371/journal.pone.0106722. |
[52] | Bhang, S.H., Gwak, S.J., Lee, T.J., et al. (2010). Cyclic mechanical strain promotes transforming-growth-factor-beta1-mediated cardiomyogenic marker expression in bone-marrow-derived mesenchymal stem cells in vitro. Biotechnol Appl Biochem 55(4): 191−197. DOI: 10.1042/BA20090307. |
[53] | Khayat, G., Rosenzweig, D.H., and Quinn, T.M. (2012). Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Differentiation 83(4): 179−184. DOI: 10.1016/j.diff.2011.12.004. |
[54] | Wang, X., Lin, Q., Zhang, T., et al. (2019). Low-intensity pulsed ultrasound promotes chondrogenesis of mesenchymal stem cells via regulation of autophagy. Stem Cell Res Ther 10(1): 41. DOI: 10.1186/s13287-019-1142-z. |
[55] | Xia, P., Wang, X., Wang, Q., et al. (2021). Low-intensity pulsed ultrasound promotes autophagy-mediated migration of mesenchymal stem cells and cartilage repair. Cell Transplant 30 : 963689720986142. DOI: 10.1177/0963689720986142. |
[56] | Chen. Y., Yang, H., Wang, Z., et al. (2023). Low-intensity pulsed ultrasound promotes mesenchymal stem cell transplantation-based articular cartilage regeneration via inhibiting the TNF signaling pathway. Stem Cell Res Ther 14(1): 93. DOI: 10.1186/s13287-023-03296-6. |
[57] | Lorsung, R.M., Rosenblatt, R.B., Cohen, G., et al. (2020). Acoustic radiation or cavitation forces from therapeutic ultrasound generate prostaglandins and increase mesenchymal stromal cell homing to murine muscle. Front Bioeng Biotechnol 8: 870. DOI: 10.3389/fbioe.2020.00870. |
[58] | Burks, S.R., Nguyen, B.A., Tebebi, P.A., et al. (2015). Pulsed focused ultrasound pretreatment improves mesenchymal stromal cell efficacy in preventing and rescuing established acute kidney injury in mice. Stem Cells 33(4): 1241−1253. DOI: 10.1002/stem.1965. |
[59] | Ullah, M., Liu, D.D., Rai, S., et al. (2020). Reversing acute kidney injury using pulsed focused ultrasound and MSC therapy: A role for HSP-mediated PI3K/AKT signaling. Mol Ther Methods Clin Dev 17: 683−694. DOI: 10.1016/j.omtm.2020.03.023. |
[60] | Quinby, W.C., Jr, Burke, J.F., and Bondoc, C.C. (1981). Primary excision and immediate wound closure. Intensive Care Med 7(2): 71−76. DOI: 10.1007/BF01687263. |
[61] | Wang, Y., Beekman, J., Hew, J., et al. (2018). Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 123: 3−17. DOI: 10.1016/j.addr.2017.09.018. |
[62] | Kim, H.S., Sun, X., Lee, J.H., et al. (2019). Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 146: 209−239. DOI: 10.1016/j.addr.2018.12.014. |
[63] | Lindley, L.E., Stojadinovic, O., Pastar, I., et al. (2016). Biology and biomarkers for wound healing. Plast Reconstr Surg 138: 18S−28S. DOI: 10.1097/PRS.0000000000002682. |
[64] | Falanga, V., Isseroff, R.R., Soulika, A.M., et al. (2022). Chronic wounds. Nat Rev Dis Primers 8(1): 50. DOI: 10.1038/s41572-022-00377-3. |
[65] | Kaplani, K., Koutsi, S., Armenis, V., et al. (2018). Wound healing related agents: Ongoing research and perspectives. Adv Drug Deliv Rev 129: 242−253. DOI: 10.1016/j.addr.2018.02.007. |
[66] | Miguel, M.M.V., Mathias-Santamaria, I.F., Rossato, A., et al. (2021). Microcurrent electrotherapy improves palatal wound healing: Randomized clinical trial. J Periodontol 92(2): 244−253. DOI: 10.1002/JPER.20-0122. |
[67] | Roper, J.A., Williamson, R.C., Bally, B., et al. (2015). Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1. J Invest Dermatol 135(11): 2842−2851. DOI: 10.1038/jid.2015.224. |
[68] | Mahoney, C.M., Morgan, M.R., Harrison, A., et al. (2009). Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 284(13): 8898−8909. DOI: 10.1074/jbc.M804281200. |
[69] | Chan, Y.S., Hsu, K.Y., Kuo, C.H., et al. (2010). Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study. Ultrasound Med Biol 36(5): 743−751. DOI: 10.1016/j.ultrasmedbio.2010.02.010. |
[70] | Hu, J., Qu, J., Xu, D., et al. (2014). Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res 32(2): 204−209. DOI: 10.1002/jor.22505. |
[71] | Montalti, C.S., Souza, N.V., Rodrigues, N.C., et al. (2013). Effects of low-intensity pulsed ultrasound on injured skeletal muscle. Braz J Phys Ther 17(4): 343−350. DOI: 10.1590/S1413-35552012005000101. |
[72] | Zheng, C., Wu, S.M., Lian, H., et al. (2019). Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways. J Cell Mol Med 23(3): 1963−1975. DOI: 10.1111/jcmm.14098. |
[73] | Zhang, B., Chen, H., Ouyang, J., et al. (2020). SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy 16(7): 1262−1278. DOI: 10.1080/15548627.2019.1664705. |
[74] | Luu, Y., Han, J., Owji, S., et al. (2023). Accelerated healing from severe radiation dermatitis using noncontact, low-frequency ultrasound-assisted saline wash therapy. Adv Skin Wound Care 36(1): 41−43. DOI: 10.1097/01.ASW.0000897440.98255.e5. |
[75] | Fantinati, M.S., Mendonça, D.E., Fantinati, A.M., et al. (2016). Low intensity ultrasound therapy induces angiogenesis and persistent inflammation in the chronic phase of the healing process of third degree burn wounds experimentally induced in diabetic and non-diabetic rats. Acta Cir Bras 31(7): 463−471. DOI: 10.1590/S0102-865020160070000006. |
[76] | Young, S.R., and Dyson, M. (1990). Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions. Ultrasonics 28(3): 175−180. DOI: 10.1016/0041-624x(90)90082-y. |
[77] | Vander Horst, M.A., Raeman, C.H., Dalecki, D., et al. (2021). Time- and dose-dependent effects of pulsed ultrasound on dermal repair in diabetic mice. Ultrasound Med Biol 47(4): 1054−1066. DOI: 10.1016/j.ultrasmedbio.2020.12.024. |
[78] | Yang, S., Wang, Y., and Liang, X. (2023). Piezoelectric nanomaterials activated by ultrasound in disease treatment. Pharmaceutics 15(5): 1338. DOI: 10.3390/pharmaceutics15051338. |
[79] | Xia, G., Song, B., and Fang, J. (2022). Electrical stimulation enabled via electrospun piezoelectric polymeric nanofibers for tissue regeneration. Research (Wash D C). 2022: 9896274. DOI: 10.34133/2022/9896274. |
[80] | Vinikoor, T., Dzidotor, G.K., Le, T.T., et al. (2023). Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun 14(1): 6257. DOI: 10.1038/s41467-023-41594-y. |
[81] | Han, J., Zhang, Y., Wang, X., et al. (2023). Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for rate control in atrial fibrillation. Biomater Sci 11(2): 655−665. DOI: 10.1039/d2bm01733d. |
[82] | Kong, Y., Liu, F., Ma, B., et al. (2021). Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization. Adv Sci (Weinh) 8(13): 2100962. DOI: 10.1002/advs.202100962. |
[83] | Zhu, P., Chen, Y., and Shi, J. (2020). Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv Mater 32(29): e2001976. DOI: 10.1002/adma.202001976. |
[84] | Lyu, W., Ma, Y., Chen, S., et al. (2021). Flexible ultrasonic patch for accelerating chronic wound healing. Adv Healthc Mater 10(19): e2100785. DOI: 10.1002/adhm.202100785. |
[85] | Liu, D., Li, L., Shi, B.L., et al. (2022). Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing. Bioact Mater 24: 96−111. DOI: 10.1016/j.bioactmat.2022.11.023. |
[86] | Lei, C., Lei, J., Zhang, X., et al. (2023). Heterostructured piezocatalytic nanoparticles with enhanced ultrasound response for efficient repair of infectious bone defects. Acta Biomater 172: 343−354. DOI: 10.1016/j.actbio.2023.10.006. |
[87] | Zou, Y., Huang, B., Cao, L., et al. (2021). Tailored mesoporous inorganic biomaterials: Assembly, functionalization, and drug delivery engineering. Adv Mater 33(2): e2005215. DOI: 10.1002/adma.202005215. |
[88] | Ayana, G., Ryu, J., and Choe, S.W. (2022). Ultrasound-responsive nanocarriers for breast cancer chemotherapy. Micromachines 13(9): 1508. DOI: 10.3390/mi13091508. |
[89] | Cavalli, R., Soster, M., and Argenziano, M. (2016). Nanobubbles: A promising efficient tool for therapeutic delivery. Ther Deliv 7(2): 117−138. DOI: 10.4155/tde.15.92. |
[90] | Nittayacharn, P., Yuan, H.X., Hernandez, C., et al. (2019). Enhancing tumor drug distribution with ultrasound-triggered nanobubbles. J Pharm Sci 108(9): 3091−3098. DOI: 10.1016/j.xphs.2019.05.004. |
[91] | Carson, A.R., McTiernan, C.F., Lavery, L., et al. (2012). Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res 72(23): 6191−6199. DOI: 10.1158/0008-5472.CAN-11-4079. |
[92] | Huang, D., Wang, J., Song, C., et al. (2023). Ultrasound-responsive matters for biomedical applications. The Innovation 4(3): 100421. DOI: 10.1016/j.xinn.2023.100421. |
[93] | Wang, X., Wu, Y., Sun, Q., et al. (2023). Ultrasound and microbubble-mediated delivery of miR-424-5p has a therapeutic effect in preeclampsia. Biol Proced Online 25(1): 3. DOI: 10.1186/s12575-023-00191-5. |
[94] | Large, D.E., Abdelmessih, R.G., Fink, E.A., et al. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 176: 113851. DOI: 10.1016/j.addr.2021.113851. |
[95] | Unger, E., Shen, D.K., Fritz, T., et al. (1993). Gas-filled liposomes as echocardiographic contrast agents in rabbits with myocardial infarcts. Invest Radiol 28(12): 1155−1159. DOI: 10.1097/00004424-199312000-00015. |
[96] | Huang, S.L. (2008). Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60(10): 1167−1176. DOI: 10.1016/j.addr.2008.03.003. |
[97] | Geers, B., Dewitte, H., De Smedt, S.C., et al. (2012). Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release 164(3): 248−255. DOI: 10.1016/j.jconrel.2012.08.014. |
[98] | Zhou, Q., Cai, X., Huang, Y., et al. (2023). Pluronic F127-liposome-encapsulated curcumin activates Nrf2/Keap1 signaling pathway to promote cell migration of HaCaT cells. Mol Cell Biochem 478(2): 241−247. DOI: 10.1007/s11010-022-04481-6. |
[99] | Cheng, S., Qi, M., Li, W., et al. (2023). Dual-responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria-infected wound healing. Adv Healthc Mater 12(6): e2202652. DOI: 10.1002/adhm.202202652. |
[100] | Huang, D., Sun, M., Bu, Y., et al. (2019). Microcapsule-embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium. J Mater Chem B 7(14): 2330−2337. DOI: 10.1039/c8tb02928h. |
[101] | John, Ł., Janeta, M., and Szafert, S. (2017). Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe2O4 for potential cancer hyperthermia therapy. Mater Sci Eng C Mater Biol Appl 78: 901−911. DOI: 10.1016/j.msec.2017.04.133. |
[102] | Tashakori-Miyanroudi, M., Rakhshan, K., Ramez, M., et al. (2020). Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int J Biol Macromol 163: 1136−1146. DOI: 10.1016/j.ijbiomac.2020.06.259. |
[103] | Yang, W., Chen, Q., Xia, R., et al. (2018). A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 177: 52−66. DOI: 10.1016/j.biomaterials.2018.05.026. |
[104] | Yu, Y.L., Shao, Y.K., Ding, Y.Q., et al. (2014). Decellularized kidney scaffold-mediated renal regeneration. Biomaterials 35(25): 6822−6828. DOI: 10.1016/j.biomaterials.2014.04.074. |
[105] | Kim, H.S., Hwang, H.J., Kim, H.J., et al. (2022). Effect of decellularized extracellular matrix bioscaffolds derived from fibroblasts on skin wound healing and remodeling. Front Bioeng Biotechnol 10: 865545. DOI: 10.3389/fbioe.2022.865545. |
[106] | Timin, A.S., Muslimov, A.R., Zyuzin, M.V., et al. (2018). Multifunctional scaffolds with improved antimicrobial properties and osteogenicity based on piezoelectric electrospun fibers decorated with bioactive composite microcapsules. ACS Appl Mater Interfaces 10(41): 34849−34868. DOI: 10.1021/acsami.8b09810. |
[107] | Miszuk, J.M., Xu, T., Yao, Q., et al. (2018). Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Appl Mater Today 10: 194−202. DOI: 10.1016/j.apmt.2017.12.004. |
[108] | Li, S., Zhu, C., Zhou, X., et al. (2022). Engineering ROS-responsive bioscaffolds for disrupting myeloid cell-driven immunosuppressive niche to enhance PD-L1 blockade-based postablative immunotherapy. Adv Sci (Weinh) 9(11): e2104619. DOI: 10.1002/advs.202104619. |
[109] | Liu, C., Wang, Z., Wei, X., et al. (2021). 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater 131: 314−325. DOI: 10.1016/j.actbio.2021.07.011. |
[110] | Epstein-Barash, H., Orbey, G., Polat, B.E., et al. (2010). A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials 31(19): 5208−5217. DOI: 10.1016/j.biomaterials.2010.03.008. |
[111] | Fabiilli, M.L., Wilson, C.G., Padilla, F., et al. (2013). Acoustic droplet-hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness. Acta Biomater 9(7): 7399−7409. DOI: 10.1016/j.actbio.2013.03.027. |
[112] | Moncion, A., Arlotta, K.J., Kripfgans, O.D., et al. (2016). Design and characterization of fibrin-based acoustically responsive scaffolds for tissue engineering applications. Ultrasound Med Biol 42(1): 257−271. DOI: 10.1016/j.ultrasmedbio.2015.08.018. |
[113] | Moncion, A., Lin, M., O'Neill, E.G., et al. (2017). Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds. Biomaterials 140: 26−36. DOI: 10.1016/j.biomaterials.2017.06.012. |
[114] | Ahmad, T., McGrath, S., Sirafim, C., et al. (2021). Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles. Biomater Sci 9(12): 4278−4288. DOI: 10.1039/d0bm01277g. |
[115] | Zhang, F., Kang, Y., Feng, L., et al. (2023). Infected wound repair with an ultrasound-enhanced nanozyme hydrogel scaffold. Mater Horiz 10: 5474−5483. DOI: 10.1039/d3mh01054f. |
[116] | Willyard, C. (2018) Unlocking the secrets of scar-free skin healing. Nature 563 (7732): S86-S88. DOI: 10.1038/d41586-018-07430-w. |
[117] | Ji, S., Zhu, Z., Sun, X., et al. (2021). Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther 6(1): 66. DOI: 10.1038/s41392-020-00441-y. |
[118] | Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19 (3): R132-142. DOI: 10.1016/j.cub.2008.12.005. |
[119] | Stenn, K.S., and Paus, R. (2001) Controls of hair follicle cycling. Physiol Rev 81 (1): 449-494. DOI: 10.1152/physrev.2001.81.1.449. |
[120] | Driskell, R.R., Clavel, C., Rendl, M., et al. (2011). Hair follicle dermal papilla cells at a glance. J Cell Sci 124: 1179−1182. DOI: 10.1242/jcs.082446. |
[121] | Greco, V., Chen T, Rendl M, et al. (2009). A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2): 155−169. DOI: 10.1016/j.stem.2008.12.009. |
[122] | Kishimoto, J., Burgeson, R.E., and Morgan, B.A. (2000). Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14(10): 1181−1185. DOI: 10.1006/dbio.2000.9690. |
[123] | Woo, W.M., Zhen, H.H., and Oro, A.E. (2012). Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop. Genes Dev 26(11): 1235−1246. DOI: 10.1101/gad.187401.112. |
[124] | Yu, Z., Jiang, K., Xu, Z., et al. (2018). Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration. Cell Stem Cell 23(4): 487−500.e6. DOI: 10.1016/j.stem.2018.07.016. |
[125] | Zhao, B., Li, J., Liu, M., et al. (2022). DNA methylation mediates lncRNA2919 regulation of hair follicle regeneration. Int J Mol Sci 23(16): 9481. DOI: 10.3390/ijms23169481. |
[126] | Xing, M., Jiang, Y., Bi, W., et al. (2021). Strontium ions protect hearts against myocardial ischemia/reperfusion injury. Sci Adv 7(3): eabe0726. DOI: 10.1126/sciadv.abe0726. |
[127] | Huang, T., Zhang, T., Jiang, X., et al. (2021). Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci Adv 7(40): eabj0534. DOI: 10.1126/sciadv.abj0534. |
[128] | Wollina, U. (1997). Histochemistry of the human hair follicle. EXS 78 : 31-58. DOI: 10.1007/978-3-0348-9223-0_2. |
[129] | Handjiski, B.K., Eichmüller, S., Hofmann, U., et al. (1994). Alkaline phosphatase activity and localization during the murine hair cycle. Br J Dermatol 131(3): 303−310. DOI: 10.1111/j.1365-2133.1994.tb08515.x. |
[130] | Solano, F., Martinez-Liarte, J.H., Jiménez-Cervantes, C., et al. (1994). Dopachrome tautomerase is a zinc-containing enzyme. Biochem Biophys Res Commun 204(3): 1243−1250. DOI: 10.1006/bbrc.1994.2596. |
[131] | Zhang, Z., Li, W., Liu, Y., et al. (2020). Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. Bioact Mater 6(7): 1910−1920. DOI: 10.1016/j.bioactmat.2020.12.006. |
[132] | Zhang, Y., Chang, M., Bao, F., et al. (2019). Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale 11(13): 6315−6333. DOI: 10.1039/c8nr09818b. |
[133] | Wang, X., Gao, L., Han, Y., et al. (2018). Silicon-enhanced adipogenesis and angiogenesis for vascularized adipose tissue engineering. Adv Sci 5(11): 1800776. DOI: 10.1002/advs.201800776. |
[134] | Li, H., He, J., Yu, H., et al. (2016). Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials 84: 64−75. DOI: 10.1016/j.biomaterials.2016.01.033. |
[135] | Zhang, F., Zhang, Z., Duan, X., et al. (2023). Integrating zinc/silicon dual ions with 3D-printed GelMA hydrogel promotes in situ hair follicle regeneration. Int J Bioprint 9(3): 703. DOI: 10.18063/ijb.703. |
[136] | Liao, A.H., Huang, Y.J., Chuang, H.C., et al. (2021). Minoxidil-coated lysozyme-shelled microbubbes combined with ultrasound for the enhancement of hair follicle growth: Efficacy in vitro and in vivo. Front Pharmacol 12: 668754. DOI: 10.3389/fphar.2021.668754. |
[137] | Liao, A.H., Lin, K.H., Chuang, H.C., et al. (2020). Low-frequency dual-frequency ultrasound-mediated microbubble cavitation for transdermal minoxidil delivery and hair growth enhancement. Sci Rep 10(1): 4338. DOI: 10.1038/s41598-020-61328-0. |
[138] | Yang, X., Xiong, M., Fu, X., et al. (2023). Bioactive materials for in vivo sweat gland regeneration. Bioact Mater 31: 247−271. DOI: 10.1016/j.bioactmat.2023.07.025. |
[139] | Lu, C.P., Polak, L., Rocha, A.S., et al. (2012). Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150(1): 136−150. DOI: 10.1016/j.cell.2012.04.045. |
[140] | Song, W., Yao, B., Zhu, D., et al. (2022). 3D-bioprinted microenvironments for sweat gland regeneration. Burns Trauma 10: tkab044. DOI: 10.1093/burnst/tkab044. |
[141] | Ma, J., Wu, J., Zhang, H., et al. (2022). 3D printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds. Int J Bioprint 8(3): 580. DOI: 10.18063/ijb.v8i3.580. |
[142] | Zhang, H., Ma, W., Ma, H., et al. (2022). Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Adv Healthc Mater 11(10): e2102359. DOI: 10.1002/adhm.202102359. |
[143] | Raso, V.V., Barbieri, C.H., Mazzer, N., et al. (2005). Can therapeutic ultrasound influence the regeneration of peripheral nerves. J Neurosci Methods 142(2): 185−192. DOI: 10.1016/j.jneumeth.2004.08.016. |
[144] | Yue, Y., Yang, X., Wei, X., et al. (2013). Osteogenic differentiation of adipose-derived stem cells prompted by low-intensity pulsed ultrasound. Cell Prolif 46(3): 320−327. DOI: 10.1111/cpr.12035. |
[145] | Angle, S.R., Sena, K., Sumner, D.R., et al. (2011). Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics 51(3): 281−288. DOI: 10.1016/j.ultras.2010.09.004. |
[146] | Yue, Y., Yang, X., Zhang, L., et al. (2016). Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells. Cell Prolif 49(6): 720−728. DOI: 10.1111/cpr.12298. |
[147] | Shang, L., Yu, Y., Jiang, Y., et al. (2023). Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17(16): 15962−15977. DOI: 10.1021/acsnano.3c04134. |
[148] | Kuang, X., Rong, Q., Belal, S., et al. (2023). Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science 382(6675): 1148−1155. DOI: 10.1126/science.adi1563. |
[149] | Zheng, Z., Lian, L., and Xie, M. (2024). Ultrasound volumetric bioprinting: Opportunities and challenges. The Innovation Life 2(1): 100053. DOI: 10.59717/j.xinn-life.2024.100053. |
[150] | ter Haar, G., Dyson, M., and Smith, S.P. (1979). Ultrastructural changes in the mouse uterus brought about by ultrasonic irradiation at therapeutic intensities in standing wave fields. Ultrasound Med Biol 5(2): 167−179. DOI: 10.1016/0301-5629(79)90085-1. |
[151] | Dyson, M., Pond, J.B., Woodward, B., et al. (1974). The production of blood cell stasis and endothelial damage in the blood vessels of chick embryos treated with ultrasound in a stationary wave field. Ultrasound Med Biol 1(2): 133−148. DOI: 10.1016/0301-5629(74)90003-9. |
Yu B., Li Z., and Huang S. (2024). The application of ultrasound for skin and appendage regeneration: A comprehensive review. The Innovation Life 2(2): 100074. https://doi.org/10.59717/j.xinn-life.2024.100074 |
Schematic diagram of skin regeneration promoted by ultrasound.
Application of ultrasound for skin regeneration.
Ultrasound-responsive materials promote wound healing
Microenvironmental factors involved in sweat gland regeneration140
The future prospects of ultrasound