[1] | Senapati N., Brown H. E. and Semenov M. A. (2019). Raising genetic yield potential in high productive countries: Designing wheat ideotypes under climate change. Agric. For. Meteorol. 271:33−45. DOI:10.1016/j.agrformet.2019.02.025 |
[2] | Shen S., Ma S., Wu L. M., et al. (2023). Winners take all: Competition for carbon resource determines grain fate. Trends Plant Sci. 28:893−901. DOI:10.1016/j.tplants.2023.03.015 |
[3] | Fernie A. R., Bachem C. W. B., Helariutta Y., et al. (2020). Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nat. Plants 6:55−66. DOI:10.1038/s41477-020-0590-x |
[4] | Lou H., Li S., Shi Z., et al. (2024). Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell 188:530−549. DOI:10.1016/j.cell.2024.11.005 |
[5] | Luo M., Yang W., Bai L., et al. (2024). Artificial intelligence for life sciences: A comprehensive guide and future trends. The Innovation Life 2:100105. DOI:10.59717/j.xinn-life.2024.100105 |
Huang X. and Xu C. (2025). Reviving the charm of a century-old classic theory: Engineering source-sink relations to breed climate-smart crops. The Innovation Life 3:100125. https://doi.org/10.59717/j.xinn-life.2025.100125 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Schematic diagram of CROCS strategy for climate-smart crops