Avenues to boost CO2 electroreduction to C2+ products are summarized.
How the catalyst structure can be designed to enhance performance is discussed.
Opportunities in the electroreduction of CO2 into multi-carbon fuels are presented.
| [1] | https://gml.noaa.gov/ccgg/trends/global.html. |
| [2] | Liu, Y., Ye, H.-Z., Diederichsen, K.M., et al. (2020). Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11: 2278. DOI: 10.1038/s41467-020-16150-7. |
| [3] | Dietzenbacher, E., Cazcarro, I., and Arto, I. (2020). Towards a more effective climate policy on international trade. Nat. Commun. 11: 1130. DOI: 10.1038/s41467-020-14837-5. |
| [4] | Tao, H., Fan, Q., Ma, T., et al. (2020). Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 111: 100637. DOI: 10.1016/j.pmatsci.2020.100637. |
| [5] | Fan, Q., Hou, P., Choi, C., et al. (2020). Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 10: 1903068. DOI: 10.1002/aenm.201903068. |
| [6] | Shen, H., Peppel, T., Stunk, J., and Sun, Z. (2020). Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective. Sol. RRL 4: 1900546. DOI: 10.1002/solr.201900546. |
| [7] | García de Arquer, F.P., Dinh, C.-T., Ozden, A., et al. (2020). CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367: 661−666. DOI: 10.1126/science.aay4217. |
| [8] | Jia, M., Choi, C., Wu, T.-S., et al. (2018). Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem. Sci. 9: 8775−8780. DOI: 10.1039/C8SC03732A. |
| [9] | Li, L., Li, X., Sun, Y., and Xie, Y. (2022). Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 51: 1234−1252. DOI: 10.1039/D1CS00893E. |
| [10] | Teeter, T., and Rysselberghe, P.V. (1954). Reduction of carbon dioxide on mercury cathodes. J. Chem. Phys. 22: 759−760. |
| [11] | Hori, Y., Kikuchi, K., and Suzuki, S. (1985). Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14: 1695−1698. DOI: 10.1246/cl.1985.1695. |
| [12] | Tao, M., Fan, Q., Hengcong, T., et al. (2017). Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology 28: 472001. DOI: 10.1088/1361-6528/aa8f6f. |
| [13] | Weng, Z., Wu, Y., Wang, M., et al. (2018). Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9: 415. DOI: 10.1038/s41467-018-02819-7. |
| [14] | Zhang, H., Chang, X., Chen, J.G., et al. (2019). Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 10: 3340. DOI: 10.1038/s41467-019-11292-9. |
| [15] | Larrazábal, G.O., Shinagawa, T., Martín, A.J., and Pérez-Ramírez, J. (2018). Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nat. Commun. 9: 1477. DOI: 10.1038/s41467-018-03980-9. |
| [16] | Zhang, B., Zhang, J., Shi, J., et al. (2019). Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10: 2980. DOI: 10.1038/s41467-019-10854-1. |
| [17] | Chu, S., Hong, S., Masa, J., et al. (2019). Synergistic catalysis of CuO/In2O3 composites for highly selective electrochemical CO2 reduction to CO. Chem. Commun. 55: 12380−12383. DOI: 10.1039/C9CC05435A. |
| [18] | Han, Z., Changhyeok, C., Tao, H., et al. (2018). Tuning Pd-catalyzed electroreduction of CO2 to CO with reduced overpotential. Catal. Sci. Technol. 8: 3894−3900. DOI: 10.1039/C8CY01037D. |
| [19] | Gao, S., Lin, Y., Jiao, X., et al. (2016). Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529: 68−71. DOI: 10.1038/nature16455. |
| [20] | Xia, C., Zhu, P., Jiang, Q., et al. (2019). Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4: 776−785. DOI: 10.1038/s41560-019-0451-x. |
| [21] | Han, N., Wang, Y., Yang, H., et al. (2018). Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9: 1320. DOI: 10.1038/s41467-018-03712-z. |
| [22] | Bushuyev, O.S., De Luna, P., Dinh, C.T., et al. (2018). What should we make with CO2 and how can we make it. Joule 2: 825−832. DOI: 10.1016/j.joule.2017.09.003. |
| [23] | Gao, J., Zhang, H., Guo, X., et al. (2019). Selective C−C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141: 18704−18714. DOI: 10.1021/jacs.9b07415. |
| [24] | Luo, M., Wang, Z., Li, Y.C., et al. (2019). Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10: 5814. DOI: 10.1038/s41467-019-13833-8. |
| [25] | Fu, J., Zhu, W., Chen, Y., et al. (2019). Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem. Int. Ed. 58: 14100−14103. DOI: 10.1002/anie.201905318. |
| [26] | Kuhl, K.P., Hatsukade, T., Cave, E.R., et al. (2014). Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136: 14107−14113. DOI: 10.1021/ja505791r. |
| [27] | Stephanie, N., Erlend, B., Soren, B.S., et al. (2019). Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119: 7610−7672. DOI: 10.1021/acs.chemrev.8b00705. |
| [28] | Kuhl, K.P., Cave, E.R., Abram, D.N., and Jaramillo, T.F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5: 7050−7059. DOI: 10.1039/c2ee21234j. |
| [29] | Zhong, M., Tran, K., Min, Y., et al. (2020). Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581: 178−183. DOI: 10.1038/s41586-020-2242-8. |
| [30] | Zhuang, T.-T., Liang, Z.-Q., Seifitokaldani, A., et al. (2018). Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1: 421−428. DOI: 10.1038/s41929-018-0084-7. |
| [31] | Wang, X., Wang, Z., García de Arquer, F.P., et al. (2020). Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5: 478−486. DOI: 10.1038/s41560-020-0607-8. |
| [32] | Pokharel, U.R., Fronczek, F.R., and Maverick, A.W. (2014). Reduction of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 5: 5883. DOI: 10.1038/ncomms6883. |
| [33] | Wang, H., Tzeng, Y.K., Ji, Y., et al. (2020). Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15: 131−137. DOI: 10.1038/s41565-019-0603-y. |
| [34] | De, R., Gonglach, S., Paul, S., et al. (2020). Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex. Angew. Chem. Int. Ed. 59: 10527−10534. DOI: 10.1002/anie.202000601. |
| [35] | Zhao, K., Nie, X., Wang, H., et al. (2020). Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11: 2455. DOI: 10.1038/s41467-020-16381-8. |
| [36] | Daiyan, R., Saputera, W.H., Masood, H., et al. (2020). A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value added chemicals and fuel. Adv. Energy Mater. 10: 1902106. DOI: 10.1002/aenm.201902106. |
| [37] | Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al. (2019). Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4: 732−745. DOI: 10.1038/s41560-019-0450-y. |
| [38] | Sun, L., Reddu, V., Fisher, A.C., and Xin, W. (2020). Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 13: 374−403. DOI: 10.1039/C9EE03660A. |
| [39] | Francke, R., Schille, B., and Roemelt, M. (2018). Homogeneously catalyzed electroreduction of carbon dioxide—Methods, mechanisms, and catalysts. Chem. Rev. 118: 4631−4701. DOI: 10.1021/acs.chemrev.7b00459. |
| [40] | Li, M., Wang, H., Luo, W., et al. (2020). Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 32: e2001848. DOI: 10.1002/adma.202001848. |
| [41] | Yang, J., Li, W., Wang, D., and Li, Y. (2020). Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32: e2003300. DOI: 10.1002/adma.202003300. |
| [42] | Qu, Q., Ji, S., Chen, Y., et al. (2021). The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 12: 4201−4215. DOI: 10.1039/D0SC07040H. |
| [43] | Fan, Q., Zhang, M., Jia, M., et al. (2018). Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10: 280−301. DOI: 10.1016/j.mtener.2018.10.003. |
| [44] | Ma, T., Fan, Q., Li, X., et al. (2019). Graphene-based materials for electrochemical CO2 reduction. J. CO2 Util. 30, 168–182. |
| [45] | Wang, Y., Han, P., Lv, X., et al. (2018). Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2: 2551−2582. DOI: 10.1016/j.joule.2018.09.021. |
| [46] | Zhu, D.D., Liu, J.L., and Qiao, S.Z. (2016). Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28: 3423−3452. DOI: 10.1002/adma.201504766. |
| [47] | Zhang, L., Zhao, Z., and Gong, J. (2017). Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56: 11326−11353. DOI: 10.1002/anie.201612214. |
| [48] | Sun, Z., Ma, T., Tao, H., et al. (2017). Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3: 560−587. DOI: 10.1016/j.chempr.2017.09.009. |
| [49] | Pegis, M.L., Roberts, J.A.S., Wasylenko, D.J., et al. (2015). Standard reduction potentials for oxygen and carbon dioxide couples in acetonitrile and N,N-dimethylformamide. Inorg. Chem. 54: 11883−11888. DOI: 10.1021/acs.inorgchem.5b02136. |
| [50] | Costentin, C., Drouet, S., Robert, M., and Saveant, J.M. (2012). A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338: 90−94. DOI: 10.1126/science.1224581. |
| [51] | Centi, G., Perathoner, S., Win, G., and Gangeri, M. (2007). Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons. Green Chem. 9: 671−678. DOI: 10.1039/b615275a. |
| [52] | Lopes, P.P., Strmcnik, D., Tripkovic, D., et al. (2016). Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 6: 2536−2544. DOI: 10.1021/acscatal.5b02920. |
| [53] | Zheng, Y., Vasileff, A., Zhou, X., et al. (2019). Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141: 7646−7659. DOI: 10.1021/jacs.9b02124. |
| [54] | Hori, Y., Takahashi, R., Yoshinami, Y., and Murata, A. (1997). Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101: 7075−7081. DOI: 10.1021/jp970284i. |
| [55] | Montoya, J.H., Shi, C., Chan, K., and Nørskov, J.K. (2015). Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6: 2032−2037. DOI: 10.1021/acs.jpclett.5b00722. |
| [56] | Calle-Vallejo, F., and Koper, M.T.M. (2013). Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52: 7282−7285. DOI: 10.1002/anie.201301470. |
| [57] | Gao, D., Arán-Ais, R.M., Jeon, H.S., and Cuenya, B.R. (2019). Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2: 198−210. DOI: 10.1038/s41929-019-0235-5. |
| [58] | Garza, A., Bell, A.T., and Head-Gordon, M. (2018). On the mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8: 1490−1499. DOI: 10.1021/acscatal.7b03477. |
| [59] | Zhang, H., Li, J., Cheng, M.-J., et al. (2018). CO electroreduction: Current development and understanding of Cu-based catalyst. ACS Catal. 9: 49−65. |
| [60] | Nie, X., Esopi, M.R., Janik, M.J., and Asthagiri, A. (2013). Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 125: 2519−2522. DOI: 10.1002/ange.201208320. |
| [61] | Schouten, K.J.P., Kwon, Y., and van der Ham, C.J.M. (2011). A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2: 1902−1909. DOI: 10.1039/c1sc00277e. |
| [62] | Cheng, T., Xiao, H., and Goddard, W.A. (2017). Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. U. S. A. 114: 1795−1800. DOI: 10.1073/pnas.1612106114. |
| [63] | Garza, A.J., Bell, A.T., and Head-Gordon, M. (2018). Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8: 1490−1499. DOI: 10.1021/acscatal.7b03477. |
| [64] | Kas, R., Kortlever, R., Milbrat, A., et al. (2014). Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16: 12194−12201. DOI: 10.1039/C4CP01520G. |
| [65] | Genovese, C., Ampelli, C., Perathoner, S., and Centi, G. (2017). Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 19: 2406−2415. |
| [66] | Sun, X., Zhu, Q., Kang, X., et al. (2017). Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. Green Chem. 19: 2086−2091. DOI: 10.1039/C7GC00503B. |
| [67] | Chen, C.S., Wan, J.H., and Yeo, B.S. (2015). Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. J. Phys. Chem. C 119: 26875−26882. DOI: 10.1021/acs.jpcc.5b09144. |
| [68] | Li, C.W., and Kanan, M.W. (2012). CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134: 7231−7234. DOI: 10.1021/ja3010978. |
| [69] | Sen, S., Dan, L., and Palmore, G.T.R. (2014). Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4: 3091−3095. DOI: 10.1021/cs500522g. |
| [70] | Handoko, A.D., Chan, K.W., and Yeo, B.S. (2017). –CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Lett. 2: 2103−2109. DOI: 10.1021/acsenergylett.7b00514. |
| [71] | Zhuang, T.-T., Pang, Y., Liang, Z.-Q., et al. (2018). Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1: 946−951. DOI: 10.1038/s41929-018-0168-4. |
| [72] | Clark, E.L., and Bell, A.T. (2018). Direct observation of the local reaction environment during the electrochemical reduction of CO2. J. Am. Chem. Soc. 140: 7012−7020. DOI: 10.1021/jacs.8b04058. |
| [73] | Gao, J., Bahmanpour, A., Krocher, O., et al. (2023). Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nat. Chem. 15: 705−713. DOI: 10.1038/s41557-023-01163-8. |
| [74] | Zheng, X., Ji, Y., Tang, J., et al. (2018). Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2: 55−61. DOI: 10.1038/s41929-018-0200-8. |
| [75] | Yang, F., Elnabawy, A.O., Schimmenti, R., et al. (2020). Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 11: 1088. DOI: 10.1038/s41467-020-14914-9. |
| [76] | Wang, Y.-R., Huang, Q., He, C.-T., et al. (2018). Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 9: 4466. DOI: 10.1038/s41467-018-06938-z. |
| [77] | Li, J., Kuang, Y., Meng, Y., et al. (2020). Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J. Am. Chem. Soc. 142: 7276−7282. DOI: 10.1021/jacs.0c00122. |
| [78] | Wang, X., Xu, A., Li, F., et al. (2020). Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 142: 3525−3531. DOI: 10.1021/jacs.9b12445. |
| [79] | Wang, Y., Liu, X., Han, X., et al. (2020). Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat. Commun. 11: 2531. DOI: 10.1038/s41467-020-16227-3. |
| [80] | Wu, Y., Jiang, Z., Lu, X., et al. (2019). Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575: 639−642. DOI: 10.1038/s41586-019-1760-8. |
| [81] | Wang, Y., Wang, Z., Dinh, C.-T., et al. (2019). Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3: 98−106. DOI: 10.1038/s41929-019-0397-1. |
| [82] | Li, F., Thevenon, A., Rosas-Hernandez, A., et al. (2020). Molecular tuning of CO2-to-ethylene conversion. Nature 577: 509−513. DOI: 10.1038/s41586-019-1782-2. |
| [83] | Vasileff, A., Zhu, Y., Zhi, X., et al. (2020). Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate. Angew. Chem. Int. Ed. 132: 19817−196821. DOI: 10.1002/ange.202004846. |
| [84] | Pan, F., and Yang, Y. (2020). Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13: 2275−2309. DOI: 10.1039/D0EE00900H. |
| [85] | Shi, Y., Lyu, Z., Zhao, M., et al. (2021). Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121: 649−735. DOI: 10.1021/acs.chemrev.0c00454. |
| [86] | Yin, J., Wang, J., Ma, Y., et al. (2020). Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater. Lett. 3: 121−133. |
| [87] | Wang, Y., Liu, H., Yu, J., et al. (2019). Copper oxide derived nanostructured self-supporting Cu electrodes for electrochemical reduction of carbon dioxide. Electrochim. Acta 328: 135083. DOI: 10.1016/j.electacta.2019.135083. |
| [88] | Li, Q., Zhu, W., Fu, J., et al. (2016). Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24: 1−9. DOI: 10.1016/j.nanoen.2016.03.024. |
| [89] | Lei, F., Liu, W., Sun, Y., et al. (2016). Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7: 12697. DOI: 10.1038/ncomms12697. |
| [90] | An, B., Zhang, J., Cheng, K., et al. (2017). Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 139: 3834−3840. DOI: 10.1021/jacs.7b00058. |
| [91] | Shifa, T.A., and Vomiero, A. (2019). Confined catalysis: Progress and prospects in energy conversion. Adv. Energy Mater. 9: 1902307. DOI: 10.1002/aenm.201902307. |
| [92] | Petrosko, S.H., Johnson, R., White, H., and Mirkin, C.A. (2016). Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc. 138: 7443−7445. DOI: 10.1021/jacs.6b05393. |
| [93] | Knossalla, J., Paciok, P., Gohl, D., et al. (2018). Shape-controlled nanoparticles in pore-confined space. J. Am. Chem. Soc. 140: 15684−15689. DOI: 10.1021/jacs.8b07868. |
| [94] | O'Mara, P.B., Wilde, P., Benedetti, T.M., et al. (2019). Cascade reactions in nanozymes: Spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 141: 14093−14097. DOI: 10.1021/jacs.9b07310. |
| [95] | Yun, H., Handoko, A.D., Hirunsit, P., and Yeo, B.S. (2017). Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7: 1749−1756. DOI: 10.1021/acscatal.6b03147. |
| [96] | Gao, Y., Wu, Q., Liang, X., et al. (2020). Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. Adv. Sci. 7: 1902820. DOI: 10.1002/advs.201902820. |
| [97] | Chu, S., Yan, X., Choi, C., et al. (2020). Stabilization of Cu+ by tuning a CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 22: 6540−6546. DOI: 10.1039/D0GC02279A. |
| [98] | Li, X., Li, L., Xia, Q., et al. (2022). Selective electroreduction of CO2 and CO to C2H4 by synergistically tuning nanocavities and the surface charge of copper oxide. ACS Sustainable Chem. Eng. 10: 6466−6475. DOI: 10.1021/acssuschemeng.2c01600. |
| [99] | Wang, D., Li, L., Xia, Q., et al. (2022). Boosting CO2 electroreduction to multicarbon products via tuning of the copper surface charge. ACS Sustainable Chem. Eng. 10: 11451−11458. DOI: 10.1021/acssuschemeng.2c03963. |
| [100] | Ren, D., Deng, Y., Handoko, A.D., et al. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5: 2814−2821. DOI: 10.1021/cs502128q. |
| [101] | Peterson, A.A., Abild-Pedersen, F., Studt, F., and Nørskov, J.K. (2010). How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3: 1311−1315. DOI: 10.1039/c0ee00071j. |
| [102] | Garza, A.J., Bell, A.T., and Head-Gordon, M. (2018). Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper. J. Phys. Chem. Lett. 9: 601−606. DOI: 10.1021/acs.jpclett.7b03180. |
| [103] | Shah, A.H., Wang, Y., Hussain, S., et al. (2020). New aspects of C2 selectivity in electrochemical CO2 reduction over oxide-derived copper. Phys. Chem. Chem. Phys. 22: 2046−2053. DOI: 10.1039/C9CP06009J. |
| [104] | Favaro, M., Xiao, H., Cheng, T., et al. (2017). Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. U. S. A. 114: 6706−6711. DOI: 10.1073/pnas.1701405114. |
| [105] | Mistry, H., Varela, A.S., Bonifacio, C.S., et al. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7: 12123. DOI: 10.1038/ncomms12123. |
| [106] | Han, Z., Choi, C., Hong, S., et al. (2019). Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction. Appl. Catal., B 257: 117896. DOI: 10.1016/j.apcatb.2019.117896. |
| [107] | Wang, G., Ling, Y., Wang, H., et al. (2012). Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 5: 6180−6187. DOI: 10.1039/c2ee03158b. |
| [108] | Fang, G., Zhu, C., Chen, M., et al. (2019). Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29: 1808375. DOI: 10.1002/adfm.201808375. |
| [109] | Ye, L., Zhang, M., Huang, P., et al. (2017). Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8: 14785. DOI: 10.1038/ncomms14785. |
| [110] | Zhou, H., Zhao, Y., Xu, J., et al. (2020). Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 11: 335. DOI: 10.1038/s41467-019-14223-w. |
| [111] | Ding, X., Peng, F., Zhou, J., et al. (2019). Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 10: 41. DOI: 10.1038/s41467-018-07835-1. |
| [112] | Jia, Y., Zhang, L., Zhuang, L., et al. (2019). Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2: 688−695. DOI: 10.1038/s41929-019-0297-4. |
| [113] | Lu, J., Lei, Y., Lau, K.C., et al. (2013). A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4: 2383. DOI: 10.1038/ncomms3383. |
| [114] | Xue, L., Li, Y., Liu, X., et al. (2018). Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9: 3819. DOI: 10.1038/s41467-018-06279-x. |
| [115] | Wan, S., Qi, J., Zhang, W., et al. (2017). Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29: 1700286. DOI: 10.1002/adma.201700286. |
| [116] | Dai, L., Xue, Y., Qu, L., et al. (2015). Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115: 4823−4892. DOI: 10.1021/cr5003563. |
| [117] | Duan, X., Xu, J., Wei, Z., et al. (2017). Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 1701784. |
| [118] | Bell, D., Rall, D., Großeheide, M., et al. (2020). Tubular hollow fibre electrodes for CO2 reduction made from copper aluminum alloy with drastically increased intrinsic porosity. Electrochem. Commun. 111: 106645. DOI: 10.1016/j.elecom.2019.106645. |
| [119] | Tao, H., Sun, X., Back, S., et al. (2017). Doping palladium with tellurium for highly selective electrocatalytic reduction of aqueous CO2 to CO. Chem. Sci. 9: 483−487. |
| [120] | Sun, Y.N., Zhang, M.L., Zhao, L., et al. (2019). A N, P dual-doped carbon with high porosity as an advanced metal-free oxygen reduction catalyst. Adv. Mater. Interfaces 6: 1900592. DOI: 10.1002/admi.201900592. |
| [121] | Wang, Q., Lei, Y., Wang, D., and Li, Y. (2019). Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12: 1730−1750. DOI: 10.1039/C8EE03781G. |
| [122] | Zhou, Y., Che, F., Liu, M., et al. (2018). Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10: 974−980. DOI: 10.1038/s41557-018-0092-x. |
| [123] | Ma, W., Xie, S., Liu, T., et al. (2020). Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3: 478−487. DOI: 10.1038/s41929-020-0450-0. |
| [124] | Kim, D., Resasco, J., Yu, Y., et al. (2014). Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5: 4948. DOI: 10.1038/ncomms5948. |
| [125] | Kim, D., Xie, C., Becknell, N., et al. (2017). Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139: 8329−8336. DOI: 10.1021/jacs.7b03516. |
| [126] | Zhang, S., Kang, P., Bakir, M., et al. (2015). Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl. Acad. Sci. U. S. A. 112: 15809−15814. DOI: 10.1073/pnas.1522496112. |
| [127] | Ren, D., Ang, B.S.-H., and Yeo, B.S. (2016). Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6: 8239−8247. DOI: 10.1021/acscatal.6b02162. |
| [128] | Ma, S., Sadakiyo, M., Heima, M., et al. (2017). Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139: 47−50. DOI: 10.1021/jacs.6b10740. |
| [129] | David, W., Sarah, L., Franois, O., et al. (2019). Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18: 1222−1227. DOI: 10.1038/s41563-019-0445-x. |
| [130] | Huang, W., Ma, X.Y., Wang, H., et al. (2017). Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 29: 1703057. DOI: 10.1002/adma.201703057. |
| [131] | Wang, Y., Chen, L., Yu, X., et al. (2017). Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets. Adv. Energy Mater. 7: 1601390. DOI: 10.1002/aenm.201601390. |
| [132] | Xiao, H., Cheng, T., and Goddard III, W.A. (2017). Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139: 130−136. DOI: 10.1021/jacs.6b06846. |
| [133] | Han, H., Noh, Y., Kim, Y., et al. (2020). Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 22: 71−84. DOI: 10.1039/C9GC03088C. |
| [134] | Lee, C.W., Shin, S.-J., Jung, H., et al. (2019). Metal-oxide interfaces for selective electrochemical C–C coupling reactions. ACS Energy Lett. 4: 2241−2248. DOI: 10.1021/acsenergylett.9b01721. |
| [135] | Bai, X., Li, Q., Shi, L., et al. (2020). Hybrid Cu0 and Cux+ as atomic interfaces promote high-selectivity conversion of CO2 to C2H5OH at low potential. Small 16: 1901981. DOI: 10.1002/smll.201901981. |
| [136] | Liu, X., Schlexer, P., Xiao, J., et al. (2019). pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10: 32. DOI: 10.1038/s41467-018-07970-9. |
| [137] | Dinh, C.-T., Burdyny, T., Kibria, M.G., et al. (2018). CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360: 783−787. DOI: 10.1126/science.aas9100. |
| [138] | Stefan, R., Ezra, L.C., Joaquin, R., et al. (2019). Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12: 3001−3014. DOI: 10.1039/C9EE01341E. |
| [139] | Murata, A., Hori, Y. (1991). Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64: 123−127. DOI: 10.1246/bcsj.64.123. |
| [140] | Frumkin, A.N. (1959). Influence of cation adsorption on the kinetics of electrode processes. Trans. Faraday Soc. 55: 156. DOI: 10.1039/tf9595500156. |
| [141] | Mills, J.N., McCrum, I.T., and Janik, M.J. (2014). Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys. Chem. Chem. Phys. 16: 13699−13707. DOI: 10.1039/C4CP00760C. |
| [142] | Huang, J.E., Li, F., Ozden, A., et al. (2021). CO2 electrolysis to multicarbon products in strong acid. Science 372: 1074−1078. DOI: 10.1126/science.abg6582. |
| [143] | Hori, Y., Murata, A., Takahashi, R.Y., et al. (1988). Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. 17−19. |
| [144] | Li, W., Li, L., Xia, Q., et al. (2022). Lowering C−C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Appl. Catal. B Environ. 318: 121823. DOI: 10.1016/j.apcatb.2022.121823. |
| [145] | Gennaro, A., Isse, A.A., Severin, M.-G., et al. (1996). Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J. Chem. Soc. Faraday Trans. 92: 3963−3968. DOI: 10.1039/FT9969203963. |
| [146] | Cheng, Y., Hou, P., Pan, H., et al. (2020). Selective electrocatalytic reduction of carbon dioxide to oxalate by lead tin oxides with low overpotential. Appl. Catal. B Environ. 272: 118954. DOI: 10.1016/j.apcatb.2020.118954. |
| [147] | Rudolph, M., Dautz, S., and Jäger, E.-G. (2000). Macrocyclic [N42-] coordinated nickel complexes as catalysts for the formation of oxalate by electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 122: 10821−10830. DOI: 10.1021/ja001254n. |
| [148] | Jiang, C., Zeng, S., Ma, X., et al. (2022). Aprotic phosphonium-based ionic liquid as electrolyte for high CO2 electroreduction to oxalate. AICHE J. 69: e17859. |
| [149] | Wang, X., de Araújo, J.F., Ju, W., et al. (2019). Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14: 1063−1070. DOI: 10.1038/s41565-019-0551-6. |
| [150] | Luc, W., Ko, B.H., Kattel, S., et al. (2019). SO2-induced selectivity change in CO2 electroreduction. J. Am. Chem. Soc. 141: 9902−9909. DOI: 10.1021/jacs.9b03215. |
| [151] | Melchaeva, O., Voyame, P., Bassetto, V.C., et al. (2017). Electrochemical reduction of protic supercritical CO2 on copper electrodes. ChemSusChem 10: 3660−3670. DOI: 10.1002/cssc.201701205. |
| Li X., Chen Y., Zhan X., et al., (2023). Strategies for enhancing electrochemical CO2 reduction to multi-carbon fuels on copper. The Innovation Materials 1(1), 100014. https://doi.org/10.59717/j.xinn-mater.2023.100014 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Volcano plot of the CO binding strength versus partial current density for ECR at −0.8 V.
Possible C2 and C3 formation routes starting from *CO on Cu.
Mechanistic understanding of Cu-based electrocatalysts for ECR and FE toward C2+ formation
Formation of C2H4 on Cu2O with
Construction and characterization of Cu2S-based ECR electrocatalysts
ECR FEs of
Two-dimensional
Depictions of
Illustration of hybridization of C atom in reaction intermediates and mechanistic understanding of ECR on Td-Cu4@g-C3N4