Bipolar near-ultraviolet emitters with [2.2]paracyclophane linker show circularly polarized emission.
[2.2]Paracyclophane linker restrains charge transfer between electron-donor and acceptor in near-ultraviolet emitters.
Highly efficient circularly polarized OLEDs emit near-ultraviolet electroluminescence.
[1] | Lee, J., Aizawa, N., Yasuda, T. (2018) Molecular engineering of phosphacycle-based thermally activated delayed fluorescence materials for deep-blue OLEDs. J. Mater. Chem. C 6 : 3578-3583. DOI: 10.1039/C7TC05709A. |
[2] | Lee, D. R., Kim, B. S., Lee, C. W., et al. (2015). Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 7: 9625-9634. DOI: 10.1021/acsami.5b01220. |
[3] | Lee, I., Lee, J. Y. (2016). Molecular design of deep blue fluorescent emitters with 20% external quantum efficiency and narrow emission spectrum. Org. Electron. 29: 160-164. DOI: 10.1016/j.orgel.2015.12.001. |
[4] | Chao, T. C., Lin, Y. T., Yang, C. Y., et al. (2005). Highly efficient UV organic light-emitting devices based on bi(9,9-diarylfluorene)s. Adv. Mater. 17: 992-996. DOI: 10.1002/adma.200401476. |
[5] | Etori, H., in, X. L., Yasuda, T., et al. (2006). Spirobifluorene derivatives for ultraviolet organic light-emitting diodes. Synth. Met. 156: 1090-1096. DOI: 10.1016/j.synthmet.2006.07.003. |
[6] | Etori, H., Yasuda, T., Jin, X. L., et al. (2007). Design of multilayer structure for UV organic light-emitting diodes based on 2-(2-Naphthyl)-9,9'-spirobifluorene. Jpn. J. Appl. Phys. 46: 5071-5075. DOI: 10.1143/JJAP.46.5071. |
[7] | Wang, S., Qiao, M., Ye, Z., et al. (2018). Efficient deep-blue electrofluorescence with an external quantum efficiency beyond 10. iScience. 9: 532-541. DOI: 10.1016/j.isci.2018.10.026. |
[8] | Chen, S., Zhang, C., Xu, H. (2022). Achieving host-free near-ultraviolet electroluminescence via electronic state engineering with phosphine oxide. Chem. Eng. J. 429: 132327. DOI: 10.1016/j.cej.2021.132327. |
[9] | Liu, H., Bai, Q., Yao, L., et al. (2015). Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor–acceptor molecule. Chem. Sci. 6: 3797-3804. DOI: 10.1039/C5SC01131K. |
[10] | Zhong, D., Yang, X., Deng, X., et al. (2023). Achieving highly efficient near-ultraviolet emitters via optimizing molecular configuration by the intramolecular-locked donor and acceptor. Chem. Eng. J. 452: 139480. DOI: 10.1016/j.cej.2022.139480. |
[11] | You, F., Mo, B., Liu, L., et al. (2016). Remarkable improvement in electroluminescence benefited from appropriate electron injection and transporting in ultraviolet organic light-emitting diode. Opt. Laser Technol. 82: 199-202. DOI: 10.1016/j.optlastec.2016.03.015. |
[12] | Zhang, Y., Li, W., Xu, K., et al. (2019). Sol-gel processed vanadium oxide as efficient hole injection layer in visible and ultraviolet organic light-emitting diodes. Opt. Laser Technol. 113: 239-245. DOI: 10.1016/j.optlastec.2018.12.031. |
[13] | Liu, B., Zhu, Z. L., Zhao, J. W., et al. (2018). Ternary acceptor-donor-acceptor asymmetrical phenanthroimidazole molecule for highly efficient near-ultraviolet electroluminescence with external quantum efficiency (EQE) >4. Chem. Eur. J. 24: 15566-15571. DOI: 10.1002/chem.201801822. |
[14] | Ning, W., Wang, H., Gong, S., et al. (2022). Simple sulfone-bridged heterohelicene structure realizes ultraviolet narrowband thermally activated delayed fluorescence, circularly polarized luminescence, and room temperature phosphorescence. Sci. China Chem. 65: 1715-1719. DOI: 10.1007/s11426-022-1318-9. |
[15] | Lee, D. R., Hwang, S. H., Jeon, S. K., et al. (2015). Benzofurocarbazole and benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices. Chem. Commun. 51: 8105-8107. DOI: 10.1039/C5CC01940K. |
[16] | Yang, G. X., Chen, Y., Zhu, J. J., et al. (2021). Rational design of pyridine-containing emissive materials for high performance deep-blue organic light-emitting diodes with CIEy ~ 0.06. Dyes Pigm. 187 : 109088. DOI: 10.1016/j.dyepig.2020.109088. |
[17] | Chen, S. and Xu, H. (2021). Electroluminescent materials toward near ultraviolet region. Chem. Soc. Rev. 50: 8639-−8668. DOI: 10.1039/D0CS01580F. |
[18] | Chen, M., Liao, Y., Lin, Y., et al. (2020). Progress on ultraviolet organic electroluminescence and lasing. J. Mater. Chem. C 8: 14665-−14694. DOI: 10.1039/D0TC03631E. |
[19] | Etori, H., Jin, X. L., Yasuda, T., et al. (2006). Spirobifluorene derivatives for ultraviolet organic light-emitting diodes. Synth. Met. 156: 1090-1096. DOI: 10.1016/j.synthmet.2006.07.003. |
[20] | Ban, X., Xu, H., Yuan, G., et al. (2014). Spirobifluorene/sulfone hybrid: highly efficient solution-processable material for UV–violet electrofluorescence, blue and green phosphorescent OLEDs. Org. Electron. 15: 1678-1686. DOI: 10.1016/j.orgel.2014.03.035. |
[21] | Lian, J., Niu, F., Liu, Y., et al. (2011). Efficient near ultraviolet organic light-emitting devices based on star-configured carbazole emitters. Curr. Appl. Phys. 11: 295-297. DOI: 10.1016/j.cap.2010.07.026. |
[22] | Ye, C. Q., Zhou, L. W., Fan, C. B., et al. (2019). Aggregation-induced ultraviolet emission enhancement and the electroluminescence based on new phenanthrene derivatives. ChemistrySelect 4: 2044-2052. DOI: 10.1002/slct.201803048. |
[23] | Gao, Z., Liu, Y., Wang, Z., et al. (2013).High-efficiency violet-light-emitting materials based on phenanthro[9,10-d]imidazole. Chem. Eur. J.19: 2602-2605. DOI: 10.1002/chem.201203335. |
[24] | Zhong, D., Yu, Y., Yue, L., et al. (2021). Optimizing molecular rigidity and thermally activated delayed fluorescence (TADF) behavior of phosphoryl center π-conjugated heterocycles-based emitters by tuning chemical features of the tether groups. Chem. Eng. J. 413:127445. DOI: 10.1016/j.cej.2020.127445. |
[25] | Zhong, D., Yu, Y., Song, D.,et al. (2019). Organic emitters with a rigid 9-phenyl-9-phosphafluorene oxide moiety as the acceptor and their thermally activated delayed fluorescence behavior. ACS Appl. Mater. Interfaces 11: 27112-−27124. DOI: 10.1021/acsami.9b05950. |
[26] | Zhang, D. W., Teng, J. M., Wang, Y. F., et al. (2021). D–π*–A type planar chiral TADF materials for efficient circularly polarized electroluminescence. Mater. Horizons 8: 3417-3423. DOI: 10.1039/D1MH01404H. |
[27] | Hassan, Z., Spuling, E., Knoll, et al. (2018). Planar chiral [2.2] paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem. Soc. Rev. 47 : 6947-6963. DOI: 10.1039/C7CS00803A. |
[28] | Weiland, K. J., Brandl, T., Atz, K., et al. (2019). Mechanical stabilization of helical chirality in a macrocyclic oligothiophene. J. Am. Chem. Soc. 141: 2104-2110. DOI: 10.1021/jacs.8b11797. |
[29] | Morisaki, Y., Gon, M., Sasamori, T. et al. (2014). Planar chiral tetrasubstituted [2.2] paracyclophane: optical resolution and functionalization. J. Am. Chem. Soc. 136 : 3350-3353. DOI: 10.1021/ja412197j. |
[30] | Zhang, D. W., Li, M., and Chen, C. F. (2020). Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49: 1331-−1343. DOI: 10.1039/C9CS00680J. |
[31] | Frederic, L., Desmarchelier, A., Favereau, L., et al. (2021). Designs and applications of circularly polarized thermally activated delayed fluorescence molecules. Adv. Funct. Mater. 31: 2010281. DOI: 10.1002/adfm.202010281. |
[32] | Brandt, J. R., Salerno, F., Fuchter, M. J. (2017). The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1: 0045. DOI: 10.1038/s41570-017-0045. |
[33] | Han D., Yang X., and Han J. (2020). Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization. Nat. Commun. 11: 5659. DOI: 10.1038/s41467-020-19479-1. |
[34] | Liu S., Li J., and Yan H. (2023) Near-ultraviolet emitters based on carbazole-imidazole for highly efficient solution-processed organic light-emitting diodes. Chem. Eng. J. 451 : 138881. DOI: 10.1016/j.cej.2022.138881. |
Sun Y., Wang H., Liu S., et al., (2023). Paracyclophane-based bipolar near-ultraviolet emitters showing advanced circularly polarized luminescent properties. The Innovation Materials 1(2), 100028. https://doi.org/10.59717/j.xinn-mater.2023.100028 |
Synthesis of the PCP-based racemic emitters.
Absorption behavior and the corresponding key front molecular orbitals
PL spectra in different medium and the natural transion orbitals
CD spectra for the enantiomers of rac-TzDN(A) and rac -PsDN (B) and CPL spectra for the enantiomers of rac -TzDN (C) and rac -PsDN(D).
EL spectra for the optimized OLEDs based on the PCP-based emitters with bipolar feature at ca. 8 V.
Circularly polarized electroluminescence (CPEL) spectra at ca. 10 V.
Current density-voltage-luminance (J-V-L) characteristics for the OLEDs based on the chiral enantiomers.
Relationship between EL efficiencies and luminance for the the OLEDs based on the chiral enantiomers.