An ultrathin nanocellulosic ion redistributor is built to homogenize the ion flux.
Long-cycle life, superior rate capability, and high reversibility are realized.
Transforming biomass waste into materials for energy storage is a promising route.
[1] | Larcher, D., and Tarascon, J.M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19−29. |
[2] | Bin, D., Du, Y., Yang, B., et al. (2022). Progress of phosphate-based polyanion cathodes for aqueous rechargeable zinc batteries. Adv. Funct. Mater. 33, 2211765. |
[3] | Jia, X., Liu, C., Neale, Z.G., et al. (2020). Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795−7866. |
[4] | Armand, M., and Tarascon, J.M. (2008). Building better batteries. Nature 451, 652−657. |
[5] | Zhao, M., Lv, Y., Zhao, S., et al. (2022). Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv. Mater. 34, 2206239. |
[6] | Yan, J., Ang, E.H., Yang, Y., et al. (2021). High-voltage zinc-ion batteries: design strategies and challenges. Adv. Funct. Mater. 31, 2010213. |
[7] | Yang, J.L., Li, J., Zhao, J.W., et al. (2022). Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34, 2202382. |
[8] | Peng, Z., Li, Y., Ruan, P., et al. (2023). Metal-organic frameworks and beyond: The road toward zinc-based batteries. Coord. Chem. Rev. 488, 215190. |
[9] | Zhou, W., Chen, M., Tian, Q., et al. (2022). Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44, 57−65. |
[10] | Zhang, Q., Luan, J., Tang, Y., et al. (2020). Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59, 13180−13191. |
[11] | Huang, C., Zhao, X., Liu, S., et al. (2021). Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33, 2100445. |
[12] | Yu, L., Huang, J., Wang, S., et al. (2023). Ionic liquid "water pocket" for stable and environment-adaptable aqueous zinc metal batteries. Adv. Mater. 35, 2210789. |
[13] | Xie, X., Li, J., Xing, Z., et al. (2023). Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281. |
[14] | Kang, Z., Wu, C., Dong, L., et al. (2019). 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 7, 3364−3371. |
[15] | Wang, Z., Huang, J., Guo, Z., et al. (2019). A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3, 1289−1300. |
[16] | Chen, T., Wang, Y., Yang, Y., et al. (2021). Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv. Funct. Mater. 31, 2101607. |
[17] | Xiong, P., Zhang, Y., Zhang, J., et al. (2022). Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 4, 100076. |
[18] | Xiong, P., Kang, Y., Yuan, H., et al. (2022). Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl. Phys. Rev. 9, 011401. |
[19] | Yao, L., Hou, C., Liu, M., et al. (2022). Ultra-stable Zn anode enabled by fiber-directed ion migration using mass-producible separator. Adv. Funct. Mater. 33, 2209301. |
[20] | Song, Y., Ruan, P., Mao, C., et al. (2022). Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218. |
[21] | Zhao, C.Z., Chen, P.Y., Zhang, R., et al. (2018). An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446. |
[22] | Ye, Y., Yu, L., Lizundia, E., et al. (2023). Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem. Rev. 123, 9204−9264. |
[23] | Yu, L., Gao, T., Mi, R., et al. (2023). 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 16, 7609−7617. |
[24] | Zhu, Y., Cao, K., Cheng, W., et al. (2021). A non-Newtonian fluidic cellulose-modified glass microfiber separator for flexible lithium-ion batteries. EcoMat. 3, e12126. |
[25] | Zhao, D., Zhu, Y., Cheng, W., et al. (2021). Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, 2000619. |
[26] | Zhang, F., Lan, X., Peng, H., et al. (2020). A “trojan horse” camouflage strategy for high-performance cellulose paper and separators. Adv. Funct. Mater. 30, 2002169. |
[27] | Yang, F., Zuo, X., Yang, H., et al. (2022). Ionic liquid-assisted production of high-porosity biochar with more surface functional groups: Taking cellulose as attacking target. Chem. Eng. J. 433, 133811. |
[28] | Kaya, H., Ngo, D., Gin, S., and Kim, S.H. (2020). Spectral changes in Si–O–Si stretching band of porous glass network upon ingress of water. J. Non-Cryst. Solids 527, 119722. |
[29] | Qin, Y., Liu, P., Zhang, Q., et al. (2020). Advanced filter membrane separator for aqueous zinc-ion batteries. Small 16, 2003106. |
[30] | Huang, X., He, R., Li, M., et al. (2020). Functionalized separator for next-generation batteries. Mater. Today 41, 143−155. |
[31] | Liu, Y., Liu, S., Xie, X., et al. (2022). A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat. 5, e12374. |
[32] | Zheng, J., Zhao, Q., Tang, T., et al. (2019). Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645−648. |
[33] | Cao, J., Zhang, D., Gu, C., et al. (2021). Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 89, 106322. |
[34] | Higashi, S., Lee, S.W., Lee, J.S., et al. (2016). Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801. |
[35] | Li, C., Shyamsunder, A., Hoane, A.G., et al. (2022). Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6, 1103−1120. |
[36] | Xu, X., Su, H., Zhang, J., et al. (2022). Sulfamate-derived solid electrolyte interphase for reversible aqueous zinc battery. ACS Energy Lett. 7, 4459−4468. |
[37] | Zhao, Y., Ouyang, M., Wang, Y., et al. (2022). Biomimetic lipid-bilayer anode protection for long lifetime aqueous zinc-metal batteries. Adv. Funct. Mater. 32, 2203019. |
[38] | Hao, J.N., Yuan, L.B., Ye, C., et al. (2021). Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366−7375. |
[39] | Hao, J., Li, X., Zhang, S., et al. (2020). Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30, 2001263. |
[40] | Cao, J., Zhang, D., Gu, C., et al. (2021). Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11, 2101299. |
[41] | Zhou, S., Wang, Y., Lu, H., et al. (2021). Anti-corrosive and zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv. Funct. Mater. 31, 2104361. |
[42] | Liang, P., Yi, J., Liu, X., et al. (2020). Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30, 1908528. |
[43] | Zhang, Q., Ma, Y., Lu, Y., et al. (2022). Halogenated zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144, 18435−18443. |
[44] | Naveed, A., Yang, H., Shao, Y., et al. (2019). A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv. Mater. 31, 1900668. |
[45] | Xiong, P., Kang, Y., Yao, N., et al. (2023). Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8, 1613−1625. |
[46] | Xiong, P., Lin, C., Wei, Y., et al. (2023). Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 8, 2718−2727. |
Huang J., Yu L., Wang S., et al., (2023). An ultrathin nanocellulosic ion redistributor for long-life zinc anode. The Innovation Materials 1(2), 100029. https://doi.org/10.59717/j.xinn-mater.2023.100029 |
Construction process and the function of a U-CNF ion redistributor in AZBs
Characterization of the morphology and property changes of glass fiber with the introduction of U-CNF
Cyclability of Zn anode with and without a U-CNF ion redistributor Cycling performances of Zn symmetrical cells at
Experimental and computational investigations of the influence of U-CNF ion redistributor on the Zn deposition chemistry
Evaluation of practical application prospect of the U-CNF ion redistributor