An ultrathin nanocellulosic ion redistributor is built to homogenize the ion flux.
Long-cycle life, superior rate capability, and high reversibility are realized.
Transforming biomass waste into materials for energy storage is a promising route.
[1] | Larcher, D., and Tarascon, J.M. (2015). Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7: 19−29. DOI: 10.1038/nchem.2085. |
[2] | Bin, D., Du, Y., Yang, B., et al. (2022). Progress of phosphate-based polyanion cathodes for aqueous rechargeable zinc batteries. Adv. Funct. Mater. 33: 2211765. DOI: 10.1002/adfm.202211765. |
[3] | Jia, X., Liu, C., Neale, Z.G., et al. (2020). Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120: 7795−7866. DOI: 10.1021/acs.chemrev.9b00628. |
[4] | Armand, M., and Tarascon, J.M. (2008). Building better batteries. Nature 451: 652−657. DOI: 10.1038/451652a. |
[5] | Zhao, M., Lv, Y., Zhao, S., et al. (2022). Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv. Mater. 34: 2206239. DOI: 10.1002/adma.202206239. |
[6] | Yan, J., Ang, E.H., Yang, Y., et al. (2021). High-voltage zinc-ion batteries: design strategies and challenges. Adv. Funct. Mater. 31: 2010213. DOI: 10.1002/adfm.202010213. |
[7] | Yang, J.L., Li, J., Zhao, J.W., et al. (2022). Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34: 2202382. DOI: 10.1002/adma.202202382. |
[8] | Peng, Z., Li, Y., Ruan, P., et al. (2023). Metal-organic frameworks and beyond: The road toward zinc-based batteries. Coord. Chem. Rev. 488: 215190. DOI: 10.1016/j.ccr.2023.215190. |
[9] | Zhou, W., Chen, M., Tian, Q., et al. (2022). Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44: 57−65. DOI: 10.1016/j.ensm.2021.10.002. |
[10] | Zhang, Q., Luan, J., Tang, Y., et al. (2020). Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59: 13180−13191. DOI: 10.1002/anie.202000162. |
[11] | Huang, C., Zhao, X., Liu, S., et al. (2021). Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33: 2100445. DOI: 10.1002/adma.202100445. |
[12] | Yu, L., Huang, J., Wang, S., et al. (2023). Ionic liquid "water pocket" for stable and environment-adaptable aqueous zinc metal batteries. Adv. Mater. 35: 2210789. DOI: 10.1002/adma.202210789. |
[13] | Xie, X., Li, J., Xing, Z., et al. (2023). Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10: nwac281. DOI: 10.1093/nsr/nwac281. |
[14] | Kang, Z., Wu, C., Dong, L., et al. (2019). 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 7: 3364−3371. DOI: 10.1021/acssuschemeng.8b05568. |
[15] | Wang, Z., Huang, J., Guo, Z., et al. (2019). A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3: 1289−1300. DOI: 10.1016/j.joule.2019.02.012. |
[16] | Chen, T., Wang, Y., Yang, Y., et al. (2021). Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv. Funct. Mater. 31: 2101607. DOI: 10.1002/adfm.202101607. |
[17] | Xiong, P., Zhang, Y., Zhang, J., et al. (2022). Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 4: 100076. DOI: 10.1016/j.enchem.2022.100076. |
[18] | Xiong, P., Kang, Y., Yuan, H., et al. (2022). Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl. Phys. Rev. 9: 011401. DOI: 10.1063/5.0074327. |
[19] | Yao, L., Hou, C., Liu, M., et al. (2022). Ultra-stable Zn anode enabled by fiber-directed ion migration using mass-producible separator. Adv. Funct. Mater. 33: 2209301. DOI: 10.1002/adfm.202209301. |
[20] | Song, Y., Ruan, P., Mao, C., et al. (2022). Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14: 218. DOI: 10.1007/s40820-022-00960-z. |
[21] | Zhao, C.Z., Chen, P.Y., Zhang, R., et al. (2018). An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4: eaat3446. DOI: 10.1126/sciadv.aat3446. |
[22] | Ye, Y., Yu, L., Lizundia, E., et al. (2023). Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem. Rev. 123: 9204−9264. DOI: 10.1021/acs.chemrev.2c00618. |
[23] | Yu, L., Gao, T., Mi, R., et al. (2023). 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 16: 7609−7617. DOI: 10.1007/s12274-023-5383-x. |
[24] | Zhu, Y., Cao, K., Cheng, W., et al. (2021). A non-Newtonian fluidic cellulose-modified glass microfiber separator for flexible lithium-ion batteries. EcoMat. 3: e12126. DOI: 10.1002/eom2.12126. |
[25] | Zhao, D., Zhu, Y., Cheng, W., et al. (2021). Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33: 2000619. DOI: 10.1002/adma.202000619. |
[26] | Zhang, F., Lan, X., Peng, H., et al. (2020). A “trojan horse” camouflage strategy for high-performance cellulose paper and separators. Adv. Funct. Mater. 30: 2002169. DOI: 10.1002/adfm.202002169. |
[27] | Yao, K., Huang, S., Tang, H., et al. (2017). Bioinspired interface engineering for moisture resistance in nacre-mimetic cellulose nanofibrils/clay nanocomposites. ACS Appl. Mater. Interfaces 9: 20169–20178. DOI: 10.1021/acsami.7b02177. DOI: 10.1021/acsami.7b02177. |
[28] | Tang, H., Butchosa, N., and Zhou, Q. (2015). A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol). Adv. Mater. 27: 2070–2076. DOI: 10.1002/adma.201404565. DOI: 10.1002/adma.201404565. |
[29] | Kang, L., Cui, M., Jiang, F., et al. (2018). Nanoporous caco3 coatings enabled uniform zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8: 1801090. DOI: 10.1002/aenm.201801090. DOI: 10.1002/aenm.201801090. |
[30] | Wang, Y.Q., Tang, W., and Zhang, L. (2015). Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J. Mater. Sci. Technol. 31: 175–181. DOI: 10.1016/j.jmst.2014.11.009. DOI: 10.1016/j.jmst.2014.11.009. |
[31] | Bayaguud, A., Luo, X., Fu, Y., and Zhu, C. (2020). Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5: 3012–3020. DOI: 10.1021/acsenergylett.0c01792. DOI: 10.1021/acsenergylett.0c01792. |
[32] | Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865–3868. DOI: 10.1103/PhysRevLett.77.3865. DOI: 10.1103/PhysRevLett.77.3865. |
[33] | Yang, F., Zuo, X., Yang, H., et al. (2022). Ionic liquid-assisted production of high-porosity biochar with more surface functional groups: Taking cellulose as attacking target. Chem. Eng. J. 433: 133811. DOI: 10.1016/j.cej.2021.133811. |
[34] | Kaya, H., Ngo, D., Gin, S., and Kim, S.H. (2020). Spectral changes in Si–O–Si stretching band of porous glass network upon ingress of water. J. Non-Cryst. Solids 527: 119722. DOI: 10.1016/j.jnoncrysol.2019.119722. |
[35] | Qin, Y., Liu, P., Zhang, Q., et al. (2020). Advanced filter membrane separator for aqueous zinc-ion batteries. Small 16: 2003106. DOI: 10.1002/smll.202003106. |
[36] | Huang, X., He, R., Li, M., et al. (2020). Functionalized separator for next-generation batteries. Mater. Today 41: 143−155. DOI: 10.1016/j.mattod.2020.07.015. |
[37] | Liu, Y., Liu, S., Xie, X., et al. (2022). A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat. 5: e12374. DOI: 10.1002/inf2.12374. |
[38] | Zheng, J., Zhao, Q., Tang, T., et al. (2019). Reversible epitaxial electrodeposition of metals in battery anodes. Science 366: 645−648. DOI: 10.1126/science.aax6873. |
[39] | Cao, J., Zhang, D., Gu, C., et al. (2021). Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 89: 106322. DOI: 10.1016/j.nanoen.2021.106322. |
[40] | Higashi, S., Lee, S.W., Lee, J.S., et al. (2016). Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7: 11801. DOI: 10.1038/ncomms11801. |
[41] | Li, C., Shyamsunder, A., Hoane, A.G., et al. (2022). Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6: 1103−1120. DOI: 10.1016/j.joule.2022.04.017. |
[42] | Xu, X., Su, H., Zhang, J., et al. (2022). Sulfamate-derived solid electrolyte interphase for reversible aqueous zinc battery. ACS Energy Lett. 7: 4459−4468. DOI: 10.1021/acsenergylett.2c02236. |
[43] | Zhao, Y., Ouyang, M., Wang, Y., et al. (2022). Biomimetic lipid-bilayer anode protection for long lifetime aqueous zinc-metal batteries. Adv. Funct. Mater. 32: 2203019. DOI: 10.1002/adfm.202203019. |
[44] | Hao, J.N., Yuan, L.B., Ye, C., et al. (2021). Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60: 7366−7375. DOI: 10.1002/anie.202016531. |
[45] | Hao, J., Li, X., Zhang, S., et al. (2020). Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30: 2001263. DOI: 10.1002/adfm.202001263. |
[46] | Cao, J., Zhang, D., Gu, C., et al. (2021). Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11: 2101299. DOI: 10.1002/aenm.202101299. |
[47] | Zhou, S., Wang, Y., Lu, H., et al. (2021). Anti-corrosive and zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv. Funct. Mater. 31: 2104361. DOI: 10.1002/adfm.202104361. |
[48] | Liang, P., Yi, J., Liu, X., et al. (2020). Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30: 1908528. DOI: 10.1002/adfm.201908528. |
[49] | Zhang, Q., Ma, Y., Lu, Y., et al. (2022). Halogenated zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144: 18435−18443. DOI: 10.1021/jacs.2c06927. |
[50] | Naveed, A., Yang, H., Shao, Y., et al. (2019). A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv. Mater. 31: 1900668. DOI: 10.1002/adma.201900668. |
[51] | Xiong, P., Kang, Y., Yao, N., et al. (2023). Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett. 8: 1613−1625. DOI: 10.1021/acsenergylett.3c00154. |
[52] | Xiong, P., Lin, C., Wei, Y., et al. (2023). Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 8: 2718−2727. DOI: 10.1021/acsenergylett.3c00534. |
Huang J., Yu L., Wang S., et al., (2023). An ultrathin nanocellulosic ion redistributor for long-life zinc anode. The Innovation Materials 1(2), 100029. https://doi.org/10.59717/j.xinn-mater.2023.100029 |
Construction process and the function of a U-CNF ion redistributor in AZBs
Characterization of the morphology and property changes of glass fiber with the introduction of U-CNF
Cyclability of Zn anode with and without a U-CNF ion redistributor
Experimental and computational investigations of the influence of U-CNF ion redistributor on the Zn deposition chemistry
Evaluation of practical application prospect of the U-CNF ion redistributor