[1] | Kitanovski, A. (2020). Energy applications of magnetocaloric materials. Adv. Energy Mater. 10: 1903741. DOI: 10.1002/aenm.201903741. |
[2] | Romero-Muñiz C., Law J.Y., Revuelta-Losada J., et al. (2023). Magnetocaloric materials for hydrogen liquefaction. The Innovation Materials 1: 100045. DOI: 10.59717/j.xinn-mater.2023.100045. |
[3] | Lei, T., Engelbrecht, K., Nielsen, K. K., et al. (2017). Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration. Appl. Therm. Eng. 111: 1232−1243. DOI: 10.1016/j.applthermaleng.2015.11.113. |
[4] | Moore, J. D., Klemm, D., Lindackers, D., et al. (2013). Selective laser melting of La(Fe, Co, Si)13 geometries for magnetic refrigeration. J. Appl. Phys. 114: 043907. DOI: 10.1063/1.4816465. |
[5] | Sun, K., Mohamed, A.E.-M.A., Li, S., et al. (2023). Laser powder bed fusion of the Ni-Mn-Sn Heusler alloy for magnetic refrigeration applications. Addit. Manuf. 69: 103536. DOI: 10.1016/j.addma.2023.103536. |
Sun W., Zhang M., Fu Q., et al., (2023). Opportunities and challenges of additive manufacturing toward magnetic refrigeration. The Innovation Materials 1(3), 100032. https://doi.org/10.59717/j.xinn-mater.2023.100032 |
Shematic of the additive manufacturing for magnetic refrigeration.